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Abstract

In this work we address the problem of single microphone speech enhancement.
We extend previous results by giving an extended parametric model for both

the speech and noise signals. The speech is modeled by an AR process excited by
a mixed innovation of both white noise and pitch sequence. The Noise is mod-
eled as a different order AR process excited only by white noise. By this modeling
we translate the speech enhancement problem into the Maximum-Likelihood esti-
mation problem. Then, by an appropriate use the EM procedure, we achieve both
parameter estimation and signal enhancement. The resulting algorithm has an intu-
itive structure. The signal is divided into segments, short enough for the stationary
assumption to hold. In each segment the algorithm iterates between solving a de-
coupled set of equations for the speech and noise parameters, and an application of
the Kalman Filter, or Fixed-Lag-Smoother.

In the presence of additive Gaussian noise, we suggest the use of Higher-Order-
Statistics (HOS) techniques for robust estimation of the AR parameters. This use
improves significantly the convergence behavior of the algorithm.

A Sequential/Adaptive solution (in which no segmentation is applied) is also
derived, giving a computationally more efficient algorithm, but at the expense of
performance degradation in the low SNR range.

Several objective and subjective tests are conducted for evaluating the proposed
algorithms performance. The tests performed include informal speech quality rat-
ings, distortion measures, Intelligibility scores achieved by human listeners, and
recognition accuracy of an ASR system in the presence of actual noise. The pro-
posed algorithms are proven to work well in all categories.
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Chapter 1

Introduction

1.1 General

The problem of enhancing speech degraded by additive noise has received consider-

able attention in the literature since the mid-1970. Speech enhancement is desirable

in wide variety of contexts. Consequently, a variety of approaches have been pro-

posed and investigated (e.g. [21], [23], [16]).

The problem of Speech Enhancement can be divided to several problems and top-

ics. Speech can be degraded by additive noise or by competitive speaker or by some

distortion, such as microphone or telephone channel. We can process the speech

with several microphones (two or more) or only by one. Another issue concerns the

purpose of the enhancement. We may process the speech for a human listener in

order to improve its quality (e.g. in noisy environments such as offices, streets, and

motor vehicles), or to improve its intelligibility in harsh conditions (such as airports).

Transcription of recorded tapes degraded by additive noise is also of interest. We

may use it as a preprocessing mechanism for speech compression algorithms or as a

front-end to Automatic Speech Recognition (ASR) systems. The type of algorithm

depends on the application and problem issued.

We address the problem when only one microphone of degraded speech is avail-

able for processing. We also assume that the speech is degraded by additive noise.

We are interested in speech quality enhancement, as well as in intelligibility im-

provement, and in ASR performance improvement.

Throughout the remainder of this chapter we will try to give a brief summary of
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existing algorithms.

1.2 Existing Methods

We will summarize several existing methods for single microphone speech enhance-

ment. We will not describe all the existing algorithms, of course, but only methods

that are related to our development, and algorithms that were implemented for

comparison purposes. In each of the algorithms we will cite the advantages and

drawbacks as stated by the authors. When ever possible we will try to give our

opinion. Two of the algorithms were also implemented in MATLAB, for the purpose

of comparison. The addressed methods can be roughly divided into the following

areas:

Frequency domain methods

Time domain methods

Periodicity

Underlying model for speech production

1.2.1 Frequency domain methods

Several methods are developed for speech enhancement in which the incoming speech

is divided into segments. Each segment is spectrally decomposed into a set of magni-

tudes and a set of phases. The noise reduction is achieved by appropriate adjustment

of the set of spectral magnitudes. A waveform reconstruction process then combines

the adjusted magnitudes and the unprocessed phases. All methods employ a speech

activity detector, which detects when speech is present. At non-speech segments

the background noise spectrum is estimated. The various methods - suggested by

Weiss et al. [24], Boll [2], and others - differ primarily in their approaches to spectral

magnitude adjustment. Boll’s version, in which the spectral magnitude adjustment

is achieved by subtracting the estimated noise spectrum from the corrupted speech

spectrum, is the most popular version.
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The method was tested by the author and by others [20]. The results include

Spectrogram plots comparison, DRT tests and coarse measure of quality. The pro-

cedure was also repeated for a speech that was pre-processed by the algorithm prior

to applying an LPC vocoder. The results indicates that the algorithm alone does

not decrease intelligibility and does increase quality. When applied before the LPC

bandwidth compressor, an intelligibility increase is noticed.

Nevertheless, there are significant drawbacks to the suggested algorithm. The

main drawback is the residual noise characteristics. After the subtraction operation,

especially in the absence of speech activity, the remaining residual signal will exhibit

itself in the spectrum as randomly spaced narrow bands of magnitude spikes. In the

time domain those spikes manifest themselves as a sum of tones. These audible

effects can be reduced by thresholding operation, taking advantage of the frame-to-

frame randomness of the noise. Another important drawback is the need of a very

good speech-activity detector.

The Spectral Subtraction method (especially, Boll’s version) has gained a lot of

industrial interest. For that reason we implemented it for comparison purposes. The

described residual tone phenomena was detected of course, and it is quite annoying.

The algorithm performance degrades rapidly bellow SNR level of +5 dB.

A more detailed description of the algorithms may be found in Appendix C.

1.2.2 Time domain methods

We address here the algorithm suggested by Bernard Widrow et al. [34]. The algo-

rithm is directed to minimize the square error between the estimated signal and the

clean signal. This is a general algorithm, and it does not use the detailed structure

of the speech production model. In spite of this limitation Widrow’s algorithm is

widely used for speech enhancement. Its main applications are in the two or more

microphones case, or in one microphone case for speech corrupted by periodic noise.

For that reason we implemented Widrow’s algorithm for comparison purposes. Here

we will give only a brief overview of the method. A more details description may be

found in Appendix D.

The usual method of estimating a signal corrupted by additive noise is to pass it
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through a filter that tends to suppress the noise while leaving the signal relatively

unchanged. The design of such filters is the domain of optimal filtering, which origi-

nated from the pioneering work of Wiener and was extended by the work of Kalman,

Bucy and others. Filters used for the above purpose can be fixed or adaptive. The

design of fixed filters is based on prior knowledge of both the signal and noise statis-

tical characteristics. Adaptive filters, on the other hand, have the ability to adjust

their own parameters automatically, and their design requires little or no a priori

knowledge of the signal and noise characteristics.

Noise cancelling is a variation of optimal filtering. It makes use of an auxiliary

or reference input derived from one or more sensors located at points in the noise

field where the signal is weak or undetectable. In the one-microphone case, where

no auxiliary sensor exist, we derive the reference input by applying a delay to the

primary input.

The primary microphone detects both speech (desired) and noise (disturbing)

signals. The secondary (reference) microphone detects a signal that is in correlation

with one of the primary microphone components but not with the other. An adaptive

filter is applied to the reference microphone. The output of the filter is subtracted

from the primary microphone to yield an estimation of the uncorrelated signal. The

output of the adaptive filter is an estimation of the correlated signal. The filter

coefficients are adaptively changing in time in order to minimize the estimation

error (which is the difference between the filtered reference signal and the disturbing

signal).

The desired correlations are achieved via a modification to the DELAY value.

We chose a value which is longer then the correlation length of one of the signals, but

shorter then the other. Thus, if the noise is white, a short delay will cause the noise

correlation to diminish while the speech correlation still exist. On the other hand,

if we have a periodic corruption, a very long delay will do the job. This use of the

DELAY implies that only signals with different correlation length can be separated.

We implemented this algorithm in our Lab. The algorithm works very well with

a periodic noise, eliminating its component almost completely, without degrading

the speech. With white noise (or worse, with a “colored noise”), the algorithm works
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only with sufficiently high SNR values (5−10 dB) and having a very annoying “barrel

effect”. The speech is distorted and sounding like coming from inside a barrel.

1.2.3 Periodicity

waveforms of voiced sounds are periodic with a period that corresponds to the

fundamental frequency, the pitch. Most of the speech energy is due to the this

harmonic structure. So, a good practice may be to apply a comb filter, which passes

only the harmonics, and attenuate the inter-harmonics frequency bands, which are

due mostly to the noise. This idea was suggested by Shields. An improvement to

this approach was suggested by Fraizer [29] and evaluated by Lim, Oppenheim and

Braida [11]. The comb filter is constructed by several taps spaced pitch periods

apart. A larger weight is given to the closest pitch impulses. Thus, the short-

term periodicity of the speech signal is exploited in order to filter out the non-

periodic components of the corrupted signal. Three, seven, or thirteen periods are

checked. Special care is taken for abrupt changes in the pitch period (which is a

common phenomena in speech) and to transition from voiced to unvoiced portion

of speech. The exact pitch period is used (derived from clean speech). The SNR

value considered are in the range from above −5 dB. Intelligibility tests are done for

this algorithm. The intelligibility degrades with decreasing SNR value (as expected

of course) and with applying a longer filter. The use of only three pitch periods is

proven to be the best choice. It does not degrades the intelligibility significantly.

On the other hand, Increasing the number of the pitch periods used increases the

SNR improvement from 3.5 dB to 10 dB. It is important to emphasize, that trying

to evaluate the pitch information from the corrupted speech, will cause a severe

degradation in performance.

We note here that, in our opinion, the pitch information should not be used

alone. There is an important information in the low level portion of the speech

(unvoiced) too. We suggest to try and combine the pitch information, into more

comprehensive model of speech.
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1.2.4 Underlying model for speech production

We present here a family of algorithms that are based strongly on the underlying

model of the speech production. All the algorithms that we will present here are

based on the LPC model of speech, which is explained in chapter 2.

Lim and Oppenheim [12, 13] suggested an iterative scheme, which is based on

the LPC model, for enhancing corrupted speech.

The algorithm tries to solve the Maximum A-posteriori (MAP) estimate of the

speech parameters. Under the assumption of Gaussian excitation the MAP esti-

mator of the LPC parameters given the observed clean data of the entire segment

coincident with the Yule-Walker equations (“Covariance Method”). When only

corrupted observations are given, the equations for solving the MAP estimator of

become non-linear and in general difficult to solve.

The authors suggest to solve for the parameters by applying iterative procedure

which requires only a solution of a set of linear equations. The iterative algorithm,

referred to as linearized MAP (LMAP), begins with an initial estimate of the LPC

parameters and then enhances the speech by an appropriate application of an opti-

mal filter. A new estimate of the LPC parameters is obtained by the “correlation”

method. The procedure iterates back and forth between enhancing the speech data

given the parameters and the LPC parameters given the enhanced speech signal.

Furthermore, under a stationary assumption (an infinite segment length) the en-

hancement operation can be performed via the non-casual Wiener filter.

The LPC parameters are calculated by inversion of the correlation matrix (as-

suming that the noise spectrum is known). The terms of this matrix can be cal-

culated by a multiplication of the enhanced speech vectors, which is the LMAP

version, or by a direct calculation, which constitutes the revised LMAP (RLMAP)

algorithm.

The authors presents preliminary results about the enhancement achieved. It

is worth noting that the LMAP algorithm converges more rapidly but after more

than 2-3 iterations the formant bandwidth become very narrow, causing an unnat-

ural sounding. The RLMAP converges to a point where the poles’ bandwidth is

comparable to those of the clean speech , but only after 10 iterations.
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Several researchers tried to overcome the convergence drawbacks. Hansen et.

al. [10] suggested to imply a set of vocal tract spectral constrains. Their modification

is using inter-frame (across time) and intra-frame (across iterations) constrains to

ensure speech-like characteristics of the enhanced speech. It has been shown that

applying constrains on the the radial and angular movements of the poles across time

and iterations can give substantial improvement in objective speech quality and in

informal listening tests.An efficient technique for applying the constrains, based

on the spectral pair (LSP) representation, is suggested. The LSP transformation

results from modifying the LPC polynomial of the All-Pole speech model. The

LSP coefficients introduce an easy way to find the vocal tract poles’ location and

bandwidth. The constrains include smoothing the location of the poles across time

and iterations, preventing too fast movement, and down limiting the bandwidth

of the poles to prevent an unnatural sounding caused by too narrow peaks. The

algorithm that performs Lim and Oppenheim iterations was implemented including

the discussed constrains. The results indicates improved Itakura-Saito distances

from the clean speech (which is with good correlation with subjective tests) than

achieved by the original Lim and Oppenheim algorithm and by Boll’s algorithm.

The best results over a wide range of SNR values (−5 dB to 10 dB) is obtained

by applying both across-time and across-iterations constrains. This improvement

is consistent over a large range of sound type (e.g. Vowel, Nasal, Fricative, Glide,

Liquid, etc.). Furthermore, a consistent terminating point (number of iterations)

over a wide range of SNR levels and sound types is achieved in the constrained

algorithm. The resulted spectral shape did not suffer from the narrowed bandwidth

of the formants occurred in the unconstrained approach. The algorithm was also

checked as a preprocessor to an Isolated-Word speech recognition system. It proves

to make a considerable improvements in SNR levels from 10 dB to 30 dB. It should

be emphasized that the noise spectrum is calculated by using speech-free segments

and it is not updated very frequently. This technique also suffers from a great

computation complexity.

Masgrau et. el. suggested another modification to Lim and Oppenheim’s al-

gorithm [5, 6]. The modification takes advantage the blindness to uncorrelated
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Gaussian noise possessed by the Higher-Order Cumulants. In Lim and Oppenheim

algorithm the AR coefficients are estimated via the correlation function. This es-

timation suffers severely due to bias caused by the noise. The use of Cumulants

decouples the speech from the noise, and exchange the bias in the estimation by a

greater variance. Furthermore, the phenomena of narrow formants is more observ-

able when using HOS than with second order statistics. In order to accommodate

with this problem, the authors are using Higher Order Statistics (HOS) only in the

first iteration and usual second order LPC analysis in the next iterations (resulting

an hybrid algorithm). By starting with HOS we can use the benefits of robustness

to noise and faster converges rate, and by continuing with second order statistics we

have the benefit of statistically more stable algorithm.

Simulations indicates an improvement in the overall SNR and other distortion

measures (like Itakure-Saito) compared to the conventional algorithm. This tech-

nique can help us also as a pre-processor for Speech Identification systems. The

resulting AR parameters are more robust to noise.

A time-domain approach to signal enhancement is suggested by Weinstein, Op-

penheim and Feder [7]. The procedure is based on the iterative Estimate-Maximize

(EM) algorithm for maximum likelihood estimation. On each iteration, in the M-

step of the algorithm, parameter values are estimated based on the signal estimates

obtained in the E-step of the prior iteration. The E-step is then applied using these

parameter estimates to obtain a refined estimate of the signal. The E-step is imple-

mented in the time domain using a Kalman smoother. This approach enables the

algorithm to avoid many of the computational difficulties with the prior Lim and

Oppenheim frequency domain formulation. Furthermore, the time domain formula-

tion leads naturally to time adaptive algorithm by replacing the Kalman Smoother

with a Kalman filter, and in place of successive iterations on each data block, the

algorithm proceeds sequentially through the data with exponential weighting ap-

plied to permit the algorithm to adapt to changes in the structure of the data. The

resulted algorithm can be viewed as a time domain counterpart of the Lim and

Oppenheim algorithm.
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1.3 Proposed Algorithms Overview

This thesis is an extension to Weinstein, Oppenheim and Feder’s algorithm. We

develop two algorithms that exploit a more complicated model of the speech and

noise. The periodicity of the speech is exploited by incorporation of the pitch in-

novation sequence. We also extend the noise model. The noise can be “colored”

with arbitrary spectrum, instead of white, as in the previous algorithm. Attention

is taken to the noise spectrum estimation, without using speech activity detector.

The convergence behavior of the algorithm and an enhancement in its performance

is achieved by using HOS for the LPC parameter estimation. Two algorithms are

developed from the EM procedure for ML parameter estimation. The first one di-

vides the signal into segments. In each segment iterations are made between both

noise and speech parameter estimation (M-step), and signals enhancement (E-step).

The M-step is implemented via two decoupled set of equations (for the speech and

noise parameters). The equations are an extension of the Yule-Walker equations.

The E-step is constructed by applying Kalman filter (or fixed -lag-smoother). The

second algorithm has a sequential/adaptive structure achieved by replacing the iter-

ation index by the time index. The resulting algorithm advance in time by applying

Kalman filter and by sequentially estimating the signals parameters. Both algorithm

have an intuitive form. The parameters of the signal are estimated using its current

estimate, and the signal is enhanced by using the estimated parameters. This form

implies a possible application of the algorithm for the competitive speaker separation

problem.

The algorithms are checked intensively by applying subjective and objective

tests, such as quality measure, intelligibility tests and ASR performance evaluation.

The work is arranged as follows. In chapter 2 the models of the speech and

noise signals are presented and the enhancement problem is introduced. Chapters 3

and 4 includes both the Iterative-Batch and Sequential solutions for the problem.

Chapter 5 is devoted to a preview of methods for evaluating the performance of

speech systems. The performance of both algorithms is evaluated via Subjective

and Objective tests in chapter 6. Conclusions and topics for further research are

discussed in chapter 7.
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Chapter 2

The Signal Model

The basic problem of interest is illustrated in Figure 2.1, where s(t) represents

the speech signal, v(t) represents the noise, z(t) represents the observed distorted

signal, and ŝ(t) represents the enhanced, or estimated speech signal. As with all the

approaches mentioned in the introduction, the enhancement algorithm depends on

the specific assumptions being made on the speech and the noise models. This will

be the focus of this chapter.

&%

'$
--

?

-
Speech Enhancement

Algorithm

∑
s(t) z(t)

v(t)

ŝ(t)

Figure 2.1: Problem Formulation

2.1 The Speech Production Model

Our description of the speech production model is based partly on Parson’s book [30].

The speech mathematical model is based on physiological aspects concerning
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the speech production. The operation of speech production is usually divided into

two functions, excitation and modulation. Excitation takes place mostly at the

glottis but also at some other points; modulation is done by various organs of the

vocal tract.

Excitation: Excitation is done in several ways, comprising phonation, whispering,

frication, compression and vibration. Phonation is the oscillation of the vocal

cords. When air is forced through the vocal cords, they vibrate. The opening

and closing of the cords breaks the air stream up into pulses. The shape and

duty cycle of these pulses depends strongly on the circumstances. The repeti-

tion rate of the pulses is termed pitch. At low level of air pressure oscillation

may become irregular (repetition rate dropped by half, or pulses coming in

pairs). Anyhow, speech sounds accompanied by phonation are called voiced.

Other types of excitation are called unvoiced. These includes Whispering,

where the vocal cords are almost closed, generating turbulence of air. Other

types of unvoiced excitation are perceived as interruption of the air flow (and

therefore can be also considered as modulation) forming consonants and syl-

lable boundaries. If the vocal tract is constricted at any other point, the air

flow past the constriction is turbulent. This sound is called Fricative. Com-

pression occurs if the vocal tract is completely shut off at any point. Pressure

builds up, and upon release, a small explosion will occur. This combination

of silence followed by a short noise is called plosive in abrupt release and

affricate in graduate release. Vibration occurs when air is forced through a

closure other than the vocal cords, especially, the tongue. All unvoiced sounds

have a wide-band noise-like characteristics.

Modulation: Modulation is the action of imposing information on the glottal out-

put. Physiologically, the sound is modulated by moving the speech organs

(mainly the tongue) in order to change the quality of the voice and to in-

terpose additional sounds on the voice. Acoustically, the principal means of

modulation is the operation of filtering. The glottal waveform is very rich in

harmonics, and the vocal tract, like any acoustical tube, has natural frequen-

cies, which are a function of its shape. These natural resonance are called

11



formants. Those frequencies provide crucially important information about

the vowels and some of the consonants. Additional types of modulations are

various interruption and added noise bursts.

To summarize, and to make the necessary connection between physiologically

aspects and our mathematical models, we will make some simple assumptions and

modifications.

We can model the excitation as some mixture of train pulse and white noise.

At each time period the excitation can be voiced or unvoiced or generally “more”

voiced or “more” unvoiced.

The modulation, should be a filter. A reasonable choice might be an all-pole

filter. There are several justification to this choice. First, we mentioned earlier that

the speech spectrum (especially for voiced sounds), is characterized by resonance fre-

quencies (formants), which can be modeled as poles. This all-pole model property is

referred to as the “Spectral Matching” property. Second, a simplified “mechanical”

model for the vocal tract can be of several “pipes” of different diameters connected

together. Analysis of this model can bring us to the all-pole model. Third, and

the most important, is that this model, although very simple, proves itself as a

working model in several application, such as speech compression and speech recog-

nition. The LPC parameters - which are, actually, the AR coefficients - and some

related parameters form the basis of Automatic Speech Recognition systems. Those

LPC parameters are changing in time to point out the non-stationarity of speech.

Nevertheless, it is a usual practice to assume quasi-stationarity: the excitation and

the filter parameters are assumed to be fixed during a short time period (about 20

mSec).

We shall conclude this summary with the a schematic figure 2.2. The excitation

in this figure is modeled as a (weighted) sum of white noise and pulse train. This

weighted sum can be replaced by a switch, which is controlled by a voiced/unvoiced

decision. We prefer the more complicated version: the weighted sum. There are

several unknown parameters in this model: the pole location (filter coefficients), the

white noise level, the pitch period, and the glottal shape and gain.

This schematic description can be converted into a mathematical model which

12
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Figure 2.2: Schematic speech production model

include several parameters to be estimated later. Thus, the speech signal model can

be written as in equation 2.1.

s(t) = −
p∑

k=1

αks(t− k) +
√

gsu(t) + Asg(t). (2.1)

Where, α1, α2, . . . , αp are the p AR coefficients, representing the vocal tract. This

filter is derived by a mixed excitation (innovation sequence). The first component

is a white, preferable non-Gaussian, zero-mean process, termed u(t), with power

E{u2(t)} = 1.

The second component is an impulse train series g(t) =
∑∞

k=−∞ d(t− kTs − φsTs),

where, Ts is the pitch period, φs is the phase of the first pulse relative to the beginning

of the segment, and d(t) is the glottal pulse shape. We will also denote gs as the white

noise power gain and As as the pitch series gain. The quasi-stationary assumption

we have made, implies that the all of the parameters are constant through out a

predefined segment. All the described parameters are shown in Fig 2.3.

2.2 The Noise Model

The noise model depends on its source. As there is a variety of efficient methods for

suppressing the effect of narrow-band noise sources, we shall concentrate on wide-
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Figure 2.3: Mathematical model for Speech production

band noise sources. Furthermore, only wide-band noise sources that can be modeled

as an autoregressive (AR) process will be discussed. This model, although limited,

is broad enough for our purposes.

Thus, the noise signal model can be written as in equation 2.2.

v(t) = −
q∑

k=1

βkv(t− k) +
√

gvw(t) (2.2)

Where β1, β2, . . . , βq are the q AR coefficients. The noise innovation sequence, w(t),

is a white, zero mean, preferable Gaussian process with E{w2(t)} = 1. gv is the

innovation power gain. The quasi-stationary assumption holds here also (we usually

assume that the noise is changing slower than the speech). For example, The special

case of white noise is treated as a private case of this model by choosing the filter

order to be q = 0. All the described parameters are summarized in Fig 2.4.

- -
√

gvw(t)
∑q

k=0 βkz
−k v(t)

Figure 2.4: Mathematical model for Noise process

As a final remark we note that introducing a pitch series as another innovation

of the noise signal can convert our problem into a speaker separation problem. We

did not address this problem in this work.
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Chapter 3

Algorithm Development

3.1 ML estimation via the EM procedure

Let z = {z(t) : t = 1, 2, . . . , N} denote a vector of corrupted speech samples (ob-

served data) possessing the p.d.f.fZ(z; θ), where θ is the vector of unknown param-

eters modeling the speech and noise waveforms:

θ =




α1

α2
...

αp

gs

As

φs

Ts

β1

β2
...
βq

gv




(3.1)

The Maximum-Likelihood (ML) estimate of θ is obtained by solving

θ̂ML = arg max
θ∈Θ

log fZ(z; θ) (3.2)

Our objective is to estimate the clean speech samples s(t) from the observed

data. The use of the EM procedure for solving the ML problem enables us to get

the speech estimate as a by-product of the parameter estimate.
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The EM algorithm is described in appendix A. Here We will only quote the main

results necessary for our development.

The EM algorithm is an iterative procedure for finding the ML parameter esti-

mates. To apply the EM algorithm we need to define a “complete data” y which

depends on the observed data (“incomplete data”) z by:

z = H(y) (3.3)

where H(·) is a non-invertible (many-to-one) transformation. Then, each itera-

tion of the EM algorithm consists of the following steps:

E-step

Q(θ, θ(l)) = Eθ(l) {log fY (y; θ)|z} (3.4)

M-step

max
θ

Q(θ, θ(l)) → θ(l+1) (3.5)

Intuitively, we get in the E-step an estimate of the “complete data” statistics

given the “incomplete data”, and based on the current estimate of the parameters

(which is exactly the desired signal). In the M-step we solve the ML problem using

the current estimate of the “complete data” instead of using the observed samples.

The crucial point in any implementation of the EM algorithm is the definition of

the “complete data”. We will choose the “complete data” as a concatenation of

the corrupted samples z(t) and the clean speech samples s(t). By this choice, we

will obtain the estimate of the signal s(t), as a by-product of the ML parameter

estimation. For the purpose of signal enhancement, it is the signal estimate that

we are interested in. Nevertheless, the parameters we estimate may be also useful

in several application, such as Automatic Speech Recognition systems and speech

compression algorithms.

This chapter organization is as follows. In the next section we will give a detailed

development of the algorithm. Then special cases and several simplifications for the

resulted algorithm will be discussed. We will conclude by addressing the problem of

improving the AR parameter estimation, which improves the convergence behavior
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of the algorithm. Chapter 4 will give another version of the enhancement algorithm,

namely a sequential/adaptive algorithm.

3.2 Detailed Algorithm Development

We will start by few assumptions. In order to compensate for the non-stationarity of

the speech and noise, we divide the signal into (perhaps overlapping) segments, short

enough for the stationarity assumption to hold. Standard choice for the segment

length in speech signals is about 20 mSec. The noise segments may be even longer.

Assume also, for the time being, that the white-noise component of the speech

innovation sequence is Gaussian, which causes the speech signal to have a Gaus-

sian p.d.f.. We have already assumed that the noise signal Gaussian. We will see

that under those assumptions the ML estimate coincidences with an optimal linear

Minimum Mean Square Error (MMSE) estimation of the speech signal.

Denote by:

z = {z(t) : t = 1, 2, . . . , N} (3.6)

the “incomplete data” segment, and by:

s = {s(t) : t = −p + 1,−p + 2, . . . , N} (3.7)

a collection of speech samples which constitutes the “desired signal”. N is the

segment length and p is the speech AR order.

Define by:

y =

[
z
s

]
(3.8)

the “complete data”.

Invoking Bayes’s rule,

fY (y; θ) = fS(s; θ) · fZ|S(z|s; θ) (3.9)

Where θ is the vector of unknown parameters defined in equation 3.1. Taking

the logarithm of both sides gives:

log fY (y; θ) = log fS(s; θ) + log fZ|S(z|s; θ) (3.10)
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From the assumption that the stochastic input is Gaussian and white and from

the AR nature of the speech ( 2.1), we can write:

log fS(s; θ) = log f(sp−1(0))− N

2
log 2πgs − 1

2gs

N∑

t=1

[s(t) + αT sp−1(t− 1)− Asg(t)]2

(3.11)

where we defined a speech state vector as:

sp(t) =




s(t− p)
s(t− p + 1)

...
s(t)




(3.12)

and f(sp−1(0)) denotes the p.d.f.of sp−1(0), the initial condition of the frame for the

speech signal. Than, encountering the fact that log fZ|S(z|s; θ) = log fV (v, θ) and

from the same assumptions about the noise ( 2.2), we can also write:

log fV (y; θ) = log f(vq−1(0))− N

2
log 2πgv − 1

2gv

N∑

t=1

[v(t) + βT vq−1(t− 1)]2 (3.13)

where we defined a noise state vector as:

vq(t) =




v(t− q)
v(t− q + 1)

...
v(t)




(3.14)

and f(vq−1(0)) denotes the p.d.f.of vq−1(0)), the initial condition of the frame for the

noise signal. Substituting 3.11 and 3.13 into 3.10 and assuming that the log f(sp−1(0))

and log f(vq−1(0)) are known from the previous segment (we can get them from the

end of the previously enhanced segment), we obtain:

log fY (y; θ) = C − N

2
log gs − N

2
log gv (3.15)

− 1

2gs

N∑

t=1

[s(t) + αT sp−1(t− 1)− Asg(t)]2

− 1

2gv

N∑

t=1

[v(t) + βT vp−1(t− 1)]2

where C is a constant independent of the parameter vector θ. Taking the conditional

expectation given the corrupted measurements z at a given parameter estimation

θ(l) gives:
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Q(θ, θ(l)) = Eθ(l){log fY (y; θ)|z} (3.16)

= −N

2
log gs − N

2
log gv

− 1

2gs

N∑

t=1

(((( hhhh

[εs(t)− Asg(t)]2
(l)

− 1

2gv

N∑

t=1

(( hh
[εv(t)]

2
(l)

where we defined by:

εs(t)
4
= s(t) + αT sp−1(t− 1) (3.17)

εv(t)
4
= v(t) + βT vq−1(t− 1) (3.18)

the estimates of the residual errors, and where for simplicity we used the notation:

(·)(l) 4= Eθ(l){·|z} (3.19)

Writing εs and εv explicitly:

(( hh
[εv(t)]

2
(l)

= (3.20)

((hh
v2(t)

(l)

+2βT
(((( hhhh

vq−1(t− 1)v(t)

(l)

+βT
(((((

hhhhh

vq−1(t− 1)vT
q−1(t− 1)

(l)

β

and

(((( hhhh

[εs(t)− Asg(t)]2
(l)

= (3.21)

((hh
s2(t)

(l)

+αT
(((((

hhhhh

sp−1(t− 1)sT
p−1(t− 1)

(l)

α + A2
sg

2(t)

+2αT
(((( hhhh

sp−1(t− 1)s(t)

(l)

−2Asg(t)ŝ(t)
(l) − 2Asg(t)αT

(( hh
sp−1(t)

(l)

Thus, the computation of Q(θ, θ̂(l)) (E-step in EM formulation) requires only

the computation of the indicated conditional expectations (which in this case are
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estimates of the desired signal and its statistics).

Writing it down implicitly:

E-step: For t = 1, 2, . . . , N compute:

((hh
sp(t)

(l)

=




((( hhh
sp−1(t− 1)

(l)

ŝ(t)
(l)


 (3.22)

((( hhh
sp(t)s

T
p (t)

(l)

=




(((((
hhhhh

sp−1(t− 1)sT
p−1(t− 1)

(l)
((( hhh
sp−1(t)s(t)

(l)

((( hhh
s(t)sT

p−1(t)
(l) ((hh

s2(t)
(l)




(3.23)

((hh
vq(t)

(l)

=




((( hhh
vq−1(t− 1)

(l)

v̂(t)
(l)


 (3.24)

((( hhh
vq(t)v

T
q (t)

(l)

=




(((((
hhhhh

vq−1(t− 1)vT
q−1(t− 1)

(l)
((( hhh
vq−1(t)v(t)

(l)

((( hhh
v(t)vT

q−1(t)

(l) ((hh
v2(t)

(l)




(3.25)

The maximization of Q(θ, θ̂(l)) with respect to θ (M-step) is done by differenti-

ation operation. First, note that the noise and speech parameters are completely

decoupled. This means, that we can solve for the two signals separately, which is a

very desirable behavior of the algorithm.

M-step (for noise):

∂

∂β
Q(θ, θ̂(l)) = 0 ⇒ β̂(l+1) (3.26)

∂

∂gv

Q(θ, θ̂(l)) = 0 ⇒ ĝv
(l+1) (3.27)
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M-step (for speech):

∂

∂α
Q(θ, θ̂(l)) = 0 ⇒ α̂(l+1) (3.28)

∂

∂gs

Q(θ, θ̂(l)) = 0 ⇒ ĝs
(l+1) (3.29)

∂

∂As, Ts, φs

Q(θ, θ̂(l)) = 0 ⇒ Âs

(l+1)
, T̂s

(l+1)
, φ̂s

(l+1)
(3.30)

We will treat now the E-step and the M-step separately.

3.2.1 M-step

We will write down implicitly the operation involved in the maximization operations

above.

Solving for the noise parameters involves only simple differentiation, and can be

done analytically.

M-step (for noise):

β̂(l+1) = −




N∑

t=1

(((((
hhhhh

vq−1(t− 1)vT
q−1(t− 1)

(l)



−1

N∑

t=1

(((( hhhh

vq−1(t− 1)v(t)

(l)

(3.31)

ĝv
(l+1) =

1

N

N∑

t=1




((hh
v2(t)

(l)

+β̂T
(l+1) (((( hhhh

vq−1(t− 1)v(t)

(l)

 (3.32)

which is actually the standard “covariance” solution for the LPC coefficients.

As for the speech parameters it involves a more complicated maximization. For

unvoiced segments, the terms involving the pitch series diminishes and we obtain

a set of equations similar in structure to the noise parameter maximization, but

for voiced segments there is a coupling between the pitch parameters and the LPC

parameters.

The same problem was addressed by Burshtein ( [4]). He suggested an iterative

procedure for decoupling those sets of parameters. We will use his algorithm here.

The algorithm attempts to find, jointly, the LPC parameters, the pitch parame-

ters (period,level, phase) and the white noise level. The algorithm iterates between

LPC parameter estimation and pitch determination from the residual error obtained.
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The algorithm converges in few iterations to a point in which the residual error is

more “white” than the residual obtained by the conventional LPC parameter esti-

mation. Thus, in each of the EM iterations, indexed (l), we are making internal

iteration, indexed (k), for the speech parameters.

Summarizing the M-step for the speech mathematically:

M-step (for speech): Obtain α(0) by solving :

α(0) = −




N∑

t=1

(((((
hhhhh

sp−1(t− 1)sT
p−1(t− 1)

(l)



−1

N∑

t=1

(((( hhhh

sp−1(t− 1)s(t)

(l)

(3.33)

For k = 0, . . . , Nitr − 1 do:

η(t) = ŝ(t)
(l)

+ α(k)T
((( hhh
sp−1(t− 1)

(l)

t = 0, 1, . . . , N − 1

φ(k+1)
s , T (k+1)

s = arg maxφs,Ts

∑N−1

t=0
g(t)η(t)√∑N−1

t=0
g2(t)

A(k+1) =
∑N−1

t=0
g(k+1)(t)·η(t)√∑N−1

t=0
[g(k+1)(t)]2

(3.34)

Obtain α(k) by solving :




N∑

t=1

(((((
hhhhh

sp−1(t− 1)sT
p−1(t− 1)

(l)

 α(k) =

−
N∑

t=1

(((( hhhh

sp−1(t− 1)s(t)

(l)

+
N∑

t=1

((( hhh
sp−1(t− 1)

(l)

g(k+1)(t) (3.35)

END

After the last internal iteration we obtain the resulted maximization at the

current EM iteration by:

α̂(l+1) = α(Nitr) (3.36)

22



Âs

(l+1)
= A

(Nitr)
s

φ̂s

(l+1)
= φ

(Nitr)
s

T̂s

(l+1)
= T

(Nitr)
s

and the estimation of the white noise innovation gain:

ĝs
(l+1) = (3.37)

1

N

N−1∑

t=1




((hh
s2(t)

(l)

+(α̂(l+1))T
(((((

hhhhh

sp−1(t− 1)sT
p−1(t− 1)

(l)

α̂(l+1)

+(Âs

(l+1)
)2(ĝ(t)

(l+1)
)2 + 2(α̂(l+1))T

(((( hhhh

sp−1(t− 1)s(t)

(l)

−2Âs

(l+1)
ĝ(t)

(l+1)
ŝ(t)

(l) − 2Âs

(l+1)
ĝ(t)

(()
α̂(l+1))T

(( hh
sp−1(t)

(l)
]

We will not address here several practical consideration like the grid search of

the exact pitch period, but some of them were implemented in our software.

The Author indicates that the LPC parameters obtained by this procedure are

better features for an Automatic Speech Recognition system. This observation,

makes this choice even more attractive for our application (we will address the

Automatic Speech Recognition problem later in chapter 6).

To conclude the M-step formulation note that the M-step splits into two sepa-

rate parts: the speech and noise. which form a decoupled set of equations. The noise

equations are eventually the Yule-Walker solution for the AR parameters (using the

“Covariance method”), where the first and second order statistics of the noise are

substituted by their current estimate. The speech equations are more complicated

and involves an iterative solution, which uses the estimation of the first and second

order statistics of the speech. For both signals the expectation is realized by the

summation operation, over the entire segment. This decoupling makes the algo-

rithm very convenient for use. One can solve for the speech parameters without

knowing anything about the noise parameters, and vice versa: to solve for the noise

parameters without knowing the speech parameters.
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3.2.2 E-step

We will develop now an implicit equation for implementing the E-step. Note that

the equations 3.22, 3.23, 3.24, 3.25, involves conditional expectation given the ob-

servations of the segment at the current parameters value, which is the MMSE

estimation of both the speech and the noise. This is also an intuitive form.

Therefore, we can implement those expectations by using the well known solution

for the optimal linear MMSE filters, which will also be the general optimal solution

under the Gaussian assumption. Remember, that this assumption holds only for

the time being.

In Lim and Oppenheim’s paper the non-casual Wiener filter was used. In Wein-

stein, Oppenheim and Feder’s paper [7] - which is the basis of our development here

- the Kalman smoother was used, which does not make any restrictions concerning

stationarity. The problem with using the Kalman smoother is its more complicated

form.

First, we represent the speech and noise equations 2.1, 2.2 in state-space form,

as required by the Kalman equations:

sp(t) = Φssp(t− 1) + Gsu(t) + Dsg(t) (3.38)

vq(t) = Φvvq(t− 1) + Gvw(t) (3.39)

z(t) =
[

HT
s HT

v

] [
sp(t)
vq(t)

]
(3.40)

where the state vector sp(t) is the (p + 1) × 1 vector of speech samples defined

as in 3.12 by:

sp(t) =




s(t− p)
s(t− p + 1)

...
s(t)




(3.41)

and the state vector vq(t) is the (q + 1) × 1 vector of noise samples defined as
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in 3.14 by:

vq(t) =




v(t− q)
v(t− q + 1)

...
v(t)




(3.42)

Φs is the (p + 1)× (p + 1) speech transition matrix:

Φs =




0 1 0 · · · · · · 0
...

. . . . . .
...

...
. . . . . .

...
...

. . . . . . . . .
...

0 · · · · · · · · · 0 1
0 −αp · · · · · · −α2 −α1




(3.43)

and Φv is the (q + 1)× (q + 1) speech transition matrix:

Φv =




0 1 0 · · · · · · 0
...

. . . . . .
...

...
. . . . . .

...
...

. . . . . . . . .
...

0 · · · · · · · · · 0 1
0 −βq · · · · · · −β2 −β1




(3.44)

Gs is the (p + 1)× 1 speech stochastic input vector:

GT
s = [ 0 . . . 0

√
gs ] (3.45)

Gv is the (q + 1)× 1 noise stochastic input vector:

GT
v = [ 0 . . . 0

√
gv ] (3.46)

Hs is the (p + 1)× 1 speech measurement vector:

HT
s = [ 0 . . . 0 1 ] (3.47)

Hv is the (q + 1)× 1 noise measurement vector:

HT
v = [ 0 . . . 0 1 ] (3.48)
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Ds is the (p + 1)× 1 speech deterministic input vector:

DT
s = [ 0 . . . 0 As ] (3.49)

Define X(t) to be the (p + q + 2)× 1 extended state vector:

X(t)
4
=




sp(t)

vq(t)


 (3.50)

and G to be the (p + q + 2)× 2 extended stochastic input matrix:

G
4
=




Gs 0

0 Gv


 (3.51)

and Φ to be the (p + q + 2)× (p + q + 2) extended state transition matrix:

Φ
4
=




Φs 0

0 Φv


 (3.52)

and H to be the 1× (p + q + 2) extended stochastic input vector:

H
4
=

[
HT

s HT
v

]
(3.53)

and U(t) to be the 2× 1 extended stochastic input vector:

U(t)
4
=




u(t)

w(t)


 (3.54)

and D to be the 2× 1 extended deterministic input vector:

D
4
=




Ds

0


 (3.55)

Thus, we can write compactly:

X(t + 1) = ΦX(t) + GU(t) + Dg(t) (3.56)

z(t) = HX(t)
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This set of equations 3.57 is called “noise free” model, because the noise is not

stated explicitly, but as another input. In order to prevent stability problems it is a

common procedure to add a very low-level white noise to the measurement equation

in 3.57. This addition eliminates the ill-conditioned matrix inversion, which could

occur in an extremely high SNR values, but still does not effect the performance of

the algorithm at all.

The Kalman smoothing equations can be stated now in terms of the previous

definitions, and by defining for convenience:

µ̂(l)(t|n)
4
= (3.57)

Eθ(l){x(t)|z(0), z(1), . . . , z(n)}

P̂ (l)(t|n)
4
= (3.58)

Eθ(l){
[
µ̂(l)(t|t)− x(t)

] [
µ̂(l)(t|t)− x(t)

]T |z(0), z(1), . . . , z(n)}

to be the state-vector estimate and its related covariance matrix using n observed

samples.

Clearly, the first and second order statistics in equation 3.22 3.23 3.24 3.25 can

be expressed by:

x̂(t)
(l)

= µ̂(l)(t|N) (3.59)

((( hhh
x(t)xT (t)

(l)

= µ̂(l)(t|N)µ̂(l)(t|N)T + P̂ (l)(t|N) (3.60)

Note, that we used the entire segment (i.e. n = N).

Using the current estimation of the parameters vector, θ̂(l), we can write the

Kalman smoothing equations in three stages as follows:

Propagation Equation For t=1,2,. . . ,N:

µ̂(l)(t|t− 1) = Φ̂(l)(t)µ̂(l)(t− 1|t− 1) + Dĝ(t)
(l)

(3.61)

P̂ (l)(t|t− 1) = Φ̂(l)(t)P̂ (l)(t− 1|t− 1)(Φ̂(l)(t))T + GGT (3.62)
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Updating Equation For t=1,2,. . . ,N:

µ̂(l)(t|t) = µ̂(l)(t|t− 1) + k̂(l)(t)
[
z(t)−HT µ̂(l)(t|t− 1)

]
(3.63)

P̂ (l)(t|t) = P̂ (l)(t|t− 1)− k̂(l)(t)HT P̂ (l)(t|t− 1) (3.64)

where:

k̂(l)(t)
4
=

P̂ (l)(t|t− 1)H

HT P̂ (l)(t|t− 1)H
(3.65)

Smoothing Equation For t=N,N-1,. . . ,1:

µ̂(l)(t− 1|N) = (3.66)

µ̂(l)(t− 1|t− 1) + Ŝ(l)(t− 1)
[
µ̂(l)(t− 1|N)− Φ̂(l)µ̂(l)(t− 1|t− 1)

]

P̂ (l)(t− 1|N) = (3.67)

P̂ (l)(t− 1|t− 1)− Ŝ(l)(t− 1)
[
P̂ (l)(t|N)− P̂ (l)(t|t− 1)

]
)Ŝ(l)(t− 1)T

where:

Ŝ(l)(t− 1)
4
= P̂ (l)(t− 1|t− 1)

(
Φ̂(l)

)T (
P̂ (l)(t|t− 1)

)−1
(3.68)

Note, that at each iteration the Kalman procedure is done sample by sample,

but the various parameters update is done only once (by the M-step equations).

This concludes the entire Iterative-Batch algorithm. In the next sub-section we

will make some simplifications that will yield a sub-optimal algorithm but easier to

implement.
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3.3 Simplifications and Special Cases

The algorithm we developed in the previous subsection is a very complicated one.

There are several points that make the computational burden very high. We will

try now to make some assumptions regarding the components of the algorithm in

order to simplify its structure.

Smoothing The smoothing part of Kalman equations enforces the algorithm to re-

peat and process each data segment twice. A well known suboptimal procedure

restrict the algorithm to be causal. Namely each data point is estimated using

only data points from the beginning of the segments (using the correct initial

conditions) till the currently estimated point (fixing n = t in 3.57 and 3.58

instead of n = N). This procedure yields the the Kalman Filtering equations,

which have a sequential form. In chapter 4, while trying to convert our algo-

rithm to a completely sequential one we will use this simplification again. We

decided that the benefit of using the smoothing equation does not justify the

calculation burden, so we omitted it completely from our implementation.

To retain some of the smoothing benefits we used the Fixed Lag Smoothing

procedure. Remember, that we are not estimating only one speech sample at

a time, but a whole state-space vector. This vector contains, several speech

samples as is evident from equation 3.69:

sp(t) =




s(t− p)
s(t− p + 1)

...
s(t)




(3.69)

Thus, while s(t) is estimated by casual filtering, s(t−p) is estimated by means

of fixed-lag-smoothing, using p samples ahead. The estimation accuracy of the

smoother is better, without any computationally punishment.

Pitch information We saw that incorporating the estimation of the pitch series

into our speech model, causes the LPC parameter estimation problem to be

coupled with the parameter estimation. Those coupled equations were solved

iteratively. Note, that the pitch information appears both in the E-step, as
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the deterministic input in Kalman propagation equations, and in the M-step

in the extended version of Yule-Walker equations.

We suggest a possible simplification: merging the iterations. Due to the itera-

tive structure of the parameter estimation, we suggest to use only one internal

maximization iteration in the M-step and to use those parameters (including

pitch information) in the E-step. In this way we are, in a sense, merging

the iteration indices into one unified index of iteration. At each M-step we

do not bring Q(θ, θ(l)) to its maximum, but just increase its value. As a fur-

ther simplification we can choose to omit the use the pitch information. We

implemented in our algorithm the possibility to use the pitch information in

either steps or in both of them or in none of them. Of course, using the pitch

only in the E-step forces an existence of prior information about it. This is

not a realistic assumption, but can be used for evaluation purposes. Omitting

the pitch information from our algorithm at all will cause the speech param-

eter estimation equations to be similar in structure to the noise parameter

estimation equations.

Choosing only one M-step iteration, minimizes the computational burden, on

expense of the algorithm behavior.

As a final comment, we suggest to try to use some simpler pitch detection

algorithms (e.g. [14], [19]). The use of the pitch is under further investigation

now.

“Colored” noise We should note, that using the more complex structure for the

noise (e.g. “colored” instead of “white”) does not involves a great amount

of computation. It just increases the size of the matrices involved slightly.

For that reason, we are using the “colored” form of Kalman equations, which

could yield a great improvement in the performance. Finally, it should be clear

that choosing q = 0 for the noise AR model, will simplify the equation to the

form suggested in [7]. So, our algorithm is a generalization of the previous

algorithm.
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3.4 Improving LPC Estimation

The problem of initializing the algorithm is a crucial one. As we saw, the algorithm

we developed decouples the speech and noise estimation. So, theoretically we can

solve the problem without any prior information about the noise characteristic, and

we do not need to learn it from speech-free periods, as other algorithms do. But, it

should be emphasized that the problem we address is a difficult one. The algorithm

need some good starting point in order to proceed and process the speech and noise

in a separated manner. Otherwise, it might converge to a local minima of the ML

estimator. To prevent this phenomena we consider applying an improved initial

estimate of the speech and noise parameters. We will address the speech and noise

signals separately.

3.4.1 Noise Parameter Estimation

For the noise signal the initialization of the parameters depends on the Signal-To-

Noise-Ratio (SNR). In low SNR range (which is the main interest of our work), the

noise level is much stronger than the desired speech level. So, using the conventional

Yule-Walker equations, which uses second-order statistics of the corrupted sample,

may yield a very good estimate of the noise AR parameters.

The reason for that is obvious. Each covariance value of the corrupted samples is

derived by the sum of the covariance values of the statistically independent speech

and noise signals. Since the noise level is much stronger than the speech level,

and since the spectral contents (and its Fourier Transform pair - the “correlation

length”) are quite the same, the covariance values are mostly due to the noise. On

the contrary, in high SNR range a prior averaged value of the noise parameters is

necessary. The initial noise parameters can be estimated from speech-free segments

at the beginning of the sentence, or from “silence” periods between sentences. The

second approach requires the use of a very good speech activity detector, which is

very hard to implement in adverse conditions.
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3.4.2 Speech Parameters Estimation

As for the speech we need a different approach. For the SNR values of interest the

correlation matrix used in the Yule-Walker set of equations are completely corrupted.

So, we will need to develop a new set of equations. This development should use the

different properties of the speech and the noise. We will try to use two distinguishing

properties: “Correlation length” and Gussianity.

“Correlation length” The speech correlation length is assumed to be much longer

than that of the noise. This is especially true for “white” noise, (“white”

noise means zero correlation length). This case covers an interesting variety

of problems, although not very common.

Gussianity The speech signal has no Gaussian p.d.f.. This fact was stated in sev-

eral text books (e.g. [15]), and was also shown by several experimental results

we achieved. In these experiments we divided the speech into short segments.

We used common statistical tests to show that speech is quite far from Gus-

sianity in both voiced and unvoiced segments. On the contrary, a large variety

of noise signals can be modeled as having almost Gaussian p.d.f.. This is

true probably because most noise production mechanism include a summation

of several sources which interfere together to yield a signal with a tendency

towards Gussianity. We exclude from our treatment periodic noise sources,

that can be eliminated by very simple methods such as Widrow’s algorithm.

Thus, Gussianity, seems to be a very good distinguishing property in our case.

We can exploit this separating feature by the use of Higher-Order-Statistics

(HOS) techniques. So, a good practice is to give up the Gaussian assumption

we made for the speech signal. HOS has gained an increasing interest in the

last decade. HOS has begun to find wide applicability in many diverse fields;

e.g. sonar, radar, biomedicine, seismic data, image reconstruction, adaptive

filtering and blind equalization, and recently speech processing ( [8], [28], [17]

and a lot more). Definition and several properties of HOS can be found in

Appendix B.
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We will now develop methods that can use those two properties for improving the

AR parameter estimation. Let, the corrupted speech samples be z(t) = s(t) + v(t),

where s(t) is the speech signal, assuming now a simpler model that does not include

the pitch innovation:

s(t) = −
p∑

k=1

αks(t− k) +
√

gsu(t) (3.70)

and v(t) is the noise signal (retaining the same model as in as 2.2):

v(t) = −
q∑

k=1

βkv(t− k) +
√

gvw(t) (3.71)

Calculating the Cumulant series:

cum[z(t), z(t− l1), z[t− l2], . . . , z(t− lM)] = (3.72)

cum[
√

gsu(t)−
p∑

k=1

αks(t− k) +
√

gvw(t)

−
q∑

k=1

βkv(t− k), z(t− l1), z(t− l2), . . . , z(t− lM)]

= cum[
√

gsu(t), z(t− l1), z(t− l2), . . . , z(t− lM)] + (3.73)

cum[−
p∑

k=1

αks(t− k), z(t− l1), z(t− l2), . . . , z(t− lM)] +

cum[
√

gvw(t), z(t− l1), z(t− l2), . . . , z(t− lM)] +

cum[−
q∑

k=1

βkv(t− k), z(t− l1), z(t− l2), . . . , z(t− lM)]

Where the last transition used the linearity property of the cumulants ( B.1).

Now, assuming l1, l2, . . . , lM ≥ 0 causes the terms involving the innovation sequences

u(t) and w(t) to diminish, by virtue of property B.3.

Further application of the linearity property of the cumulants gives:

= −
p∑

k=1

αkcum[s(t− k), z(t− l1), z(t− l2), . . . , z(t− lM)]

−
q∑

k=1

βkcum(v(t− k), z(t− l1), z(t− l2), . . . , z(t− lM)] (3.74)
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Splitting the terms that include z(t − li) in 3.74 into its components and using

again property B.3 gives:

= −
p∑

k=1

αkcum[s(t− k), s(t− l1), s(t− l2), . . . , s(t− lM)] (3.75)

−
p∑

k=1

αkcum[s(t− k), v(t− l1), v(t− l2), . . . , v(t− lM)]

−
q∑

k=1

βkcum(v(t− k), s(t− l1), s(t− l2), . . . , s(t− lM)]

−
q∑

k=1

βkcum(v(t− k), v(t− l1), v(t− l2), . . . , v(t− lM)]

Remember that s(t) and v(t) are statistically independent. So, using prop-

erty B.3 once more causes the mixed terms to diminish. This gives us the final

formula.

cum[z(t), z(t− l1), z[t− l2], . . . , z(t− lM)] = (3.76)

cum[s(t), s(t− l1), s(t− l2), . . . , s(t− lM)]

+ cum[v(t), v(t− l1), v(t− l2), . . . , v(t− lM)]

= −
p∑

k=1

αkcum[s(t− k), s(t− l1), s(t− l2), . . . , s(t− lM)]

−
q∑

k=1

βkcum(v(t− k), v(t− l1), v(t− l2), . . . , v(t− lM)]

Now we should choose the order M and the lags l1, l2, . . . , lM to accomplish our

goals of distinguishing between speech and noise.

Several choices are available:

1. M = 1.

Denote the first value of l1 as L.

Define by:

Rs(k − l)
4
= cum[s(t− k), s(t− l)]

Rv(k − l)
4
= cum[v(t− k), v(t− l)]
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covariance values of the speech and noise, respectively (we assume stationarity

in each segment). Further assuming “white” noise and determining the value

of L gives:

(a) L = 1. Choosing p consecutive values for l1, and writing down equa-

tion 3.76 in matrix form gives:



Rs[0] + Rv[0] Rs[−1] · · · Rs[+1− p]
Rs[1] Rs[0] + Rv[0] · · · Rs[2− p]

· · · . . . . . . · · ·
· · · · · · . . . . . .

Rs[p− 1] · · · · · · Rs[0] + Rv[0]







α1

α2
...

αp




= −




Rs[1]
Rs[2]

...
Rs[p]




(3.77)

Which is of course the original Yule-Walker equations.

(b) L = p + 1. Choosing again p consecutive values for l1, and writing down

equation 3.76 in matrix form gives:




Rs[p + 1] Rs[p] · · · Rs[2]
Rs[p + 2] Rs[p + 1] · · · Rs[3]

· · · . . . . . . · · ·
· · · · · · . . . . . .

Rs[2p] · · · · · · Rs[p + 1]







α1

α2
...

αp




= −




R[p + 2]
R[p + 3]

...
R[2p + 1]




(3.78)

which is the well-known Modified Yule-Walker.

The trade-off between the equations is now evident. While the original equa-

tions suffers from a bias effect due to the “corruption” of the diagonal of

the correlation matrix, the modified equations suffers from large estimation

variance due to the decreasing statistical stability of higher-lag correlation

estimates.

Finally, we should remark that the correlation sequence of “colored” noise be-

come infinite (although decreasing rapidly). This forces a choice of even higher

starting lag L causing unbearable estimation variance, or with the same choice

of L, causing a bias effect. This noise characteristics makes the modified

Yule-Walker equations useless.
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2. M = 2. This choice of M gives us a set of third order cumulant based equa-

tions. Invoking property B.2 of the noise cumulants gives us “noise free”

equations.

cum[s(t), s(t− l1), s(t− l2)] (3.79)

= −
p∑

k=1

αkcum[s(t− k), s(t− l1), s(t− l2)]

Any choice of l1, l2 should be good. We made the choice:

1 ≤ l1 ≤ p (3.80)

0 ≤ l2 ≤ l1

which were chosen in [17] and makes a reasonable compromise between select-

ing enough equations and maintaining statistical stability. This gives us a set

of p2+3p
2

over-determined equations for the parameters {αi : i = 1, 2, . . . , p}.
The energy level is estimated from the energy of the residual series obtained

by applying the AR coefficients to the corrupted speech signal.

This choice is applicable for all kinds of symmetric p.d.f.noise signals. So, in

this sense, it covers a wide variety of noise signals. But it might be not a very

good distinguishing property, since in our case the speech has also a quite

symmetric p.d.f.. So, it is reasonable to use third order cumulant only when

working with noise possessing a very precise symmetric p.d.f., such as sine

wave. In this special case there exists very efficient algorithms, and choosing

our algorithm seems as a very bad choice.

3. M = 3. This choice of M gives us a set of fourth order cumulant based

equations. Invoking property B.2 of the noise cumulants gives us again “noise

free” equations.

cum[s(t), s(t− l1), s(t− l2), s(t− l3)] (3.81)
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= −
p∑

k=1

αkcum[s(t− k), s(t− l1), s(t− l2), s(t− l3)]

Any choice of l1, l2, l3 should be good. We made the choice:

1 ≤ l1 ≤ p (3.82)

0 ≤ l2 ≤ l1

0 ≤ l3 ≤ l2

which makes a reasonable compromise between selecting enough equations

and maintaining statistical stability. This gives us a set of 11p+6p2+p3

6
over-

determined equations for the parameters {αi : i = 1, 2, . . . , p}. The energy

level is estimated from the energy of the residual series obtained by applying

the AR coefficients to the corrupted speech signal. There, certainly, exist a

smaller set of equations that has the same performance but this had not been

checked in this work.

For conclusion we will make some final remarks. Although, we developed the

approach of using Higher Order Statistics only for initialization purposes, it seems

as a good idea to use it for all the iterations. The idea arise from the intuitive struc-

ture of the algorithm, which iterates between parameters estimation and optimal

filtering. It is then suggested to replace the parameter estimation in each iteration

by the methods that were developed in the subsection. We will address the influence

of doing so in chapter 6. Here we will note only that the results indicate that this

approach is wrong. Using HOS, even making a good feature selection to differen-

tiate between noise and speech, has its problems. As was also noticed by several

researcher (e.g. [5] [17]), the formants resulting from HOS based LPC estimation

suffers from a tendency to become sharper (reduced bandwidth). Although this

is a good phenomena in formant tracking, it causes the enhanced speech to sound

unnatural. As we are interested in speech enhancement for a human listener we

can not use the HOS at the higher iterations. So, we should restrict ourselves for

using HOS only in the initialization iteration and then to use conventional second
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order estimate. In this way, we have the benefit of initializing the algorithm with a

good AR parameter set, and yet retain the natural sounding obtained by the second

order statistics (there are some other reasons for doing so, which will become clearer

in a while). Another possible way for implementing the LPC estimate is to use a

combination of several statistical orders in each iteration. We can choose a set of

equations combined from all the Cumulants weighted in the correct way (via the

Gauss-Markov theorem). The problem is to find empirically the correct weighting

matrix. For this reason, we gave up doing so.

LPC parameters obtained by HOS was proven to be a better feature for Au-

tomatic Speech Recognition systems [17] [18]. It might be a reasonable thing to

use the LPC parameters obtained from our algorithm (that was initialized by HOS

estimation) as a feature in the ASR. We have not taken this approach yet. Instead,

we concentrated in the use of the algorithm as a preprocessor for Automatic Speech

Recognition systems. This matter is, surely, a subject of further research.

3.5 Summary

The Iterative-Batch solution for the Speech Enhancement problem was developed.

The structure of algorithm is quite intuitive. It iterates between speech and noise

parameter estimation and signal enhancement (the same structure of the Lim and

Oppenheim algorithm [12]). The signal enhancement is done by the Kalman filter.

The noise parameter estimation is done by solving the Yule-Walker equation, and

for the speech, by solving an extended set of Yule-Walker equation, that takes the

pitch into account. There is a complete decoupling between the speech and the

noise parameter estimation equations. The initialization of the speech parameter

is achieved by using HOS. The problem of non-stationarity of the speech and the

noise was treated by dividing the signal into short enough segments. The resulting

algorithm converges after 5-6 iterations on each data segment.
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Chapter 4

Sequential/Adaptive Algorithm

4.1 Introduction

In the previous chapter we developed an Iterative-batch algorithm for solving the

Maximum-Likelihood problem by applying the Estimated-Maximize solution.

Two problems arise from this algorithm. First, processing each segments sev-

eral times causes an extensive computational burden. Second, the abrupt changes

allowed at each segment border might cause an unnatural sounding of the resulted

speech.

We suggest a modification (see also [7]), in which the iteration index is replaced

by the time index. Note, that the Kalman filter we used in the simplified E-step of

the Iterative-Batch solution has already a sequential structure. The M-step is the

reason for the segmental structure of the Iterative-batch algorithm.

This chapter contribution is the development of a sequential/recursive algorithm

for solving the second-order-statistics based Yule-Walker equations, by applying a

sliding window to the correlation matrices..

Three types of algorithms for recursive solution are developed. One involves a

matrix inversion for each sample, The second is similar to the RLS algorithm and

the Third is similar to the LMS algorithm. For the time being, we do not use neither

HOS nor Pitch information in our sequential algorithm. Use of HOS recursively is

a topic for further research.

After using those recursive solutions we obtain a completely sequential algo-

rithm, which updates the parameter estimate and uses the Kalman filter at each
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new sample. None of the samples are processed more then once. We obtain a com-

putationally efficient algorithm at the cost of a possible degradation in performance.

4.2 Algorithm development

As we mentioned before the E-step of the Iterative-Batch can be used after

omitting the deterministic input (we are not using the pitch information). Note

also, that there are no segments in the sequential form, so the entire sentence is

treated in one loop.

The Kalman filtering equation obtained is:

For t = 1, 2, . . . , T :

Propagation Equation

µ̂(l)(t|t− 1) = Φ̂(l)(t)µ̂(l)(t|t− 1) (4.1)

P̂ (l)(t|t− 1) = Φ̂(l)(t)P̂ (l)(t− 1|t− 1)(Φ̂(l)(t))T + GGT (4.2)

Updating Equation

µ̂(l)(t|t) = µ̂(l)(t|t− 1) + k̂(l)(t)
[
z(t)−HT µ̂(l)(t|t− 1)

]
(4.3)

P̂ (l)(t|t) = P̂ (l)(t|t− 1)− k̂(l)(t)HT P̂ (l)(t|t− 1) (4.4)

where:

k̂(l)(t)
4
=

P̂ (l)(t|t− 1)H

HT P̂ (l)(t|t− 1)H
(4.5)

All the matrices are defined as in chapter 3, and T is the entire sentence length.

Before developing a recursive parameter estimation we will state once again

the Yule-Walker equations that were obtained in chapter 3. Note, that in this

formulation, both the speech and the noise parameters have essentially the same

structure, because both are assumed to be modeled as AR processes excited by a

Gaussian white noise.

We need one more modification to those equations. In equations 3.31 3.32 we

assumed stationarity of the noise signal (the same is applied for the speech signal).
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For that reason the parameters are assumed to be fixed through out the entire

segment-length. This was true for short segments, but now we are interested in

a sequential solution which does not recognize the segmentation, but still has to

consider the changing nature of the parameters. For that reason we incorporate a

forgetting factor into the equations. The iteration index is, of course, omitted, and

replaced by the time index. The normalization by the segment length N is replaced

by an equivalent normalization term
∑t

τ=1 λt−τ , giving:

Speech parameters:

α̂(t+1) = −



t∑

τ=1

λt−τ
s

(((((
hhhhh

sp−1(t− 1)sT
p−1(t− 1)




−1
t∑

τ=1

λt−τ
s

(((( hhhh

sp−1(t− 1)s(t) (4.6)

ĝs(t + 1) =
1∑t

τ=1 λt−τ
s

t∑

τ=1

λt−τ
s

[((hh
s2(t) +α̂T (t + 1)

(((( hhhh

sp−1(t− 1)s(t)

]
(4.7)

Noise parameters:

β̂(t+1) = −



t∑

τ=1

λt−τ
v

(((((
hhhhh

vq−1(t− 1)vT
q−1(t− 1)




−1
t∑

τ=1

λt−τ
v

(((( hhhh

vq−1(t− 1)v(t) (4.8)

ĝv(t + 1) =
1∑t

τ=1 λt−τ
v

t∑

τ=1

λt−τ
v

[((hh
v2(t) +β̂T (t + 1)

(((( hhhh

vq−1(t− 1)v(t)

]
(4.9)

λs and λv are forgetting factors for the speech and noise, correspondingly, which

compensates for the non-stationarity of the signals, by applying a sliding window to

the correlation matrix.

λs and λv satisfies:

0 ≤ λs, λv ≤ 1 (4.10)

While λ = 1 will guarantee maximum stability (no parameter change), λ ≈ 0 will

permit a quick parameter change. As the quantity 1
1−λ

relates to the memory length

of the estimator (in samples), we chose λs, λv = 0.995 (which relates approximately
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to 200 samples). Actually, we may choose λv to be closer to 1, due to the slower

changing rate of the noise, but this has not been tried.

If we define, as in the Iterative-Batch algorithm, the state-vector statistics

estimates by:

x̂(t) = µ̂(t|t) (4.11)
((( hhh
x(t)xT (t) = µ̂(t|t)µ̂(t|t)T + P̂ (t|t) (4.12)

where

x̂(t)
4
=




((hh
sp(t)

((hh
vq(t)


 (4.13)

is the compound state-vector estimate, with the components:

((hh
sp(t)=




(( hh
s(t− p)

((( hhh
s(t− p + 1)

...

ŝ(t)




(4.14)

((hh
vq(t)=




(( hh
v(t− q)

((( hhh
v(t− q + 1)

...

v̂(t)




(4.15)

and

((( hhh
x(t)xT (t)

4
=




((( hhh
sp(t)s

T
p (t)

((( hhh
sp(t)v

T
q (t)

((( hhh
vq(t)s

T
p (t)

((( hhh
vq(t)v

T
q (t)




(4.16)

is its second order statistics. Every term needed in the Yule-Walker equations can

be calculated by the Kalman filter equations.

Now, a sequential solution for the equations 4.6, 4.7, 4.8, 4.9 will be developed.

We suggest three sets of recursive solutions: Recursion with matrix inversion,

Recursion with Recursive Least Square (RLS), and Recursion with Least

Mean Square (LMS).
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4.2.1 Recursion with Matrix inversion

We develop an algorithm for recursively updating the parameters which involves a

new matrix inversion at each sample.

The algorithm is based on the fact that the pre-defined correlation terms can be

computed recursively:

For convenience we define new matrices:

Qs(t)
4
=




Qs
11(t) Qs

12(t)

Qs
21(t) Qs

22(t)


 (4.17)

4
=

t∑

τ=1

λt−τ
s

((( hhh

sp(τ)sT
p (τ)

= λsQ
s(t− 1)+

((( hhh
sp(t)s

T
p (t)

Qv(t)
4
=




Qv
11(t) Qv

12(t)

Qv
21(t) Qv

22(t)


 (4.18)

4
=

t∑

τ=1

λt−τ
v

((( hhh

vq(τ)vT
q (τ)

= λvQ
v(t− 1)+

((( hhh
vq(t)v

T
q (t)

Using those definitions in 4.6, 4.7, 4.8, 4.9, we can solve for the speech parameters

recursively:

α̂(t + 1) = −Qs
22
−1(t)Qs

21(t) (4.19)

= −Qs
22
−1(t)

[
λsQ

s
21(t− 1)+

(((( hhhh

sp−1(t− 1)s(t)

]

= −Qs
22
−1(t)

[
−λsQ

s
22(t− 1)α̂(t)+

(((( hhhh

sp−1(t− 1)s(t)

]

= Qs
22
−1(t)





[Qs
22(t)−

(((((
hhhhh

sp−1(t− 1)sT
p−1(t− 1)]α̂(t)−

(((( hhhh

sT
p−1(t− 1)s(t)





= α̂(t)−Qs
22
−1(t)




(((((
hhhhh

sp−1(t− 1)sT
p−1(t− 1) α̂(t)+

(((( hhhh

sT
p−1(t− 1)s(t)
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ĝs(t + 1) =
1− λs

1− λt
s

[Qs
11(t) + α̂T (t + 1)Qs

21(t)] (4.20)

Where we used the equation:

t∑

τ=1

λt−τ
s =

1− λs

1− λt
s

(4.21)

and the same for the noise parameters:

β̂(t + 1) = −Qv
22
−1(t)Qv

21(t) (4.22)

= −Qv
22
−1(t)

[
λvQ

v
21(t− 1)+

(((( hhhh

vq−1(t− 1)v(t)

]

= −Qv
22
−1(t)

[
−λvQ

v
22(t− 1)β̂(t)+

(((( hhhh

vq−1(t− 1)v(t)

]

= Qv
22
−1(t)





[Qv
22(t)−

(((((
hhhhh

vq−1(t− 1)vT
q−1(t− 1)]β̂(t)−

(((( hhhh

vT
q−1(t− 1)v(t)





= β̂(t)−Qv
22
−1(t)




(((((
hhhhh

vq−1(t− 1)vT
q−1(t− 1) β̂(t)+

(((( hhhh

vT
q−1(t− 1)v(t)




ĝv(t + 1) =
1− λv

1− λt
v

[Qv
11(t) + β̂T (t + 1)Qv

21(t)] (4.23)

Where we used the equation:

t∑

τ=1

λt−τ
v =

1− λv

1− λt
v

(4.24)

In the above equations we have a recursive form for the LPC parameters of both

the speech and the noise. This form has an important drawback, it uses a new

matrix inversion for each sample, which is very time consuming. For that reason we

will develop a more efficient algorithm.

4.2.2 Recursion with RLS

We can overcome the drawback of the previous algorithm, by applying a recursion

for the inverse of the correlation function, instead of using matrix inversion at each
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sample. This can be done only by assuming a special structure for that matrix. This

kind of structure can be achieved if we give up the use of the covariance matrix,

P̂ (t|t), obtained by the Kalman filter to yield the following approximated estimate:

x̂(t) = µ̂(t|t) (4.25)

((( hhh
x(t)xT (t) = µ̂(t|t)µ̂(t|t)T (4.26)

This algorithm is quite similar to Ljung development [22].

First, define the normalization factor in equations 4.21 4.24 as:

t∑

τ=1

λt−τ
s =

1− λs

1− λt
s

4
= ηs(t) (4.27)

t∑

τ=1

λt−τ
v =

1− λv

1− λt
v

4
= ηv(t) (4.28)

These normalization factors can be calculated recursively:

ηs(t) = λsηs(t− 1) + 1 (4.29)

ηv(t) = λvηv(t− 1) + 1 (4.30)

Thus, we can define a correlation matrix with the previous definitions as:

Rs(t)
4
=

1

ηs(t)
Qs(t) (4.31)

Rv(t)
4
=

1

ηv(t)
Qv(t) (4.32)

Again Rs(t) and Rv(t) can be written in cells:

Rs(t)
4
=




Rs
11(t) Rs

12(t)

Rs
21(t) Rs

22(t)


 (4.33)

4
=

1

ηs(t)

t∑

τ=1

λt−τ
s ŝp(τ)ŝp

T (τ)

=
1

ηs(t)

[
λsηs(t− 1)Rs(t− 1)+

((hh
sp(t)

((hh
sp(t)

T
]

= (1− 1

ηs(t)
)Rs(t− 1) +

1

ηs(t)

((hh
sp(t)

((hh
sp(t)

T
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Rv(t)
4
=




Rv
11(t) Rs

12(t)

Rv
21(t) Rv

22(t)


 (4.34)

4
=

1

ηv(t)

t∑

τ=1

λt−τ
v v̂q(τ)v̂q

T (τ)

=
1

ηv(t)

[
λvηv(t− 1)Rv(t− 1)+

((hh
vq(t)

((hh
vq(t)

T
]

= (1− 1

ηv(t)
)Rv(t− 1) +

1

ηv(t)

((hh
vq(t)

((hh
vq(t)

T

from these recursions we can derive the two following recursions:

Rs
22(t) = (1− 1

ηs(t)
)Rs

22(t− 1) +
1

ηs(t)
)

((( hhh
sp−1(t− 1)

((( hhh
sp−1(t− 1)

T

(4.35)

Rs
21(t) = (1− 1

ηs(t)
)Rs

21(t− 1) +
1

ηs(t)

((( hhh
sp−1(t− 1) ŝ(t)

Rv
22(t) = (1− 1

ηv(t)
)Rv

22(t− 1) +
1

ηv(t)
)

((( hhh
vq−1(t− 1)

((( hhh
vq−1(t− 1)

T

(4.36)

Rv
21(t) = (1− 1

ηv(t)
)Rv

21(t− 1) +
1

ηv(t)

((( hhh
vq−1(t− 1) v̂(t)

With those relationship in hand we can proceed and calculate the parameter

updating recursively by:

α̂(t) = (Rs
22(t))

−1Rs
21(t) (4.37)

= (Rs
22)

−1(t)

[
(1− 1

ηs(t)
)Rs

21(t− 1) +
1

ηs(t)

((( hhh
sp−1(t− 1) ŝ(t)

]

= (Rs
22)

−1(t)

[
(1− 1

ηs(t)
)Rs

22(t− 1)α̂(t− 1) +
1

ηs(t)

((( hhh
sp−1(t− 1) ŝ(t)

]

= (Rs
22)

−1(t)

{[
Rs

22(t)−
1

ηs(t)

((( hhh
sp−1(t− 1) ŝ(t)

]
α̂(t− 1) +

1

ηs(t)

((( hhh
sp−1(t− 1) ŝ(t)

}

= α̂(t− 1) +
1

ηs(t)
(Rs

22)
−1(t)

((( hhh
sp−1(t− 1)


ŝ(t)−

((( hhh
sp−1(t− 1)

T

α̂(t− 1)




and,
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β̂(t) = (Rv
22(t))

−1Rv
21(t) (4.38)

= (Rv
22)

−1(t)

[
(1− 1

ηv(t)
)Rv

21(t− 1) +
1

ηv(t)

((( hhh
vq−1(t− 1) v̂(t)

]

= (Rv
22)

−1(t)

[
(1− 1

ηv(t)
)Rv

22(t− 1)β̂(t− 1) +
1

ηv(t)

((( hhh
vq−1(t− 1) v̂(t)

]

= (Rv
22)

−1(t)

{[
Rv

22(t)−
1

ηv(t)

((( hhh
vq−1(t− 1) v̂(t)

]
β̂(t− 1) +

1

ηv(t)

((( hhh
vq−1(t− 1) v̂(t)

}

= β̂(t− 1) +
1

ηv(t)
(Rv

22)
−1(t)v̂q−1(t− 1)


v̂(t)−

((( hhh
vq−1(t− 1)

T

β̂(t− 1)




For simplification we define by:

Ls(t)
4
=

1

ηs(t)
(Rs

22)
−1(t)

((( hhh
sp−1(t− 1) (4.39)

Lv(t)
4
=

1

ηv(t)
(Rv

22)
−1(t)

((( hhh
vq−1(t− 1) (4.40)

“adaptation gains”, and by:

((hh
es(t)

4
= ŝ(t)−

((( hhh
sp−1(t− 1)

T

α̂(t− 1) (4.41)

((hh
ev(t)

4
= v̂(t)−

((( hhh
vq−1(t− 1)

T

α̂(t− 1) (4.42)

the innovation terms.

With those notations the last recursion can be rewritten as:

α̂(t) = α̂(t− 1) + Ls(t)es(t) (4.43)

β̂(t) = β̂(t− 1) + Lv(t)ev(t) (4.44)

There is still a matrix inversion for each sample in the last formulas, so we should

further simplify the expression.

Define by:

(Rs
22)

−1(t)
4
= Ps(t) (4.45)
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(Rv
22)

−1(t)
4
= Pv(t) (4.46)

the inverse of the correlation matrix main cell. Then by the first parts of 4.33, 4.34

those matrices may be written:

Ps(t) =


ηs(t)− 1

ηs(t)
P−1

s (t− 1) +
1

ηs(t)

((( hhh
sp−1(t− 1)

((( hhh
sp−1(t− 1)

T


−1

= (4.47)

ηs(t)− 1

ηs(t)
Ps(t− 1)− γsPs(t− 1)

((( hhh
sp−1(t− 1)

((( hhh
sp−1(t− 1)

T

Ps(t− 1)

The last transition is by virtue of the Matrix inversion Lemma, so γs is given by:

γs =
ηs(t)− 1

ηs(t)
× 1

ηs(t)− 1+
((( hhh
sp−1(t− 1)

T

Ps(t− 1)
((( hhh
sp−1(t− 1)

(4.48)

Rearranging terms gives:

Ps(t) =
ηs(t)− 1

ηs(t)
×


Ps(t− 1)− Ps(t− 1)

((( hhh
sp−1(t− 1)

((( hhh
sp−1(t− 1)

T

Ps(t− 1)

ηs(t)− 1+
((( hhh
sp−1(t− 1)

T

Ps(t− 1)
((( hhh
sp−1(t− 1)




(4.49)

The same can be applied for the noise signal giving:

Pv(t) =
ηv(t)− 1

ηv(t)
×


Pv(t− 1)− Pv(t− 1)

((( hhh
vq−1(t− 1)

((( hhh
vq−1(t− 1)

T

Pv(t− 1)

ηv(t)− 1+
((( hhh
vq−1(t− 1)

T

Pv(t− 1)
((( hhh
vq−1(t− 1)




(4.50)

An equivalent simplification can be developed for the “adaptation gains”. The

speech “adaptation gain” is given by:

Ls(t) =
1

ηs(t)
Ps(t)

((( hhh
sp−1(t− 1) (4.51)

=
1

ηs(t)− 1

[
Ps(t− 1)

((( hhh
sp−1(t− 1) −
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Ps(t− 1)
((( hhh
sp−1(t− 1)

((( hhh
sp−1(t− 1)

T

ηs(t)− 1+
((( hhh
sp−1(t− 1)

T

Ps(t− 1)
((( hhh
sp−1(t− 1)

× Ps(t− 1)
((( hhh
sp−1(t− 1)




=
1

ηs(t)− 1


1− Ps(t− 1)

((( hhh
sp−1(t− 1)

((( hhh
sp−1(t− 1)

T

ηs(t)− 1+
((( hhh
sp−1(t− 1)

T

Ps(t− 1)
((( hhh
sp−1(t− 1)


 Ps(t− 1)

((( hhh
sp−1(t− 1)

=
1

ηs(t)− 1+
((( hhh
sp−1(t− 1)

T

Ps(t− 1)
((( hhh
sp−1(t− 1)

× Ps(t− 1)
((( hhh
sp−1(t− 1)

The same can be applied to the noise signal giving:

Lv(t) =
1

ηv(t)
Pv(t)

((( hhh
vq−1(t− 1) (4.52)

=
1

ηv(t)− 1+
((( hhh
vq−1(t− 1)

T

Pv(t− 1)
((( hhh
vq−1(t− 1)

× Pv(t− 1)
((( hhh
vq−1(t− 1)

Summarizing the above equations,

for the speech signal:

α̂(t) = α̂(t− 1) + Ls(t)
((hh
es(t) (4.53)

((hh
es(t) = ŝ(t)−

((( hhh
sp−1(t− 1)

T

α̂(t− 1) (4.54)

Ls(t) =
Ps(t− 1)

((( hhh
sp−1(t− 1)

ηs(t)− 1+
((( hhh
sp−1(t− 1)

T

Ps(t− 1)
((( hhh
sp−1(t− 1)

(4.55)

Ps(t) =
ηs(t)− 1

ηs(t)
× (4.56)


Ps(t− 1)− Ps(t− 1)

((( hhh
sp−1(t− 1)

((( hhh
sp−1(t− 1)

T

Ps(t− 1)

ηs(t)− 1 + trace{Ps(t− 1)
((( hhh
sp−1(t− 1)

((( hhh
sp−1(t− 1)

T

}




and for the noise signal:

β̂(t) = β̂(t− 1) + Lv(t)
((hh
ev(t) (4.57)
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((hh
ev(t) = v̂(t)−

((( hhh
vq−1(t− 1)

T

β̂(t− 1) (4.58)

Lv(t) =
Pv(t− 1)

((( hhh
vq−1(t− 1)

ηv(t)− 1+
((( hhh
vq−1(t− 1)

T

Pv(t− 1)
((( hhh
vq−1(t− 1)

(4.59)

Pv(t) =
ηv(t)− 1

ηv(t)
× (4.60)


Pv(t− 1)− Pv(t− 1)

((( hhh
vq−1(t− 1)

((( hhh
vq−1(t− 1)

T

Pv(t− 1)

ηv(t)− 1 + trace{Pv(t− 1)
((( hhh
vq−1(t− 1)

((( hhh
vq−1(t− 1)

T

}




We can, also, write a recursion for the residual series energy:

ĝ2
s(t) =

t∑

τ=1

λt−τ
s

((hh
e2

s(τ)=

(
1− 1

ηs(t)

)
ĝ2

s(t− 1) +
1

ηs(t)

((hh
e2

s(t) (4.61)

ĝ2
v(t) =

t∑

τ=1

λt−τ
v

(( hh
e2

v(τ)=

(
1− 1

ηv(t)

)
ĝ2

v(t− 1) +
1

ηv(t)

((hh
e2

v(t) (4.62)

where
((hh
es(t) and

((hh
ev(t) were defined above.

Note that the approximation made in 4.26 for the correlation matrix
((( hhh
x(t)xT (t)

is not very good one, especially for the signal which suffers from a low SNR level.

This simplification is thus recommended (for computational efficiency) only when

the Kalman covariance matrix is negligible (i.e. for the stronger signal). For high

SNR value, it should be used for the speech signal, and for low SNR value - for the

noise signal.

4.2.3 Recursion with LMS

The solution for the Yule-Walker equations 4.6, 4.7, 4.8, 4.9 can be found via a

gradient search, that is directed to minimize the pre-specified cost function. This
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procedure is applied to each of the equations yielding the following updating equa-

tions:

α̂(t) = α̂(t− 1)− µs(t) [Qs
21(t) + Qs

22(t)α̂(t)] (4.63)

β̂(t) = β̂(t− 1)− µv(t)
[
Qv

21(t) + Qv
22(t)β̂(t)

]
(4.64)

ĝs(t) = ĝs(t− 1)− µs(t)

[
ĝs(t)− 1− λs

1− λT
s

[Qs
11(t) + Qs

12(t)α̂(t)]

]
(4.65)

ĝv(t) = ĝv(t− 1)− µv(t)

[
ĝv(t) − 1− λv

1− λT
v

[Qv
11(t) + Qv

12(t)β̂(t)]

]
(4.66)

Where µs and µv are step-size for the speech and noise gradient search, respec-

tively, and Qs(t), Qv(t) are defined in equations 4.17, 4.18.

This procedure is very computationally efficient, but may suffer from larger mis-

takes. We did not used this approach in this work.

4.2.4 Recursion Summary

We developed three algorithms implementing a recursive solution for the Yule-

Walker equations. As was stated by Ljung [22], all those recursive algorithm have

the same structure:

θ̂(t) = θ̂(t− 1) + G(t)ε(t) (4.67)

An appropriate choice of the gain and direction matrix G(t) and the error term

ε(t), will give all the above equations. Ljung also suggested the application of a

Kalman filter for the parameters for the case we have some a-priori information

about the dynamics of the parameters. We do not use the Kalman Filter parameter

estimation approach in this work.
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Chapter 5

Evaluation of Speech Systems

Evaluation of the performance of speech systems is a difficult task, which depends

strongly on the application. This problem was addressed widely in the literature

(e.g. [23] [31] [16] [21]). The evaluation techniques involve subjective and objective

tests. Among speech systems assessment categories are calculations of distortion

measures, performance improvement of Automatic Speech Systems, and intelligibil-

ity scores achieved by human listeners.

This chapter gives a brief overview of the existing methods for speech systems

evaluation.

5.1 Distortion measures

The problem of providing an objective measure of the improvement obtained by

the speech enhancement system is as old as the research in the field. Finding an

objective test that can predict the human opinion is a very difficult task. Several

attempts has been made.

SNR improvement Computationally, this is the simplest test, but the most un-

reliable one. Let, s(t), z(t), ŝ(t) be the clean, corrupted and enhanced speech

signal, respectively, and T the sample size.

Define by:

SNRin = 10 log10

∑T
t=1 s2(t)

∑T
t=1[s(t)− z(t)]2

(5.1)
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SNRout = 10 log10

∑T
t=1 s2(t)

∑T
t=1[s(t)− ŝ(t)]2

(5.2)

the SNR levels in the input and in the output of the evaluated Enhancer.

Define by the difference:

G = SNRout − SNRin (5.3)

the SNR improvement achieved by the enhancement algorithm (in dB).

It is important to emphasize that the improvement in SNR generally does not

translate into improvement in speech quality and/or intelligibility.

Segmental SNR improvement A modification for the above test. In this method

the speech signal is divided into segments, in each of which the speech is

assumed to be more or less stationary. SNR is calculated for each segment,

and then averaged over all the segments.

Thus:

SEGSNRin =
1

M

M−1∑

m=0

10 log10




∑(m+1)K−1
t=mK s2(t)

∑(m+1)K−1
t=mK [s(t)− z(t)]2


 (5.4)

SEGSNRout =
1

M

M−1∑

m=0

10 log10




∑(m+1)K−1
t=mK s2(t)

∑(m+1)K−1
t=mK [s(t)− ŝ(t)]2


 (5.5)

are the segmental SNR levels in the input and in the output of the evaluated

Enhancer. K is the segment length and M is the number of segments in the

tested sentences.

Once again, the difference defined by

GSEG = SEGSNRout − SEGSNRin (5.6)

is the SEGSNR improvement achieved by the algorithm (in dB).

The value obtained by this way is more precise, since it is taking into account

the non-stationarity of the speech signal.
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Frequency Bands SNR A more meaningful test is the Speech Communication

Index Meter (SCIM). In this test the signal is divided into frequency bands,

in each of them SNR value is calculated. An auditory masking corrections is

applied to those frequency bands to yield a representative figure.

Itakura-Saito distortion measure The Itakura-Saito distortion measure [9] is

closely related to the “spectral matching” property of the LPC analysis. The

success of LPC based vocoders suggests that the Itakura-Saito distortion mea-

sure is also subjectively meaningful distortion measure.

The Itakura-Saito distortion measure is defined by:

dIS =
1

2π

∫ π

−π

S(ω)

Ŝ(ω)
dω − ln(gs/ĝs)− 1 (5.7)

where S(ω) and Ŝ(ω) are the clean and processed speech spectra, respectively,

and gs, ĝs are their relative gains.

The estimated spectrum of the speech is taken to be the AR spectral estimate:

Ŝ(ω) =
ĝs∑p

k=0 α̂k exp(−jω)
(5.8)

5.2 Human Intelligibility

Subjective intelligibility tests can be categorized by the speech items tested and

by the procedure used. The items can be phonemes, nonsense words, meaningful

words, and sentences. A frequently used test to determine phoneme scores is the

rhyme test. A rhyme test is a forced choice test in which the listener, after each

word that is presented, has to select his response from a small group of visually

presented alternatives. The alternatives only differ with respect to the phoneme at

one particular position in the test word. A rhyme test is easy to apply and does

not require much training of listeners. Frequently used rhyme tests are the Modified

Rhyme Test (MRT, testing consonants and vowels), and the Diagnostic Rhyme Test

(DRT, testing initial consonants only). The DRT is based on only two alternatives,

which are based on testing single articulatory features. Studies have shown that the
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DRT, because of the limited number of alternatives, is less sensitive and may force

listeners to respond differently from their perceptual impression.

A more general approach is obtained by a test with an open response. Open

response tests make use of short nonsense or meaningful words with a pre-defined

consonants-vowels structure. The listener can respond with any combination of

phonemes corresponding to the type of word defined beforehand. This procedure

requires extensive training of the listeners.

Sentence intelligibility is measured by asking the listeners to estimate the per-

centage of words correctly heard on 0-100% scale. Sentence intelligibility saturates

to 100% even at poor SNR conditions, so its effective range is small.

For example, in numbers test (which is the sentences we used for our intelligibility

test), the effective SNR range is -9dB to -6dB for noise with a spectrum shaped

according the long-term speech spectrum. Due to the high slope of the graph in this

range this test may suffer from large deviation between listeners.

Another test is the Speech Reception Threshold (SRT) in which the listener has

to recognize a word or sentence presented at a fixed level and masked by noise at

a variable level. The noise level - where a 50% correct identification is achieved of

words or sentence - is the SRT score. This test gives very good reproducible results.

5.3 Speech Quality

Speech quality may be determined by questionnaires or scaling methods, using one

or more subjective scales, such as overall impression, naturalness, noisiness, clarity.

Speech quality is normally used for sentences with high intelligibility. Quality rating

is a more general method then the Intelligibility test, and it is used to evaluate the

user’s acceptance of the speech system. Some investigators claim that the quality

rating reflects the total auditory impression of speech by the listener. The impression

is frequently scaled into five discriminating levels: bad, poor, fair, good, excellent.

Other types of scales are used, including: intelligibility, quality, acceptability, natu-

ralness etc. For quality ratings, normal tests sentences or free conversation are used

to obtain the listener’s impression. The quality ratings is generally called Mean

Opinion Score (MOS). The MOS does not give an absolute measure since the scales
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are not calibrated. Therefore it can be used only for rank ordering, or while using

a reference conditions as an anchor.

We used a more loosely taken test, in which our listeners had to rank their

impression between the corrupted speech and the enhanced speech, and sometimes

to discriminate between several algorithms outputs.

5.4 Automatic Speech Recognition (ASR) perfor-

mance

We have already mentioned that the human listening capability is very hard to test.

Machines are easier clients. It is a well-known fact that the performance of ASR

systems degrades rapidly, with increasing noise level. When the ASR is trained in

different conditions then it is tested on (e.g. trained on noiseless speech data and

tested on corrupted speech), the performance can be very poor. It is not a practical

task to train the ASR for each working environments, so the problem should be

solved differently.

One approach is to use a speech enhancement algorithm as a pre-processor for

the recognizer. Another approach is to try to find better features or better distortion

measures that is more robust to the working environment than the the original one.

Anyway, the algorithm performance can be calculated by the increase in the

percentage of correct recognition after applying the algorithm, or by the amount

of noise immunity gained by the algorithm (this point will be further discussed in

chapter 6).

It should be noted that the performance is highly depended on the kind of

distortion applied to the speech and the spectral shape of the noise added. So,

when comparing several speech enhancement algorithms only relative performance

could be discussed.

5.5 Comments

Some final comments. Another issue to be tested is the amount of listener fatigue.

After a long period of listening to highly degraded speech the performance of the
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human listener is highly damaged. One possible benefit of speech enhancement

algorithm, could be a reduction in this fatigue, even though the quality of the

resulting speech is little worse.

The evaluation of the speech enhancement algorithms depends, also on some

other factors.

The Listener The listener environment and experience have a big influence. Visual

reception accompanying the hearing can help a lot. Good knowledge of the

language is preferred.

The Task The performance depends strongly on the task performed. Detection of

existence of speech is easier task than the understanding of the words. Perfor-

mance is always better when the listener has a limited number of alternatives.

The speech signal Speech level, speech to noise ratio and linguistic or context

effects have a lot of influence.

The Noise Masker The masking noise characteristics, especially the noise spec-

trum, is of great importance too.

So, to summarize, we can say that the comparison between algorithms can be

done only under the same conditions.
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Chapter 6

Experiments: Methodology and
Results

6.1 Introduction

In this chapter we summarize the objective and subjective tests conducted in order

to evaluate performance of the proposed algorithms and to compare them with

two other widely used algorithms, namely, the Spectral Subtraction [2] and

Widrow’s algorithm [34]. Although those algorithms are not a state of the art

algorithms, they have gained a lot of industrial interest, thus serving us as a good

reference for classical methods both in frequency and in time domains.

The proposed iterative-batch and sequential algorithms and the LMS and

spectral subtraction algorithms were implemented in MATLAB (with crucial

parts in ”C”). A Graphical User Interface (GUI) (see Appendix E) was implemented

to control the software and to check the influence of the various parameters easily.

The influence of the various parameters of the algorithm on the subjective and

objective tests will be discussed.

Our “experiments” were done on a SPA̧RC station. A faster implementation,

using a DSP device (MOTOROLA 96000), is under development now-days.

The subjective hearing tests were conducted via a high-quality audio system con-

nected to our workstation. The objective tests were performed with an Automatic

Speech Recognition (ASR) system developed in MIT university.
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6.2 Experiment setup

In all our experiments we added a clean speech signal to a noise signal in several

Signal-to-Noise-Ratios (SNR). The algorithms worked on the corrupted speech sig-

nals. The various parameters were changed via the GUI, and their influence has

been checked.

6.2.1 Tests Scenario

Each test is defined by the speech and noise signals involved, the SNR conditions

and the value of the the parameters of the algorithms.

Signal-To-Noise Ratio

We evaluate the input SNR level as in equation 5.1. This quantity gives us only

a vague estimate of the speech quality, but it can be used as reference figure for

discussion. A wide range of SNR values was taken, depending on the application:

Low level The range between -14dB and -10dB. This range was used only for

intelligibility tests.

Mid level The range between -10dB and +5dB. Used for quality tests and ASR

performance evaluation.

High level The range between +5dB and above. Used for ASR performance eval-

uation. Also used to check the degradation of the algorithm (if any) while

reducing very low level noise.

Speech signal

In order to make a comprehensive test we need a large variety and a large quantity

of speech signals. We used three groups of speech sentences. A lot more examples

will be achieved after the conclusion of the DSP hardware implementation.

Free spoken sentences Long paragraphs of speech sentences recorded from the

radio, both in Hebrew and English, and spoken by both male and female.
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TIMIT database The speech sentences used for the ASR experiment was drawn

from a standard data base known as TIMIT [25], which was produced jointly

by MIT, SRI International, and Texas Instruments. The sentences comprising

the TIMIT speech corpus were designed specifically to aid in the development

and evaluation of phonetically-based ASR systems. The TIMIT utterances

were recorded under very favorable acoustic conditions, and are therefore vir-

tually free of distortion. Each speaker who participated in the recordings was

placed in an anechoic room, equipped with a close-talking, noise-cancelling,

headset-boom microphone, and instructed to read aloud, in a natural conver-

sational voice, a sequence of preselected sentences. The spoken sentences were

stored in digital form at a sampling rate of 16kHz, with each sample quan-

tized to 16 bits. A total of 630 speakers participated in the recordings, each

contributing ten sentences. Each speaker was associated with one of eight

major dialect categories in American English. The text material in TIMIT

corpus consists of three kinds of specially designed speaker prompts, identi-

fied in the data base as SA, SX, and SI sentences. We used SX sentences,

which are phonetically compact sentences, designed to provide efficient and

thorough coverage of phone pairs considered to be of particular interest for

recognition problem. We used 10 sentences out of a total of 450 SX sentences.

Each sentence we selected, was read by a different speaker (five male and five

female).

Each utterance in the TIMIT data base is associated with four descriptive files:

(1) a waveform file, which contains the digitized samples of recorded speech,

(2) an orthographic transcription file, which contains the precise text of the

spoken sentence, (3) a word transcription file, which contains a segmentation of

the utterance into its component words, with beginning and ending waveform

sample numbers provided for each word, and (4) a phonetic transcription file,

which contains a segmentation of the utterance into its component phones,

with beginning and ending waveform sample numbers provided for each phone.

Digits The ten English digits were recorded in our Laboratory. A series of digits

drawn randomly from the those recordings were created. This separated digits
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data sets was used for intelligibility tests.

Noise signal

The algorithms performance was checked with three kinds of noise signals. Such

variety is needed for a good evaluation of the algorithm over a wide range of noise

signals. Every noise signal was multiplied by a gain factor to give the desired SNR

value. “White” and “Colored” noise signals were used to check the benefit of using

the more complicated “Colored” Kalman filter. Other noise signals were also used

for checking the behavior of the algorithms on speech corrupted by non-stationary

noise.

Artificial “white” noise We used a computer-generated Gaussian “white” noise.

Although “White” noise is not physical, it is common in many signal pro-

cessing application. We included it in our experiments because it is a good

approximation in several important cases. This noise is, of course, stationary.

Artificial “colored” noise We created an artificial “colored” noise by passing a

“white” Gaussian noise signal through an appropriate transfer function. We

used an AR filter to color the noise. The actual shaping was left as an external

parameter. In all experiments we have chosen LPF shaped spectrum, quite

close in its frequency contents to the average spectrum of the speech. This

noise is also stationary.

Actual noise The actual noise was recorded from a typical office environment: a

computer fan. We have made spectral and statistical analysis to those record-

ings.

The short-term spectrum of this noise can be modeled as an AR process of

order q = 4. The parameters (especially, the gain) are changing slowly across

time, which make the noise non-stationary. Nevertheless, it can be viewed as

quasi-stationary with a slower changing rate then the speech signal changing

rate. The short-term spectrum is drawn in figure 6.1. Some statistical tests

were also undertaken to analyze the noise p.d.f.. It was found to be close

to Gaussian as shown in the “Normal plot” in figure 6.2. In “Normal”
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Figure 6.1: Short-term spectral envelope of actual noise segment, modeled as an
AR(4) process

plot the empirical c.d.f.of the data is drawn, while the Y-axis of the graph is

divided according to the Gaussian c.d.f.. A straight line indicates “Normal”

p.d.f.. Forth Cumulant level was also computed and observed to be quite close

to zero. This noise source is used to demonstrate the algorithm’s ability to

enhance speech corrupted by Gaussian noise.

6.2.2 Tests Performed

Each algorithm was evaluated by several tests, as shown in table 6.1.

Subjective tests

We have not used a formal quality tests, such as MOS. Instead, we used some

informal listening tests. Ten listeners were given about 40 free spoken sentences

both in Hebrew and English, in mid-level SNR range and corrupted by the three

kinds of noise signals. Every one of the listeners was to tell his opinion about the
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Figure 6.2: “Normal” plot of actual noise segment

quality of the different samples and to make a comparison between the corrupted

speech samples and the enhanced samples. By quality the listeners addressed a

various general aspects of the speech pleasantness and the level of the noise. They

should pointed out what version of the sentences is preferred by them: the corrupted

or the enhanced. It is worthwhile reminding that most algorithms, although reducing

the noise level, distorts the speech. For that reason it is a difficult test to conduct.

Quality Intelligibility SNR ASR
Iterative-Batch

√ √ √ √
Sequential

√ √ √
LMS

√ √
Spectral-Subtraction

√ √

Table 6.1: Tests conducted for each Algorithm
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Objective tests

Those tests include SNR and Segmental SNR measurements, Intelligibility test,

and ASR performance.

SNR and Segmental SNR measurements Although the SNR improvement has

a limited meaning in speech processing, we used this figure to indicate an over-

all score. A more meaningful quantity is the SNR at each segment, that was

also calculated.

Intelligibility tests Our listeners were given a highly corrupted (Low-level SNR

values) speech sentences, and was requested to write down what they hear.

This test used, especially, the separated digits sentences, but other sentences

were used also. The percentage of correctly found words was the score given

to the utterances.

Automatic Speech Recognition performance In this section we will present

the experiments conducted with an Automatic Speech Recognition (ASR)

system, developed by Victor Zue and other researchers from the Spoken Lan-

guage Systems Group at the MIT Laboratory for Computer Science. We will

not describe here the ASR system. The detailed description can be found

in [26] [27] [32]. In our experiment the recognizer was configured to perform

phone classification, while the exact phone borders were given a-priori.

We fed the recognizer with TIMIT database sentences corrupted by the (real-

life) fan noise at mid and high SNR conditions. We used the ten sentences

spoken by both male and female.

The proposed Iterative-batch algorithm was then applied as a pre-processor

for the ASR system. A comparison between the ASR performance on the

corrupted signal and on the algorithm outputs (the usual filtered output and

the fixed-lag-smoothed output) was made. The difference between SNR values

giving the same phone accuracy level was denoted as the “Noise Immunity”

caused by the algorithm.
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Iterative-Batch Sequential
HOS

√
“colored” Filter

√ √
Noise Estim.

√ √
Smoothing

√ √
Overlapping

√
Pitch

√
Post-Filter

√
AR order

√ √

Table 6.2: Parameters controlling the proposed algorithms

We did not conduct all the experiments for each of the algorithm. Thus, Intel-

ligibility test was not conducted for the LMS and Spectral-Subtraction algorithms,

because they do not work in the low-SNR range. ASR performance was done only

for the proposed Iterative-Batch algorithm, because the ASR system was available

to us only for a short period. One version of the Sequential algorithm was checked

in MIT [33]. Results concerning the ASR performance of the Spectral-Subtraction

can be found in several works (e.g. [10]). The SNR distortion measures are mean-

ingless for the LMS and Spectral-Subtraction, due to the distortion caused by them.

Table 6.1 summarize the tests that were conducted for each algorithm.

6.2.3 Algorithm Parameters

As mentioned before, various parameters influence the performance of the proposed

algorithms. In table 6.2 we summarize those parameters and their availability in

each of proposed the algorithms. The influence of each parameter on the algorithms

behavior is discussed in subsection 6.4.

6.3 Experimental results

In this section we will summarize the results obtained by our experiments. We will

list the results of all the algorithms as achieved by the various tests. In order to

prevent a too much detailed description, we did not include results at all the different

values of the parameters. We will quote only the best results that can be achieved
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by each algorithm at each test, and in section 6.4 we will discuss some general notes

on the influence of each parameter.

6.3.1 Subjective results

As we mentioned before we used only informal listening tests.

All our listeners indicated that the quality of the speech processed by the Iterative-

Batch algorithm is better then the quality of the corrupted speech in all the inter-

esting SNR conditions from −10 dB to +15 dB. The listeners indicated a large

reduction of noise level without any severe distortion to the speech signal.

No noticeable difference in speech quality has been stated by our listeners be-

tween the Sequential algorithm and the Iterative-Batch algorithm in the mid and

high SNR conditions. At the lower level the Iterative-Batch solution supersede the

Sequential one.

A comparison between the filtered output and the fixed-lag smoothed output

shows the advantage of the filtered version. The listeners indicates that the fixed-

lag smoothed output sounds slightly muffled.

The LMS algorithm (in its one-microphone form) works very well with periodic

noise signals, eliminating it almost completely. But, while working with the types of

noise we used the algorithm performance is much worse. The resulting speech suffers

from a “barrel effect”, which causes the speech to sound muffled. The algorithm

should not be used in noise levels below 5 dB (at the low and mid SNR range).

The Spectral Subtraction algorithm exhibits a great reduction of noise level but

generates an annoying “musical tone” effect. The enhanced speech is followed by a

sum of tones with fast shifting frequencies. The algorithm collapses in SNR values

below −5 dB. We should also remember that we did not apply noise spectrum

evaluation in speech-free segments, but instead, used a-priori knowledge. Applying

the noise spectrum evaluation can degrade the algorithm performance even further.

Due to very long processing period, listener fatigue was not checked. But due

to the amount of noise reduction, we think it will help in this field also. After the

completion of the hardware implementation this problem will be addressed.
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6.3.2 Objective results

Intelligibility results

This experiment was conducted with the digits data base and with free spoken sen-

tences at low level SNR range. Only the Iterative-Batch algorithm worked in these

harsh conditions. The results depends on the listener. Few of them (the more expe-

rienced) could understand each word from the corrupted utterance. While hearing

the free spoken sentences most of the listeners indicate an increase of the number of

words correctly detected from around 10% to 40%-50%, and while conducting the

easier closed vocabulary test (digits) they achieved an improvement from 70%-80%

to 90% of the number of digits detected. This result is quite important, because

most of the known algorithms fail to work even at in higher SNR range. So, the

results demonstrates one of the unique properties of the proposed Iterative-Batch

algorithm.

SNR results

SNR improvement of 7-10 dB was achieved for input SNR in the low and mid-level

range by the Iterative-Batch algorithm. The same algorithm achieved an improve-

ment of 3-4 dB in the high SNR range.

The Sequential algorithm performed more of the same, with slight degradation

in the low SNR range. In both cases the fixed-lag smoothed output had a better

performance (1-2 dB) in all SNR ranges.

The LMS and Spectral-Subtraction algorithm, although reducing the noise level,

distort the speech, and thus causing the SNR improvement test to be meaningless.

Automatic Speech recognition performance

The ASR results achieved by the Iterative-Batch algorithm both by the filtered and

smoothed versions are summarized in table 6.3 and than viewed in a graphic manner

in fig 6.3.

The parameters controlling the algorithm were adjusted to yield the best possible

enhancement, but more improvement may be achieved by fine tuning. Anyway the

parameters values were:
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1. “Colored Kalman filter” - on

2. Speech AR order - 16

3. Noise AR order - 4

4. Overlapping - off

5. Pitch usage - off

6. Speech parameters initialization - via fourth order cumulant

7. Noise parameters initialization - from speech free segment

SNR[dB] percentage
original corrupted filtered smoothed

-5 73 25 29 29
0 73 32 38 43
5 73 38 48 54
10 73 48 52

Table 6.3: ASR performance of Iterative-Batch Algorithm

From fig 6.3 it is clear that the recognizer performed on the “filtered” speech

better than on the corrupted speech, and that the “fixed-lag smoothed” speech

supersedes them both. We should remember that the SNR improvement of the

fixed lag smoother is better than that of the simple filtering, although the speech

quality is worse. This implies that an important score for the ASR might be the

SNR improvement, certainly, more important than for a human listener.

From the graph we can define and measure an ASR oriented SNR improvement,

or Noise Immunity: the difference between input SNR levels of the corrupted

speech and the estimated speech that yield the same phone classification accuracy.

This quantity can be measured by drawing an horizontal line in some pre-defined

phone classification accuracy and measuring the length (in dB) between the inter-

section of this line with the three graphs.
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Figure 6.3: ASR performance of Iterative-Batch Algorithm

This improvement depends on the input SNR conditions, and on the added

noise characteristics. For our experiment we can measure a 8 − 9 dB improvement

between the “smoothed” speech and the corrupted one for input SNR in the range

of 0 to 10 dB, and 3 − 4 dB for the lower range. For example, around 55% phone

classification accuracy we have about 9 dB noise immunity achieved by the proposed

Iterative-Batch algorithm.

We did not check word detection accuracy in this experiment. Since the graphs

in the word case exhibit a threshold SNR level below it the performance degrades

dramatically, the importance of the achieved improvement is emphasized. It can

bring us above the threshold level.

The Sequential algorithm was not tested by us. The Sequential algorithm (imple-

mented with gradient-search parameter update) was extensively tested by Verbout

from MIT, and its performance can be seen in [33]. Although the tests were not

conducted under the same conditions, our results seems to be slightly better. Re-

sults concerning the Spectral-Subtraction algorithm can be found in the literature,
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and they seems to be significantly inferior to the proposed algorithms.

6.4 Analysis of Experimental Results

Both the Sequential and Iterative-Batch algorithms are influenced by parameters

that control their performance. In this section we will discuss this influence on the

results presented in the previous sections of this chapter.

Sequential versus. Iterative-Batch Concerning quality the Sequential algo-

rithm has equivalent performance to the Iterative-Batch algorithm at SNR

range of −5 dB and above, but inferior at the lower range. We should re-

member that, the Sequential algorithm was developed as an approximation

to the Iterative-Batch algorithm. So, this approximation is a good one in

the discussed range, and the efficiency of the Sequential algorithm makes it

preferable. Only when dealing with lower SNR values (which can occur in

several important cases), we should choose the Iterative-Batch algorithm.

Using Higher Order Statistics We introduced in chapter 3 the use of improved

techniques for estimating the speech parameters. The use of fourth-order-

cumulant based equations has proven to supersede significantly the use of

third-order-cumulant based equations. Both of them are superior to the con-

ventional second-order-cumulant equations as well as the Modified Yule-Walker

equations (which can only be applied in the “white” noise case). Note that

this advantage exists, although the assumption, that the HOS of Gaussian

noise diminishes, is not completely correct. Due to the finite segment length,

even computer generated Gaussian noise has no zero Higher-Order-Cumulant.

We apply HOS based equations for the speech parameter estimation only in

the first iteration (initialization step). This iteration is making the first (and

good) separation between the speech and the Gaussian noise. After the first

separation, the algorithm can converge to a correct solution, using 4-5 more

conventional iterations, that separate the speech from noise but retaining the

speech natural sounding. On the contrary, if we used only second order statis-

tics for all the iterations (including the first), a fast converging algorithm (1-2
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iteration) is resulted, but at low SNR range, the convergence point is inferior

to the one achieved by the use of HOS. Trying to use HOS at other than the

first iteration is causing the speech to sound unnatural. This effect is due

to the reduced bandwidth of the formants, and it is supported also by other

researchers (Palliwal & Sondhi [17], and Masgrau [5]). We suggest a possible

explanation to this phenomena. As we mentioned, the second order statistics

parameter estimation uses the covariance established from the Kalman filter in

forming the Yule-Walker equations. Unfortunately, the Kalman filter is only

optimal in MMSE (second-order sense). So, we do not have any error term

to correct our cumulant-based equation in the same manner. Anyway, at this

point we are using HOS only in the Iterative-Batch algorithm.

Estimating Noise Parameter In chapter 3 we introduced several approaches for

the noise parameter estimation. In our experiments we skipped the use of

speech activity detector due to the implementation difficulties. In the Iterative-

Batch algorithm, at the high-level SNR range, the best results was obtained

by initializing the parameters by values estimated at the beginning of the sen-

tence, and by proceeding with “free” parameter estimation at the following

iterations. This conclusion might be changed on the presence of highly non-

stationary noise source. At low-level SNR range the best results was obtained

by initializing the parameter estimate with values obtained by using the cor-

rupted samples (which are, actually, “clean” noise samples), and proceeding

as before. In each case, only second order statistics can be used for the noise.

We assumed, in the algorithm development, that the noise is much more Gaus-

sian than the speech (which is one of the main separating features we used).

The Sequential algorithm is not iterating, so only the first iteration in the

Iterative-Batch algorithm is performed.

“Colored Kalman filter” Using the “colored” version of Kalman filter, certainly

improved the algorithm performance. The amount of SNR improvement is

about 3 − 4 dB (depending, of course, on the noise spectral shape). The

slightly more complicated algorithm this use implies is not a large payment to

pay. Even though knowing the exact noise parameters is preferred, estimating
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them together with the speech parameter yield a very good performance.

Fixed Lag Smoothing We stated before that we may use the Fixed-lag smoother

instead of Kalman filter. As expected, an SNR improvement of 1 − 2 dB is

observed in the fixed lag smoothed version. The estimated speech quality as

stated by our listeners is worse than the filtered version (they emphasized some

“barrel” effect in the sound). On the contrary, the performance of the ASR

system is improved significantly, as can be shown from figure 6.3. These con-

tradicting results emphasizes the problem in evaluating a speech enhancement

system. No “hard” decision can be done, and the answer for the question:

“which algorithm is better?” - depends on the application.

Overlapping A common procedure in speech processing (especially, in speech

coders ) is to segment the speech into overlapping segments. By doing that,

we can use long enough segments (for numerical reasons), but still compensate

for the non-stationarity of the speech signal. Surprisingly enough, there is

completely no difference between the original processing (without overlapping)

and the suggested one. For that reason, we will, of course, skip this procedure.

Pitch Pitch seems like a very important information. Most of the energy of the

speech signals comes from that periodic innovation. The proposed algorithm

used the pitch in two ways: as a compensation value in estimating the speech

LPC parameter, and as a “deterministic” input in the Kalman filter. Although

promising, the results are doubtful. The pitch detector performance degrades

quickly with decreasing SNR level, so the information we extract might be

quite erroneous and can stop the algorithm convergence at all. we suggest to

use the pitch information only on a very high SNR levels (in which we might

not need it at all).

A further research should be done on that issue.

Post-Filter We suggest to use some simple post-filters after the algorithm. One

simple choice is to apply a Band-Pass-Filter, which can “smoothen” the esti-

mated speech and to filter out some residual noise caused by the algorithm. Use
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of the BPF causes a significant improvement in the quality of the Iterative-

batch output. No improvement is observed in the Sequential algorithm,

perhaps, because its “smooth” nature.

Another approach, that we suggested is to apply the two-microphone LMS

algorithm with the corrupted signal in the primary input and the enhanced

output in the reference input. Unfortunately, this approach proved to be a

complete failure.

Noise and Speech AR orders The order of the AR models used in the Kalman

filter is of course important. For the speech a common choice is p = 10 for 8

kHz sampled signal and p = 12− 14 for 16 kHz sampled signal. we used those

choices, and they proved to be good choices. The noise AR order was chosen in

correspondence with the noise signal used. When the artificial noise degraded

the speech, the noise AR order in Kalman filter equations was chosen to be

similar to the signal AR order. When the actual noise was chosen, a choice of

q = 4 in Kalman filter equations seems to be a good one.

6.4.1 Summary

In this chapter we introduced the experiments conducted and experimental results

obtained by the proposed algorithms, and two other reference algorithms.

Both the Spectral Subtraction and the LMS algorithms are inferior to the

proposed algorithms. Those algorithms covers only a proration of the SNR condi-

tions that can be covered by the proposed algorithms. Even in the SNR values in

which both the proposed algorithms and the reference algorithms work, the enhanced

speech quality of the proposed algorithm is significantly better. One important rea-

son for that is the distortion caused by the reference algorithms which is almost

unheard in ours. Again, we will note that our algorithms works quite well in very

low SNR level, lower then most algorithms do.

The proposed algorithms, especially the Iterative-Batch one, prove to work well

in all the categories tested. The speech quality obtained, the detection accuracy rate

of ASR system and the resulted SNR all demonstrate a significant improvement.

Only very slight distortion effects are noticed. As indicated by several listeners,
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Quality Intelligibility SNR ASR
Bat good + 20-30 % 7-10 dB

Low SNR Seq quite good 4-6 dB
LMS terrible
SSub terrible
Bat very good 7-10 dB 3-4 dB

Mid SNR Seq very good 7-10 dB
LMS very Bad
SSub Bad
Bat Excellent 3-4 dB 8-9 dB

High SNR Seq Excellent 3-4 dB
LMS very good
SSub very good

Table 6.4: Summary of Experimental Results

even Intelligibility tests indicates a noticeable improvement. A brief summary of

the relevant results is shown in table 6.4.
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Chapter 7

Conclusions and Topics for
Further Research

In this work we developed, implemented evaluated and compared algorithms for

speech enhancement. We dealt with the problem of enhancing speech degraded by

additive noise and received with only one microphone.

The problem of speech enhancement has gained a lot of interest in the last three

decades. For that reason many algorithms solving this problem have been suggested,

but still with no complete success. Through out our research we tried to keep in

mind the work of our predecessors. Our main concern is to enhance speech in a very

harsh environment. In our development we tried to exploit as much information

as we could on the speech and noise characteristics by giving quite general models

for both signals. We used the well-known LPC model for the speech vocal tract,

excited by a mixed innovation of both noise the pitch series. For the noise we used a

different order LPC model, which can describe a large variety of actual noise signal.

HOS techniques for AR parameter estimation is used to differ between the more

Gaussian noise signal and the speech signal.

From the concept of EM we developed two families of algorithms, which have a

quite intuitive structure. The algorithms iterates between decoupled estimation of

speech and noise parameters estimation, and an optimal MMSE filter (the Kalman

filter) application. The two families of algorithms derived from this concept are

the ITERATIVE-BATCH algorithm, which divides the speech into segments,

and performs several iterations on each segment, until convergence is achieved, and
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SEQUENTIAL algorithm which replaces the iteration index by the time index

to construct a completely recursive solution. Each of the algorithm uses several

parameters that controls their behavior. The use of HOS and the PITCH series is

only incorporated into the ITERATIVE-BATCH algorithm.

The algorithms were evaluated with both Objective and Subjective tests under-

taken by Human listeners and by an ASR system.Comparison between the proposed

algorithms and two widely used algorithms (Spectral Subtraction and LMS) were

taken . Both the proposed algorithms work very well on a wider SNR range (−14 dB

to 10 dB), suppressing noise almost without degrading the speech quality. At the

extent of very low SNR conditions, we encountered an intelligibility improvement

as indicated by several listeners. ASR system gained a noise immunity of about

8− 10 dB by using our algorithms as a preprocessor. The ITERATIVE-BATCH

algorithm supersedes the SEQUENTIAL algorithm in the lower range of SNR

values. The use of HOS improves the convergence behavior of the algorithm, and

the resulting speech quality and intelligibility.

This research can be extended in several directions.

PITCH Although promising, the use of pitch information has doubtful results.

Remember, that we have done several approximations in our implementation,

to enable a reasonable processing time. After implementing the algorithms

on a fast DSP processor, we suggest to try to give up our approximation and

to implement the internal iterations for finding the pitch innovation. Other

methods for pitch extraction may be incorporated as well.

CUMULANT We used in each iteration either Second-Order Statistics or HOS.

Using a combination of several statistics weighted correctly may be considered,

in order to get a more robust estimation of the AR coefficients.

Speaker separation Although, intended for speech enhancement, the structure of

our algorithms implies that applying them for the speaker separation problem

is worth checking. Remember that the speech and noise models are quite

similar. By incorporating a pitch innovation sequence into the noise model,

will result an identical speech and noise structure is resulted. The decoupling
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between the speech and noise parameter estimation equations can be exploited

in the Competing Speaker Separation problem.

GOAL function We should remember that our algorithms are oriented for SNR

improvement. As we noted before, SNR is not a representative quantity for

speech perception. Perhaps a different goal function, that is more perceptually

oriented (like the Itakura-Saito distance measure) can give a better improve-

ment in speech quality and intelligibility.

ASR The algorithms proposed were applied to an ASR system as a preprocessor.

Thus, the more robust parameters estimated were used only for enhancing

the speech, but were not used directly in the ASR system. This two stage

procedure is only sub-optimal. Perhaps, the use of the more robust parame-

ters within the ASR system may result a combined system with better noise

immunity properties.
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Appendix A

The EM Algorithm

The Estimate-Maximize (EM) algorithm [?] is an iterative method for finding Maxi-

mum Likelihood (ML) parameter estimates. It works with the notation of “complete

data”, and iterates between estimating the log-likelihood of the complete data us-

ing the observed (“incomplete”) data and the current parameter estimate (E-step),

and maximizing the estimated log-likelihood function (M-step) to obtain the new

parameter estimate.

More specifically, let z denote the observed data, with the probability density

function (p.d.f.) fZ(z; θ), indexed by the vector of unknown parameters θ ∈ Θ ⊆ <k.

The ML estimate θ̂ML of θ is defined by:

θ̂ML = arg max
θ∈Θ

log fZ(z; θ) (A.1)

Let y denote the complete data, related to the observed (incomplete) data z by

H(y) = z (A.2)

where H(·) is a non-invertible (many-to-one) transformation. With fY (y; θ) de-

noting the p.d.f.of y, and fY |Z(y|z; θ) denoting the conditional p.d.f. of y given

z,

fY (y; θ) = fZ(z; θ)fY |Z(y|z; θ) ∀H(y) = z (A.3)

Equivalently, taking the logarithm:
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log fZ(z; θ) = log fY (y; θ)− log fY |Z(y|z; θ) (A.4)

Taking the conditional expectation given z at a parameter value θ′ (that is,

multiply both sides of A.4 by fY |Z(y|z; θ′) and integrating over y,

log fZ(z; θ) = Eθ′ {log fY (y; θ)|z} − Eθ′
{
log fY |Z(y|z; θ)|z

}
(A.5)

where Eθ′ {·|z} denotes the conditional expectation given z computed using the

parameter value θ′.

For convenience we define

Q(θ, θ′) = Eθ′ {log fY (y; θ)|z} (A.6)

P (θ, θ′) = Eθ′
{
log fY |Z(y|z; θ)|z

}
(A.7)

So that equation A.5 becomes

log fZ(z; θ) = Q(θ, θ′)− P (θ, θ′) (A.8)

By Jensen’s inequality 1

P (θ, θ′) ≤ P (θ′, θ′) (A.9)

Therefore,

Q(θ, θ′) > Q(θ′, θ′) implies log fZ(z; θ) > log fZ(z; θ′) (A.10)

The relation in A.10 forms the basis for the EM algorithm. Denote by θ(l) the

estimate of θ after l iterations of the algorithm. Then, the next iteration cycle is

specified in two steps as follows:

1Jensen’s inequality asserts that for any pair of p.d.f.’s f(x) and g(x) defined over the probability
space Ω of points x, ∫

Ω

f(x) log g(x)dx ≤
∫

Ω

f(x) log f(x)dx
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E-step Compute

Q(θ, θ(l)) = Eθ(l) {log fY (y; θ)|z} (A.11)

M-step

max
θ

Q(θ, θ(l)) → θ(l+1) (A.12)

If Q(θ, θ′) is continuous both in θ and θ′, the algorithm converges to a stationary

point of the observed log-likelihood log fZ(z; θ), where the maximization in A.12

ensures that each iteration cycle increases the likelihood of the estimated parameters.

Specifically, as in all “hill climbing” algorithms, the stationary point may not be the

global maximum, and thus several starting points or an initial grid search may be

needed.

We note that the transformation H(·) is not uniquely defined. Specifically, there

are many complete data specifications y that will generate an observed z. The final

point of convergence of the EM algorithm is essentially independent of the complete

data specification. However, the choice of y strongly affect the rate of convergence

of the algorithm, and the computations involved.
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Appendix B

Higher Order Statistics

In this appendix we will define moments and cumulants and the relationship between

them. We also will state some of their common used characteristics.

Definition B.1 (Moments) the (n1 +n2 + . . .+nN)-th order cross-moment of the

random variables x1, x2, . . . xN is:

M (xn1
1 · xn2

2 · . . . xnN
N ) = (B.1)

∂(n1+n2+...+nN )

(∂s1)n1 · (∂s2)n2 · . . . (∂sN)nN
E {exp(s1x1 + s2x2 + . . . + sNxN)} |s1=s2=...=sN=0

Definition B.2 (Cumulants) the (n1 + n2 + . . . + nN)-th order cross-cumulant of

the stochastic variables x1, x2, . . . xN is:

cum (xn1
1 · xn2

2 · . . . xnN
N ) = (B.2)

∂(n1+n2+...+nN )

(∂s1)n1 · (∂s2)n2 · . . . (∂sN)nN
log (E {exp(s1x1 + s2x2 + . . . + sNxN)}) |s1=s2=...=sN=0

There is a close relationship between the cumulants and moments. Presume

M(x1) = 0.

First Order

cum(x1) = M(x1) = E{x1} (B.3)

Second Order

cum(x1, x2) = M(x1, x2) = E{x1x2} (B.4)

Third Order

cum(x1, x2, x3) = M(x1, x2, x3) = E{x1x2x3} (B.5)
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Fourth Order

cum(x1, x2, x3, x4) = M(x1, x2, x3, x4) (B.6)

−M(x1, x2) ·M(x3, x4)

−M(x1, x3) ·M(x2, x4)

−M(x1, x4) ·M(x2, x3)

The following properties of cumulants can be verified (see [3]):

Property B.1 (Linearity) For any set of constants ci,

cum(. . . ,
∑

i

cixi, . . .) =
∑

i

cicum(. . . , xi, . . .) (B.7)

Property B.2 (Gussianity) If (x1, x2, . . . xN) are jointly Gaussian random vari-

ables then,

cum(x1, x2, . . . xN) = 0 (B.8)

∀N ≥ 3.

Property B.3 (statistically independence) If (x1, x2, . . . xN) can be divided into

two or more statistically independent subsets, then

cum(x1, x2, . . . xN) = 0 (B.9)
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Appendix C

Spectral Subtruction Method

In this appendix we will describe briefly the Spectral Subtraction method. All those

methods can be summarized by the following general form suggested by Weiss et

al. [24]:

Denote the corrupted speech as z(t):

z(t) = s(t) + v(t) (C.1)

where, s(t) is the speech signal and v(t) is the noise signal. Than, the frequency

transform of the speech is reconstructed by:

|Ŝ(ω)| = |Z(ω)|a − kE{|V (ω)|a} (C.2)

Ŝ(ω) = |Ŝ(ω)| exp(θz(ω)) (C.3)

where exp(θz(ω)) is the corrupted phase. It was noted [16], that this choice of the

phase is the best that can be done under these circumstances. This use of the phase

is justified by the unimportance of short-term phase [1].

The time domain speech signal is than given by:

ŝ(t) = F−1{Ŝ(ω)} (C.4)

a and k are free parameters. k controls the amount of noise reduction. a controls

the spectral weighting. The choice a = 1 and k = 1 gives Boll’s algorithm [2]. The

choice a = 2 and k = 1 gives the power spectrum subtraction technique, which is

also referred as the correlation subtraction technique. The expectation operation

is performed by averaging signal segments during non-speech activity just prior to
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its application in the subtraction operation. After this magnitude adjustment, a

secondary procedures such as half-wave rectification and adjacent frames smoothing

are applied.
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Appendix D

Widrow-Hopf LMS Method

A schematic draw of the noise cancelation problem in the one-microphone case is

drawn in figure D.1.
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Figure D.1: The adaptive noise cancelling concept

Denote the primary microphone input as z(t),

z(t) = s(t) + v(t) (D.1)

Where s(t) is the desired speech signal, and v(t) is the disturbing noise signal.

Denote the secondary microphone input by r(t). In our case

r(t) = z(t−D) (D.2)
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Where D is the amount of DELAY applied. This reference signal is filtered by the

adaptive filter. Denote the filter output as y(t). y(t) is subtracted from the primary

input. Denote the remaining residual error as ε(t):

ε(t) = s(t) + v(t)− y(t) (D.3)

out1(t) and out2(t) are the primary and secondary outputs of the algorithm,

respectively.

out1(t) = ε(t) (D.4)

out2(t) = y(t) (D.5)

If the filter output y(t) is in correlation with the disturbing noise v(t), out1(t)

is a good approximation for the desired speech signal; and if the filter output y(t)

is correlated with the speech signal s(t), out2(t) is the desired output. The desired

correlations are achieved via a modification of the DELAY value. Thus, if the noise

is white, a short delay will cause the noise correlation to diminish while the speech

correlation still exist. In this case out2(t) will contain the desired speech. On the

other hand, if we have a periodic corruption, a very long delay will do the job. In

this case out1(t) will contain the desired speech. This use of the DELAY implies

that only signals with different correlation length can be separated.

The adaptation mechanism involves minimization of the error signal. Our objec-

tive is, thus, to produce a system output, out1(t), that is the best Least-Squares fit

to one of the primary input components, based on its reference, available in the sec-

ondary input. This objective is accomplished via adjusting the filter coefficient with

the LMS algorithm. Minimizing the residual error energy is equivalent to minimizing

the energy of the difference between the correlated signals.

Thus, in the case of white noise we apply:

min E{out21(t)} = E{v2(t)}+ min E{[s(t)− y(t)]2} (D.6)

and in the case of periodic noise we apply:

min E{out21(t)} = E{s2(t)}+ min E{[v(t)− y(t)]2} (D.7)
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The solution for the minimization of the second term in Equations D.7, D.6 is

the Wiener-Hopf set of equations. An adaptive solution to those equations is the

basis of the Widrow’s algorithm.

Define a vector of filter taps as:

W (t) =




wL(t)
wL−1(t)
wL−2(t)

...
w0(t)




(D.8)

and a vector of reference input samples as:

X(t) =




r(t− L)
r(t− L + 1)
r(t− L + 2)

...
r(t)




(D.9)

Than the Widrow-Hopf LMS algorithm is:

W (t + 1) = W (t) + µε(t)X(t) (D.10)

And the Widrow-Hopf Normalized LMS algorithm is:

W (t + 1) = W (t) + µε(t)
X(t)

XT (t)X(t)
(D.11)

In the NLMS case the adaptation constant should satisfy:

0 ≤ µ ≤ 1 (D.12)
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Appendix E

Graphical User Interface

E.1 General

The proposed algorithms are controlled by a “Graphical User Interface” (GUI) im-

plemented by MATLAB software. All the external parameters can be changed via

the GUI, to help the user in determining what is the influence of each of them on

the algorithm performance. Several other utility software - such as file handling, or

playing sound files via the the high quality sound player - can be also activated.

In this chapter we will demonstrate the GUI screens, and explain their various

components. So, this chapter can be viewed as a fast manual for using the software.

The GUI is assembled by one permanent MAIN screen and one exchanging

ALGORITHM screen. Several other windows can be opened for specific actions.

Before starting our detailed description we will explain what are the components

of each GUI.

Push Buttons Clicking the mouse button on a push button causes MATLAB to

perform a defined action.

Check Boxes Check Boxes let the user select one or more alternatives. Check

Boxes act like toggle switches, indicating state of on or off. The state is on

if the box is checked, and off if the box is not checked. Selecting a check box

causes MATLAB to perform a defined action.

Radio Buttons Radio buttons let the user choose among mutually exclusive alter-

natives. Like check boxes, radio buttons act as toggle switches, indicating a
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state of either on or off. Selecting a Radio button causes MATLAB to perform

a defined action.

Sliders Sliders let the user choose a value within a range of values. Sliders are

analog devices which display their values graphically. The user can change

the value by an indicator. Changing the value of a slider causes MATLAB to

perform a defined action.

Pop-up Menus Pop-up menus let the user choose an item from a list. Choosing

a pop-up menu item causes MATLAB to perform a defined action.

Editable Text Editable text controls let the user enter a string value to be used

by the application. The user can accept, edit, delete, or replace an editable

text value.

Pull-down menus Pull-down menus allow users to browse through and choose

among options in an application. Menus consists of a menu bar, which displays

the titles of available menus, and menu items. Menu items can be names of

action, attributes, or windows.

E.2 Windows description

We will describe now each of the software windows and their action.

E.2.1 MAIN Screen

Figure E.1 demonstrates the main screen of the software control panel.

The screen is divided to four regions: RUN TIME parameters, FILES han-

dling, PLAY & GRAPH parameters, and Messages. In addition there is a

pull-down menus on the top of the screen.

RUN TIME parameters This region controls some general parameters concern-

ing the signals involved and the algorithm performed. It is sub-divided into

three sub-regions:
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Figure E.1: GUI - MAIN Screen
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signal Various parameters of the signal to be enhanced. A Radio Button

selects between several signals available: speech, artificial AR process,

and other signal (future use). If file is chosen the user should open a noise

file (see FILES handling region). The LPC order, used by the Kalman

filter will be chosen by the editable text field lpc order. From the file

chosen, we can slice a segment for enhancing. The editable text field

init time[Sec] will determine the initial time of the slice. the editable

text and pop-up menu fields length[Sec] will determine the length of

the slice. The speech sampling rate used through out the algorithm is

determined via the pop-up menu and editable text fields rate[kHz].

noise The specifications of the noise added to the signal are chosen via the

noise region together with the Noise Spectrum window (See Noise Spec-

trum window section). Noise can be chosen to be one of three choices

via a Radio button: a recorded file, an artificial Gaussian white noise, or

an artificial Gaussian colored noise. If file is chosen the user should open

a speech file (see FILES handling region). If colored noise is chosen, its

AR order is defined by the editable text field noise order, and the AR

coefficients values are determined via the Noise Spectrum window. The

noise sampling rate used through out the algorithm is determined via

the pop-up menu and editable text fields rate[kHz]. Additional white

noise (that is used for stability reasons in the algorithm) can be added

by determining its level via the editable text field white n var.

algorithm The algorithm used can be switched via the Radio button in the

algorithm region. A choice between BATCH and SEQUENTIAL al-

gorithms is currently available. The relative level of the speech and noise

is determined by the editable text field SNR [dB].

FILES handling This region enables us to load speech and noise files (when nec-

essary), and to save the results of the algorithm.

The window is divided into the following regions.

open noise/speech file The push buttons open noise file and open speech file
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Figure E.2: GUI - Open File Screen

activates windows for file selection, as shown in figure E.2. The user can

use the editable text fields instead.

choose log file All the messages appearing during the algorithm run (such

as SNR value at each segment at each iteration) can be dumped into a

log file. The file is selected via the choose log file push button in the

usual file selection manner. The push button also enables the messages

dump.

Signals to save Each of the signals produced by the algorithm can be saved

in a result file. The file name is selected via the push button choose result file.

The name of the signals to be saved is chosen via the group of check boxes.

If several iterations exist for part of the signal, the iteration to be saved

is selected via the pop-up menu iterations to save. After selecting the

appropriate signals the actual saving is done by the push button SAVE.

PLAY & GRAPH parameters This region enables to examine the results of

the algorithm. It is possible to hear the signals or to see them. The push

button PLAY activates our high quality DAT machine. The editable text

field together with the slider volume are used for controlling the volume of
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the sound.

Activating the GRAPH push button open another window, which contains

graphs of all the selected signals. Selecting a signal is done by the same manner

as in the FILES handling region.

The signals can be either the results of the last run or signals loaded from a

file by the load file push button.

The check box pre-alg starts a short run of the initialization part of the

algorithm. After activating this button the user can check the corrupted signal

before applying the algorithm.

Messages All the responses of the software to the actions of the user, and the

intermediate results appear on the Messages region. The progress of the

algorithm can be viewed graphically - by a bar - and mathematically - by

percentage display. Both means appear in the Messages region (see figure E.3).

Figure E.3: GUI - Messages Region

pull-down menu A pull-down menu is located on the top bar of the MAIN screen.

Several options are available.

Post-Filters The user can choose between several post-filter to apply to the

results of the algorithm. “LMS” and “Telephone” are available. Choosing

one of the choices activates an appropriate screen.

Help “Help” pages are not available yet.

Exit Enables the user to quit the software package. A confirmation screen is

opened.
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E.2.2 ALGORITHM Screen

This screen contains special parameters concerning the algorithm used. The screen

has two different phases, The BATCH and the SEQUENTIAL, which can be

switched via the radio button in the MAIN screen.

parameters for BATCH algorithm Figure E.4 demonstrates the BATCH al-

gorithm screen of the software control panel. There are various options.

Figure E.4: GUI - BATCH Algorithm Screen

The EM-param group contains the check boxes maxims - which determines

whether to apply maximization of the speech parameters during the M-step,

maximw - which determines whether to apply maximization of the noise pa-

rameters during the M-step, estimate - which determines whether to apply

the Kalman filter in the E-step, and the learn - which is used for learning the

the parameters from the clean speech, in order to evaluate the upper-bound

on the performance.

The pitch group is used for determining whether to use pitch information in

either the Kalman filter (check box pitch), or in the Yule-Walker equations

(check box pitch ar), or in both.
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In the options group the covariance check box determines whether the co-

variance matrix from Kalman filtering is used. The lms check box is not in

use.

The mode group is not in use.

The kalman check box determines whether the Kalman filter is using the

standard equations, assuming white noise, or the more complicated equations

using the colored noise structure. if “colored” Kalman filter is used, than the

editable text field LPC order is determining the AR model of the noise.

The editable text field iterations, is responsible for the number of iterations

used in the EM algorithm. In each iteration a pop-up menu determines what

is the cumulant used. There are five options: Fourth order cumulants, Third

order cumulants, second order cumulants, Modified second order cumulants,

or mix order cumulants (not valid).

The pop-up menu and editable text fields overlap[%] is responsible for the

percentage of overlap between adjacent segments used.

Frame length is determined by both the pop-up menu and the editable text

frame[mSec] fields.

The RUN and ABORT push buttons controls the flow of the program.

parameters for SEQUENTIAL algorithm Figure E.5 demonstrates the SE-

QUENTIAL algorithm screen of the software control panel.

This screen is rather similar to the previous BATCH screen. There are some

differences.

An editable text fields lambdaS and lambdaW control the forgetting factor

of the SEQUENTIAL algorithm (both recursive estimation). The editable

text fields betaS and betaW are for future use (can be used for the LMS

recursion).
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Figure E.5: GUI - SEQUENTIAL Algorithm Screen

Figure E.6: GUI - Noise Spectrum Screen
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E.2.3 Noise Spectrum Screen

At the initial stage of the algorithm the user is prompted with a graph of the Noise

Spectrum. When an artificial colored noise is chosen, the user can change its AR

coefficients to achieve a desired spectrum . The menu item CONTINUE enables

the user to either continue the run or to print out the resulting spectrum. Figure E.6

demonstrates the window.

E.2.4 GRAPH Screen

Figure E.7: GUI - Graph Screen

The GRAPH window can be opened by activating the GRAPH push button

in the MAIN window. The graphs of all the selected signals are displayed in this

window. If a signal which has several iterations is chosen, only the selected iteration
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is being displayed. If “LMS” or “Telephone” signals are chosen, only the selected

work field are displayed. Figure E.7 demonstrates the window.

E.2.5 Post-filters Screen

As mentioned before pre-algorithms can be applied on the results of the algorithm.

“LMS” or “Telephone” algorithms are currently available.

Figure E.8: GUI - Telephone Parameters Screen

Telephone Figure E.8 demonstrates the The “Telephone parameters” screen. This

is actually a Band-Pass filter with user defined cut-off frequencies.

The signal to be filtered is selected via the pop-up menu input variable and

the iteration to handle pop-up menu determines which iteration to filter. The

cut-off frequencies are determined in the editable text fields low freq.[Hz] and

high freq.[Hz]. The work fields radio button selects one temporary variable

to store the results in. The selected work field is the one presented in the

GRAPH window, and being played by the PLAY command. The push button

RUN and close are obvious.

LMS Figure E.9 demonstrates the The “LMS parameters” screen. This window is

the control panel of the LMS algorithm that can be applied as a post-filter for

our algorithms. the primary input and secondary input pop-up menus selects

the signals to be handled. The various parameters of the the LMS algorithms
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Figure E.9: GUI - LMS Parameters Screen

are determined via the editable text fields mue, filter length, and delay. The

delay is used only in ONE MICROPHONE mode.

E.2.6 Exit Screen

Figure E.10: GUI - EXIT Screen

After choosing Exit from the pull-down menu an Exit screen is opened for con-

firmation. The Exit screen is demonstrated in Figure E.10.

99



Bibliography

[1] Alan V. Oppenheim and Jae S. Lim. The importance of phase in signals.

Proceedings of the IEEE, 69(5):529–541, May 1981.

[2] S. F. Boll. Suppression of acoustic noise in speech using spectral subtraction.

In Jae S. Lim, editor, Speech Enhancement, Alan V. Oppenheim series, pages

61–68. Prentice-hall, 1983.

[3] D.R. Brillinger. Time Series, Data Analysis and Theory. San Francisco, CA:

Holden-day, 1981.

[4] David Burshtein. Joint modeling and maximum-likelihood estimation of pitch

and linear prediction coefficient parameters. J. Acoustic Society of America,

3:1531–1537, Mar. 1992.

[5] E. Masgrau J. Salavedra A. Moreno and A. Ardanuy. Speech enhancement by

adaptive wiener filtering based on cumulant ar modeling. In Michel Grenie and

Jean Claude Junqua, editors, Speech Processing in Adverse conditions, chapter

Speech Analysis and speech enhancement, pages 143–146. 1992.

[6] E. Masgrau José A. Rodŕıgez-Fonollosa and Antonio Ardanuy. Enhancement

of speech by using higher-order spectral modeling. In J. Vandewalle R. Boite

M. Moonen and A. Oostterlinck, editor, Signal Processing VI:Theories and

Applications, pages 307–310. Elsevier Science Publishers B.V., 1992.

[7] E. Weinstein A.V. Oppenheim and M.Feder. Signal Enhancement Using Single

and Multi-Sensor Measurement. Technical report, MIT, Nov. 4 1990.

100



[8] Georgios B. Giannakis and Jerry M. Mendel. Identification of nonminimum

phase systems using higher order statistics. IEEE Transactions on Acoustics,

Speech, and Signal Processing, 37(3):360–377, Mar. 1989.

[9] Robert M. Gray Andrés Buzo Augustine H. Gray and Yasuo Matsuyama.

Distortion measures for speech processing. IEEE Transactions on Acoustics,

Speech, and Signal Processing, ASSP-28(4):367–376, Aug. 1980.

[10] John H. L. Hansen and Mark A. Clements. Constrained iterative speech en-

hancement with application to speech recognition. IEEE transactions on signal

processing, 39(4):795–805, Apr. 1991.

[11] Jae S. Lim Alan V. Oppenheim and Louis D. Braida. Evaluation of an adaptive

comb filtering method for enhancing speech degraded by white noise addition.

In Jae S. Lim, editor, Speech Enhancement, Alan V. Oppenheim series, pages

88–92. Prentice-hall, 1974.

[12] Jae S. Lim and Alan V. Oppenheim. All-pole modeling of degraded speech.

IEEE Transaction on Acoustic,Speech and Signal Processing, 26(3):197–210,

Jun. 1978.

[13] Jae S. Lim and Alan V. Oppenheim. Enhancement and bandwidth compression

of noisy speech. In Jae S. Lim, editor, Speech Enhancement, Alan V. Oppenheim

series, pages 7–25. Prentice-hall, 1983.

[14] James D. Wise James Caprio and Thomas W. Parks. Maximum likelihood pitch

estimation. IEEE transactions on Acoustics, Speech and Signal Processing,

24(5):418–423, Oct. 1976.

[15] N.S. Jayant and P. Noll. Digital Coding of Waveforms. Prentice-Hall,Engelwood

Cliffs, 1984.

[16] John Makhoul Thomas H. Crystal David M. Green, Douglas Hogan Robert

J. McAulay David B. Pisoni, Robert D. Sorkin and Thomas G. Stockham.

Removal of noise from noise-degraded speech signals. In Panel on removal

101



of noise from a speech/noise signal. Committee on Hearing, Bioacoustics and

Biomechanics, National Research Council, National Academy press, 1989.

[17] K.K. Paliwal and M.M. Sondhi. Recognition of noisy speech using cumulant

based linear prediction analysis. Int. Conf. on Acoustics, Speech and Signal

Proc., pages 429–432, 1991.

[18] Larry J. Trent Charels M. Rader and Douglas A. Reynolds. Using higher order

statistics to increase the noise robustness of a speaker identification system.

Esca workshop on automatic recognition, identification and verification, pages

221–224.

[19] Lawrence R. Rabiner Michael J. Cheng Aaron E. Rosenberg and Carol A.

McGonegal. A comparative performance study of several pitch detection

algorithms. IEEE transaction on Acoustics,Speech and Signal Processing,

24(5):399–418, Oct. 1976.

[20] Jae S. Lim. Evaluation of a correlation subtraction method for enhancing speech

degraded by additive white noise. In Jae S. Lim, editor, Speech Enhancement,

Alan V. Oppenheim series, pages 83–84. Prentice-hall, 1983.

[21] Jae S. Lim. Speech Enhancement. Prentice-Hall, 1983.

[22] Lenhart Ljung. System Identification. Prentice Hall, 1988.

[23] Michel Grenie and Jean Claude Junqua, editor. Speech processing in adverse

conditions. ETRW, Nov. 1992.

[24] M.R. Weiss and E. Aschkenasy. Study and development of the intel technique

for improving speech intelligibility. Technical Report NSC-FR/4023, Nicolet

Scientific Corp., Dec. 1974.

[25] National Institute of standards and Technology. The DARPA TIMIT acoustic-

phonetic continuous speech corpus. CD-ROM NIST Speech Disc 1-1.1, Oct.

1991.

102



[26] V. Zue J. Glass D. Goodine M. Phillips and S. Seneff. The SUMMIT speech

recognition system: Phonological modelling and lexical access. In Proceedings of

the IEEE International Conference on Acoustics, Speech, and Signal Processing,

pages 49–52, Albuquerque NM, Apr. 1990.

[27] V. Zue J. Glass M. Phillips and S. Seneff. Acoustic segmentation and phonetic

classification in the SUMMIT speech recognition system. In Proceedings of the

IEEE International Conference on Acoustics, Speech, and Signal Processing,

pages 389–392, Glasgow, Scotland, 1989.

[28] Mysore R. Raghuveer and Chrysostomos L. Nikias. Bispectrum estimation:

A parametric approach. IEEE Transactions on Acoustics, Speech, and Signal

Processing, 33(4):1213–1230, Oct. 1985.

[29] Ronald H. Fraizer Siamak Samsam Louis D. Braida and Alan V. Oppenheim.

Enhancement of speech by adaptive filtering. In Jae S. Lim, editor, Speech

Enhancement, Alan V. Oppenheim series, pages 85–87. Prentice-hall, 1974.

[30] Thomas W. Parsons. Voice and Speech Processing, chapter Speech generation

and perception, pages 59–83. McGraw-Hill, 1987.

[31] Thomas W. Parsons. Voice and Speech Processing. McGraw-Hill, 1987.

[32] J. Polifroni V. Zue J. Glass D. Goodine H. Leung M. Phillips and S. Seneff.

Recent progress on SUMMIT system. In Proceedings of the Speech and Natural

Language Workshop, pages 380–384, Hidden Valley, PA, 1990.

[33] Shawn M. Verbout. Signal enhancement for automatic recognition of noisy

speech. Technical Report RLE 584, MIT, May 1994.

[34] B. Widrow, J.R. Glover Jr., J.M. McCool, J. Kaunitz, C.S. Williams, R.H.

Hearn, J.R. Zeider, E. Dong Jr., and R.C. Goodlin. Adaptive Noise Cancelling:

Principals and Applications. Proceeding of the IEEE, 63(12):1692–1716, Dec.

1975.

103


