Speaker Localization using the Uncented Kalman Filter $^{\rm 1}$

Sharon Gannot

School of Electrical Engineering, Bar-Ilan University

Katholieke Universiteit Leuven, 2007

Sharon Gannot	-	-) 4 (-
1 Joint work with Tsvi Dvorkind Technion	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Outline

*ロト *部ト *注ト *注ト

æ

Outline

2 Time Difference of Arrival Estimation

<ロ> <同> <同> < 回> < 回>

Outline

2 Time Difference of Arrival Estimation

3 Localization

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

2 Time Difference of Arrival Estimation

3 Localization

4 Bayesian Methods

Outline

2 Time Difference of Arrival Estimation

3 Localization

- 4 Bayesian Methods
- 5 Experimental Study

Outline

2 Time Difference of Arrival Estimation

3 Localization

- 4 Bayesian Methods
- 5 Experimental Study

6 Summary

Problem Formulation

Time Difference of Arrival Estimation Localization Bayesian Methods Experimental Study Summary

Methodology

Problem Formulation

M + 1 microphones:

$$\mathbf{m}_i^T \triangleq \begin{bmatrix} x_i \ y_i \ z_i \end{bmatrix}$$
$$i = 0, \dots, M$$
$$\mathbf{m}_0^T = \begin{bmatrix} 0 \ 0 \ 0 \end{bmatrix}$$

Moving speaker:

$$\mathbf{s}^{\mathsf{T}}(t) \triangleq \left[x_{\mathsf{s}}(t) \ y_{\mathsf{s}}(t) \ z_{\mathsf{s}}(t) \right] \\ \mathbf{s}^{\mathsf{T}}_{\mathsf{p}}(t) \triangleq \left[\phi_{\mathsf{s}}(t) \ \theta_{\mathsf{s}}(t) \ \rho_{\mathsf{s}}(t) \right]$$

Problem Formulation

Time Difference of Arrival Estimation Localization Bayesian Methods Experimental Study Summary

Methodology

Methodology

Use a Two Stage Approach

Sharon Gannot Localization using UKF

Problem Formulation

Time Difference of Arrival Estimation Localization Bayesian Methods Experimental Study Summary

Methodology

Methodology

Use a Two Stage Approach

• Measure the Time Difference of Arrival (TDOA) between the m_i and m_0 : τ_i

Methodology

Methodology

Use a Two Stage Approach

- Measure the Time Difference of Arrival (TDOA) between the m_i and m₀: τ_i
- Use $r_i(t) = c\tau_i = \|\mathbf{s}(t) \mathbf{m}_i\| \|\mathbf{s}(t)\|$; i = 1...M, to estimate the speaker's trajectory.

Methodology

Methodology

Use a Two Stage Approach

- Measure the Time Difference of Arrival (TDOA) between the m_i and m_0 : τ_i
- Use r_i(t) = cτ_i = ||s(t) − m_i|| − ||s(t)||; i = 1...M, to estimate the speaker's trajectory.

TDOA Estimation

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Methodology

Methodology

Use a Two Stage Approach

- Measure the Time Difference of Arrival (TDOA) between the m_i and m_0 : τ_i
- Use r_i(t) = cτ_i = ||s(t) − m_i|| − ||s(t)||; i = 1...M, to estimate the speaker's trajectory.

TDOA Estimation

• Generalized Cross-Correlation (GCC) $_{\mbox{Knapp and Carter, 1976}}$

Methodology

Methodology

Use a Two Stage Approach

- Measure the Time Difference of Arrival (TDOA) between the m_i and m_0 : τ_i
- Use $r_i(t) = c\tau_i = \|\mathbf{s}(t) \mathbf{m}_i\| \|\mathbf{s}(t)\|$; i = 1...M, to estimate the speaker's trajectory.

TDOA Estimation

- Generalized Cross-Correlation (GCC) Knapp and Carter, 1976
- Eigenvalue Decomposition Benesty, 2000; Doclo and Moonen, 2003

Methodology

Methodology

Use a Two Stage Approach

- Measure the Time Difference of Arrival (TDOA) between the m_i and m_0 : τ_i
- Use $r_i(t) = c\tau_i = \|\mathbf{s}(t) \mathbf{m}_i\| \|\mathbf{s}(t)\|$; i = 1...M, to estimate the speaker's trajectory.

TDOA Estimation

- Generalized Cross-Correlation (GCC) Knapp and Carter, 1976
- Eigenvalue Decomposition Benesty, 2000; Doclo and Moonen, 2003
- Relative transfer function estimation using speech nonstationarity Dvorkind and Gannot, 2005

Model

Least Squares Estimation Recursive Least Squares Estimation Experimental Study

< ロ > < 同 > < 回 > < 回 > .

э

Time Difference of Arrival Estimation $_{\mbox{\scriptsize Model}}$

Received Signals

$$z_m(t) = a_m(t) * s(t) + n_m(t); m = 1, ..., M$$

 $n_m(t) = b_m(t) * n(t); m = 1, ..., M$

Model

Least Squares Estimation Recursive Least Squares Estimation Experimental Study

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Time Difference of Arrival Estimation Model

Received Signals

$$z_m(t) = a_m(t) * s(t) + n_m(t); m = 1, ..., M$$

 $n_m(t) = b_m(t) * n(t); m = 1, ..., M$

Relative Transfer Function (RTF)

$$\mathcal{H}(e^{j\omega}) \stackrel{ riangle}{=} rac{A_m(e^{j\omega})}{A_1(e^{j\omega})} \stackrel{ ext{DTFT}}{\Leftrightarrow} h_m(t)$$

The peak of $h_m(t)$ corresponds to the desired TDOA!

Model Least Squares Estimation Recursive Least Squares Estimation Experimental Study

Power Spectral Density

$$\Phi_{z_i z_j}(e^{j\omega}) = A_i(e^{j\omega})A_j^*(e^{j\omega})\Phi_{ss}(e^{j\omega}) + B_i(e^{j\omega})B_j^*(e^{j\omega})\Phi_{nn}(e^{j\omega})$$

Biased Estimator

$$\Phi_{z_m z_1}(e^{j\omega}) - \mathcal{H}_m(\omega)\Phi_{z_1 z_1}(e^{j\omega}) = \Phi_{b_m^1}(e^{j\omega})$$

Bias Term:

$$\Phi_{b_m^1}(e^{j\omega}) = \left(\mathcal{G}_m(e^{j\omega}) - \mathcal{H}_m(\omega)\right) \left|B_1(e^{j\omega})\right|^2 \Phi_{nn}(e^{j\omega})$$

where $\mathcal{G}_m(e^{j\omega}) \stackrel{ riangle}{=} \frac{B_m(\omega)}{B_1(\omega)}$.

Model Least Squares Estimation Recursive Least Squares Estimation Experimental Study

Least Squares Estimation S1 Algorithm

Exploit Speech Non-Stationarity

$$\hat{\Phi}_{z_m z_1}(n, e^{j\omega}) = \mathcal{H}_m(\omega)\hat{\Phi}_{z_1 z_1}(n, e^{j\omega}) + \Phi_{b_m^1}(e^{j\omega}) + \xi(n, e^{j\omega})$$

$$\begin{bmatrix} \hat{\mathcal{H}}_m(e^{j\omega}) \\ \hat{\Phi}_{b_m^1}(e^{j\omega}) \end{bmatrix} = \left(A^{\dagger}(e^{j\omega}) W A(e^{j\omega}) \right)^{-1} A^{\dagger}(e^{j\omega}) W \hat{\Phi}_{z_m z_1}(e^{j\omega})$$

with

$$A(e^{j\omega}) \stackrel{\triangle}{=} \begin{bmatrix} \hat{\Phi}_{z_1z_1}(1, e^{j\omega}), 1\\ \vdots\\ \hat{\Phi}_{z_1z_1}(N, e^{j\omega}), 1 \end{bmatrix}; \quad \hat{\Phi}_{z_mz_1}(e^{j\omega}) \stackrel{\triangle}{=} \begin{bmatrix} \hat{\Phi}_{z_mz_1}(1, e^{j\omega})\\ \vdots\\ \hat{\Phi}_{z_mz_1}(N, e^{j\omega}) \end{bmatrix}.$$

Localization using UKF

Model Least Squares Estimation Recursive Least Squares Estimation Experimental Study

Recursive Least Squares Estimation RS1 Algorithm

Define,
$$\boldsymbol{\theta} = [\mathcal{H}_m(\omega), \Phi_{b_m^1}(e^{j\omega})]^T$$
, $\mathbf{a}_n^T = [\hat{\Phi}_{z_1z_1}(n, e^{j\omega}), 1]$ and $y_n = \hat{\Phi}_{z_mz_1}(n, e^{j\omega})$

RLS Algorithm

$$\mathbf{K}_n = \frac{P_{n-1}\mathbf{a}_n}{\alpha + \mathbf{a}_n^{\dagger} P_{n-1} \mathbf{a}_n}$$

$$\hat{\theta}(n) = \hat{\theta}(n-1) + \mathbf{K}_n \left(y_n - \mathbf{a}_n^{\dagger} \hat{\theta}(n-1) \right)$$

$$P_n = \left(\sum_{t=1}^n \alpha^{n-t} \mathbf{a}_t \mathbf{a}_t^{\dagger}\right)^{-1} = \left(P_{n-1} - \mathbf{K}_n \mathbf{a}_n^{\dagger} P_{n-1}\right) \frac{1}{\alpha}$$

Model Least Squares Estimation Recursive Least Squares Estimation **Experimental Study**

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Static Scenario - Influence of T_{60} S1 Algorithm

Model Least Squares Estimation Recursive Least Squares Estimation Experimental Study

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Static Scenario - Influence of T_{60} GCC Algorithm

Model Least Squares Estimation Recursive Least Squares Estimation **Experimental Study**

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Static Scenario - Influence of SNR S1 Algorithm

Model Least Squares Estimation Recursive Least Squares Estimation **Experimental Study**

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Static Scenario - Influence of SNR $_{\mbox{\scriptsize GCC Algorithm}}$

Model Least Squares Estimation Recursive Least Squares Estimation Experimental Study

<ロ> (日) (日) (日) (日) (日)

Tracking Scenario

Model Least Squares Estimation Recursive Least Squares Estimation Experimental Study

・ロット (雪) () () (

Ξ.

Tracking Results RS1 vs. GCC Algorithm

Model Least Squares Estimation Recursive Least Squares Estimation **Experimental Study**

Switching Scenario RS1 Algorithm

Methods

Localization

Measurement vector

$$\mathbf{r}(t) = c\boldsymbol{\tau} = \begin{bmatrix} \|\mathbf{s}(t) - \mathbf{m}_1\| - \|\mathbf{s}(t)\| \\ \vdots \\ \|\mathbf{s}(t) - \mathbf{m}_M\| - \|\mathbf{s}(t)\| \end{bmatrix} + \mathbf{v}(t) \triangleq \mathbf{h}(\mathbf{s}(t)) + \mathbf{v}(t).$$

*ロト *部ト *注ト *注ト

Methods

Localization

Measurement vector

$$\mathbf{r}(t) = c\tau = \begin{bmatrix} \|\mathbf{s}(t) - \mathbf{m}_1\| - \|\mathbf{s}(t)\| \\ \vdots \\ \|\mathbf{s}(t) - \mathbf{m}_M\| - \|\mathbf{s}(t)\| \end{bmatrix} + \mathbf{v}(t) \triangleq \mathbf{h}(\mathbf{s}(t)) + \mathbf{v}(t).$$

A nonlinear problem

Extracting $\mathbf{s}(t)$ is a nonlinear problem !

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Methods

Methods

Non-Temporal Methods

Sharon Gannot Localization using UKF

Methods

Methods

Non-Temporal Methods

• Linear Correction Least-Squares (LCLS) Huang et al., 2001.

・ロッ ・ 一 ・ ・ ・ ・

3 x 3

Methods

Methods

Non-Temporal Methods

- Linear Correction Least-Squares (LCLS) Huang et al., 2001.
- Iterative Gauss Gannot and Dvorkind, 2005

Methods

Methods

Non-Temporal Methods

- Linear Correction Least-Squares (LCLS) Huang et al., 2001.
- Iterative Gauss Gannot and Dvorkind, 2005

Temporal Methods

Methods

Methods

Non-Temporal Methods

- Linear Correction Least-Squares (LCLS) Huang et al., 2001.
- Iterative Gauss Gannot and Dvorkind, 2005

Temporal Methods

• Recursive Gauss Gannot and Dvorkind, 2005

・ロッ ・ 一 ・ ・ ・ ・

Methods

Methods

Non-Temporal Methods

- Linear Correction Least-Squares (LCLS) Huang et al., 2001.
- Iterative Gauss Gannot and Dvorkind, 2005

Temporal Methods

- Recursive Gauss Gannot and Dvorkind, 2005
- Bayesian methods (Kalman based).

The Extended Kalman Filter "Monte Carlo" Propagation Unscented Transform

Bayesian Methods

Simplified Dynamic Model

$$\mathbf{s}(t+1) = \Phi \mathbf{s}(t) + \mathbf{w}(t).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Extended Kalman Filter "Monte Carlo" Propagation Unscented Transform

Bayesian Methods

Simplified Dynamic Model

$$\mathbf{s}(t+1) = \Phi \mathbf{s}(t) + \mathbf{w}(t).$$

How mean & covariance propagate through nonlinearities ?

The Extended Kalman Filter "Monte Carlo" Propagation Unscented Transform

Bayesian Methods

Simplified Dynamic Model

$$\mathbf{s}(t+1) = \Phi \mathbf{s}(t) + \mathbf{w}(t).$$

How mean & covariance propagate through nonlinearities ?

- Linearizing the dynamic equations
 - \implies Extended Kalman filter schmidt, 1970.

・ロッ ・ 一 ・ ・ ・ ・

3 N

The Extended Kalman Filter "Monte Carlo" Propagation Unscented Transform

Bayesian Methods

Simplified Dynamic Model

$$\mathbf{s}(t+1) = \Phi \mathbf{s}(t) + \mathbf{w}(t).$$

How mean & covariance propagate through nonlinearities ?

- Linearizing the dynamic equations
 - \implies Extended Kalman filter schmidt, 1970.
- "Monte Carlo" method Djurić et al., 2001.

・ロッ ・ 一 ・ ・ ・ ・

The Extended Kalman Filter "Monte Carlo" Propagation Unscented Transform

Bayesian Methods

Simplified Dynamic Model

$$\mathbf{s}(t+1) = \Phi \mathbf{s}(t) + \mathbf{w}(t).$$

How mean & covariance propagate through nonlinearities ?

- Linearizing the dynamic equations
 - \implies Extended Kalman filter schmidt, 1970.
- "Monte Carlo" method Djurić et al., 2001.
- Unscented transform S.J. Julier and J.K. Uhlmann, 1997.

The Extended Kalman Filter "Monte Carlo" Propagation Unscented Transform

Extended Kalman Filter

Propagation equations:

$$egin{aligned} \hat{\mathbf{s}}(t|t-1) &= \Phi \hat{\mathbf{s}}(t-1|t-1) \ P(t|t-1) &= \Phi P(t-1|t-1) \Phi^{\mathcal{T}} + Q(t) \end{aligned}$$

Sharon Gannot Localization using UKF

The Extended Kalman Filter "Monte Carlo" Propagation Unscented Transform

Extended Kalman Filter

Propagation equations:

$$egin{aligned} \hat{\mathbf{s}}(t|t-1) &= \Phi \hat{\mathbf{s}}(t-1|t-1) \ P(t|t-1) &= \Phi P(t-1|t-1) \Phi^{\mathcal{T}} + Q(t) \end{aligned}$$

Kalman gain:

$$K(t) = P(t|t-1)H^{T}(t) \left(H(t)P(t|t-1)H^{T}(t) + R(t)\right)^{-1}$$

(a)

The Extended Kalman Filter "Monte Carlo" Propagation Unscented Transform

Extended Kalman Filter (cont.

Update equations:

$$\begin{split} \hat{\mathbf{s}}(t|t) &= \hat{\mathbf{s}}(t|t-1) + \mathcal{K}(t) \left(\mathbf{r}(t) - \mathbf{h}(\hat{\mathbf{s}}(t|t-1)) \right) \\ \mathcal{H}(t) &\triangleq \nabla_{\mathbf{s}(t)} \mathbf{h}(\hat{\mathbf{s}}(t|t-1)) = \begin{bmatrix} \left(\frac{\hat{\mathbf{s}}(t|t-1) - \mathbf{m}_1}{\|\hat{\mathbf{s}}(t|t-1) - \mathbf{m}_1\|} - \frac{\hat{\mathbf{s}}(t|t-1)}{\|\hat{\mathbf{s}}(t|t-1)\|} \right)^T \\ \vdots \\ \left(\frac{\hat{\mathbf{s}}(t|t-1) - \mathbf{m}_M}{\|\hat{\mathbf{s}}(t|t-1) - \mathbf{m}_M\|} - \frac{\hat{\mathbf{s}}(t|t-1)}{\|\hat{\mathbf{s}}(t|t-1)\|} \right)^T \end{bmatrix} \\ \mathcal{P}(t|t) &= (I - \mathcal{K}(t)\mathcal{H}(t)) \mathcal{P}(t|t-1) \end{split}$$

イロト イポト イヨト イヨト

The Extended Kalman Filter "Monte Carlo" Propagation Unscented Transform

"Monte Carlo" Propagation

The Extended Kalman Filter "Monte Carlo" Propagation Unscented Transform

Unscented Transform

The Extended Kalman Filter "Monte Carlo" Propagation Unscented Transform

Unscented Transform (cont.)

Calculate σ -points

$$\begin{aligned} \mathcal{X}_{0} &= \bar{\mathbf{x}} \\ \mathcal{X}_{I} &= \bar{\mathbf{x}} + \left(\sqrt{(L+\lambda)P_{xx}}\right)_{I}; \ I = 1, \dots, L \\ \mathcal{X}_{I+L} &= \bar{\mathbf{x}} - \left(\sqrt{(L+\lambda)P_{xx}}\right)_{I}; \ I = 1, \dots, L \end{aligned}$$

イロト イポト イヨト イヨト

The Extended Kalman Filter "Monte Carlo" Propagation Unscented Transform

Unscented Transform (cont.)

Calculate σ -points

$$\begin{aligned} \mathcal{X}_0 &= \bar{\mathbf{x}} \\ \mathcal{X}_I &= \bar{\mathbf{x}} + \left(\sqrt{(L+\lambda)P_{xx}}\right)_I; \ I = 1, \dots, L \\ \mathcal{X}_{I+L} &= \bar{\mathbf{x}} - \left(\sqrt{(L+\lambda)P_{xx}}\right)_I; \ I = 1, \dots, L \end{aligned}$$

Calculate Weights

$$W_0^{(m)} = \lambda/(L+\lambda)$$

$$W_0^{(c)} = \lambda/(L+\lambda) + (1-\alpha^2+\beta)$$

$$W_l^{(m)} = W_l^{(c)} = 1/2(L+\lambda); \ l = 1, 2, ..., 2L$$

.= >

The Extended Kalman Filter "Monte Carlo" Propagation Unscented Transform

Unscented Transform (cont.)

Summary

Sharon Gannot

・ロト ・回ト ・モト ・モト

æ

The Extended Kalman Filter "Monte Carlo" Propagation Unscented Transform

イロト イポト イヨト イヨト

э

Unscented Transform (cont.)

Summary

• Construct **x** σ -points: \mathcal{X}_I , $I = 0, \ldots, 2L$.

The Extended Kalman Filter "Monte Carlo" Propagation Unscented Transform

Unscented Transform (cont.)

Summary

- Construct **x** σ -points: \mathcal{X}_I , $I = 0, \ldots, 2L$.
- **2** Transform each point to the respective **y** σ -points: $\mathcal{Y}_l = f(\mathcal{X}_l), \ l = 0, \dots, 2L.$

イロト イポト イヨト イヨト

The Extended Kalman Filter "Monte Carlo" Propagation Unscented Transform

Unscented Transform (cont.)

Summary

- Construct **x** σ -points: \mathcal{X}_I , $I = 0, \ldots, 2L$.
- **2** Transform each point to the respective **y** σ -points: $\mathcal{Y}_l = f(\mathcal{X}_l), \ l = 0, \dots, 2L.$
- Use weighted averaging, $\bar{\mathbf{y}} \approx \sum_{l=0}^{2L} W_l^{(m)} \mathcal{Y}_l$ to estimate \mathbf{y} mean.

イロト イポト イヨト イヨト

The Extended Kalman Filter "Monte Carlo" Propagation Unscented Transform

Unscented Transform (cont.)

Summary

- Construct **x** σ -points: \mathcal{X}_I , $I = 0, \ldots, 2L$.
- **2** Transform each point to the respective **y** σ -points: $\mathcal{Y}_l = f(\mathcal{X}_l), \ l = 0, \dots, 2L.$
- **3** Use weighted averaging, $\bar{\mathbf{y}} \approx \sum_{l=0}^{2L} W_l^{(m)} \mathcal{Y}_l$ to estimate \mathbf{y} mean.

• Use weighted outer product, $P_{yy} \approx \sum_{l=0}^{2L} W_l^{(c)} (\mathcal{Y}_l - \bar{\mathbf{y}}) (\mathcal{Y}_l - \bar{\mathbf{y}})^T$ to estimate \mathbf{y} covariance and $P_{xy} \approx \sum_{l=0}^{2L} W_l^{(c)} (\mathcal{X}_l - \bar{\mathbf{x}}) (\mathcal{Y}_l - \bar{\mathbf{y}})^T$ to estimate the cross-covariance between \mathbf{x} and \mathbf{y} .

(a)

The Extended Kalman Filter "Monte Carlo" Propagation Unscented Transform

The Unscented Kalman Filter (UKF) Unscented Transform

The Extended Kalman Filter "Monte Carlo" Propagation Unscented Transform

The Unscented Kalman Filter (UKF) Propagation Stage

Predicted Sigma Points Signal & Measurement

The Extended Kalman Filter "Monte Carlo" Propagation Unscented Transform

The Unscented Kalman Filter (UKF)

・ロト ・同ト ・ヨト ・ヨト

The Extended Kalman Filter "Monte Carlo" Propagation Unscented Transform

The Unscented Kalman Filter (UKF) Update Stage

Trajectory (3D)

Test Scenario

Test Scenario Cramér Rao Lower Bound Tracking Scenario Switching Scenario

<ロ> (日) (日) (日) (日) (日)

Test Scenario Cramér Rao Lower Bound Tracking Scenario Switching Scenario

Cramér Rao Lower Bound

Conclusions

Azimuth and Elevation angles can be better estimated than the Cartesian coordinates and the Distance.

Image: A mathematical states and a mathem

Test Scenario Cramér Rao Lower Bound **Tracking Scenario** Switching Scenario

Tracking Scenario Gaussian Noise

Sharon Gannot Localization using UKF

Test Scenario Cramér Rao Lower Bound **Tracking Scenario** Switching Scenario

Tracking Scenario Gaussian Noise and Anomalies

Test Scenario Cramér Rao Lower Bound Tracking Scenario Switching Scenario

Tracking Scenario Typical Realization

$$Q(t) = 0.5^2 I$$

$$R(t) = 10\sigma_v^2 I$$

$$\sigma_v = 0.2m$$

Sharon Gannot Localization using UKF

Test Scenario Cramér Rao Lower Bound Tracking Scenario Switching Scenario

Switching Scenario

Two sources: $\left[\phi = \frac{\pi}{4} \operatorname{rad} \theta = \frac{\pi}{4} \operatorname{rad} R = 1.5 \operatorname{m}\right] \& \left[\phi = \frac{3\pi}{4} \operatorname{rad} \theta = \frac{\pi}{3} \operatorname{rad} R = 1.5 \operatorname{m}\right].$

・ロッ ・ 一 ・ ・ ・ ・

-

• Two stage approach for speaker localization.

イロン イロン イヨン イヨン

- Two stage approach for speaker localization.
- Polar coordinates are better estimated than Cartesian coordinates.

- Two stage approach for speaker localization.
- Polar coordinates are better estimated than Cartesian coordinates.
- Temporal methods outperforms non-temporal methods.

- Two stage approach for speaker localization.
- Polar coordinates are better estimated than Cartesian coordinates.
- Temporal methods outperforms non-temporal methods.
- Advantage of Bayesian methods even with naive propagation scheme.

Summary

- Two stage approach for speaker localization.
- Polar coordinates are better estimated than Cartesian coordinates.
- Temporal methods outperforms non-temporal methods.
- Advantage of Bayesian methods even with naive propagation scheme.
- EKF and UKF have comparable performance (and computational complexity).

< 日 > < 同 > < 三 > < 三 >