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Problem Formulation

θs(t)

s(t)mi

mj

φs(t)

Speech Source

Mic0

Mici

Micj

Mic

ri M + 1 microphones:

mT
i ,

[
xi yi zi

]
i = 0, . . . ,M

mT
0 =

[
0 0 0

]
Moving speaker:

sT (t) ,
[
xs(t) ys(t) zs(t)

]
sT
p (t) ,

[
φs(t) θs(t) ρs(t)

]
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Methodology

Use a Two Stage Approach

Measure the Time Difference of Arrival (TDOA) between the
mi and m0: τi

Use ri (t) = cτi = ‖s(t)−mi‖ − ‖s(t)‖; i = 1 . . .M,
to estimate the speaker’s trajectory.

TDOA Estimation

Generalized Cross-Correlation (GCC) Knapp and Carter, 1976

Eigenvalue Decomposition Benesty, 2000; Doclo and Moonen, 2003

Relative transfer function estimation using speech
nonstationarity Dvorkind and Gannot, 2005
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Time Difference of Arrival Estimation
Model

Received Signals

zm(t) = am(t) ∗ s(t) + nm(t) ; m = 1, . . . ,M

nm(t) = bm(t) ∗ n(t) ; m = 1, . . . ,M

Relative Transfer Function (RTF)

H(e jω)
4
=

Am(e jω)

A1(e jω)
DTFT⇔ hm(t)

The peak of hm(t) corresponds to the desired TDOA!
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Power Spectral Density

Φzizj (e
jω) = Ai (e

jω)Aj
∗(e jω)Φss(e

jω) + Bi (e
jω)Bj

∗(e jω)Φnn(e
jω)

Biased Estimator

Φzmz1(e
jω)−Hm(ω)Φz1z1(e

jω) = Φb1
m
(e jω)

Bias Term:

Φb1
m
(e jω) =

(
Gm(e jω)−Hm(ω)

) ∣∣B1(e
jω)

∣∣2 Φnn(e
jω)

where Gm(e jω)
4
= Bm(ω)

B1(ω) .
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Least Squares Estimation
S1 Algorithm

Exploit Speech Non-Stationarity

Φ̂zmz1(n, e jω) = Hm(ω)Φ̂z1z1(n, e jω) + Φb1
m
(e jω) + ξ(n, e jω)[

Ĥm(e jω)

Φ̂b1
m
(e jω)

]
=

(
A†(e jω)WA(e jω)

)−1
A†(e jω)W Φ̂zmz1(e

jω)

with

A(e jω)
4
=

 Φ̂z1z1(1, e jω), 1
...

Φ̂z1z1(N, e jω), 1

 ; Φ̂zmz1(e
jω)

4
=

 Φ̂zmz1(1, e jω)
...

Φ̂zmz1(N, e jω)

 .
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Recursive Least Squares Estimation
RS1 Algorithm

Define, θ = [Hm(ω),Φb1
m
(e jω)]T , aT

n = [Φ̂z1z1(n, e jω), 1] and

yn = Φ̂zmz1(n, e jω)

RLS Algorithm

Kn = Pn−1an

α+a†nPn−1an

θ̂(n) = θ̂(n − 1) + Kn

(
yn − a†nθ̂(n − 1)

)
Pn =

(
n∑

t=1
αn−tata

†
t

)−1

=
(
Pn−1 −Kna

†
nPn−1

)
1
α

Sharon Gannot Localization using UKF



Problem Formulation
Time Difference of Arrival Estimation

Localization
Bayesian Methods

Experimental Study
Summary

Model
Least Squares Estimation
Recursive Least Squares Estimation
Experimental Study

Static Scenario - Influence of T60
S1 Algorithm
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Tracking Scenario

0
1

2
3

4

2

3

4

5
1

1.5

2

Trajectory (3D)

Speaker
Mic
Noise

mT
1 =

[
2 3.5 1.375

]
mT

2 =
[
2.3 3.5 1.375

]
xs (t) = 2 + R cos(2πft)
ys (t) = y(t) = 3.5 + R sin(2πft)
zs (t) = z(t) = 1 + t

T
.

R = 1.5m T = 30Sec
f = 0.0529Hz T60 = 0.25Sec
SNR = 10dB
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Tracking Results
RS1 vs. GCC Algorithm
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Switching Scenario
RS1 Algorithm
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Localization

Measurement vector

r(t) = cτ =

 ‖s(t)−m1‖ − ‖s(t)‖
...

‖s(t)−mM‖ − ‖s(t)‖

 + v(t) , h(s(t)) + v(t).

A nonlinear problem

Extracting s(t) is a nonlinear problem !
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Non-Temporal Methods

Linear Correction Least-Squares (LCLS) Huang et al., 2001.

Iterative Gauss Gannot and Dvorkind, 2005

Temporal Methods

Recursive Gauss Gannot and Dvorkind, 2005

Bayesian methods (Kalman based).
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The Extended Kalman Filter
“Monte Carlo” Propagation
Unscented Transform

Bayesian Methods

Simplified Dynamic Model

s(t + 1) = Φs(t) + w(t).

How mean & covariance propagate through nonlinearities ?

Linearizing the dynamic equations
=⇒ Extended Kalman filter Schmidt, 1970.

“Monte Carlo” method Djurić et al., 2001.

Unscented transform S.J. Julier and J.K. Uhlmann, 1997.
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The Extended Kalman Filter
“Monte Carlo” Propagation
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Extended Kalman Filter

Propagation equations:

ŝ(t|t − 1) = Φŝ(t − 1|t − 1)

P(t|t − 1) = ΦP(t − 1|t − 1)ΦT + Q(t)

Kalman gain:

K (t) = P(t|t − 1)HT (t)
(
H(t)P(t|t − 1)HT (t) + R(t)

)−1
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The Extended Kalman Filter
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Extended Kalman Filter (cont.

Update equations:

ŝ(t|t) = ŝ(t|t − 1) + K (t) (r(t)− h(̂s(t|t − 1)))

H(t) , ∇s(t)h(̂s(t|t − 1)) =


(

ŝ(t|t−1)−m1

‖̂s(t|t−1)−m1‖ −
ŝ(t|t−1)
‖̂s(t|t−1)‖

)T

...(
ŝ(t|t−1)−mM

‖̂s(t|t−1)−mM‖ −
ŝ(t|t−1)
‖̂s(t|t−1)‖

)T


P(t|t) = (I − K (t)H(t))P(t|t − 1)
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The Extended Kalman Filter
“Monte Carlo” Propagation
Unscented Transform

“Monte Carlo” Propagation
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−20

−15

−10

−5

0

5

10

15

20

25

Random Number
Generator

fX(x)

Ensemble Mean
& Covariance

Ensemble Mean
& Covariance

yi = f(xi)
E{y},Cov(y)

E{x},Cov(x)

i = 0, 1, . . .
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The Extended Kalman Filter
“Monte Carlo” Propagation
Unscented Transform

Unscented Transform

covariance
UT

�
�

�
�

�

⊗
E{x}, Cov(x)

σ-points, X

Transformed
σ-points, Y

UT
mean

�

�
�

⊗�
�

E{y}, Cov(y)Mean and
Weighted sample

Covariance

Y = f(X)
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The Extended Kalman Filter
“Monte Carlo” Propagation
Unscented Transform

Unscented Transform (cont.)

Calculate σ-points

X0 = x̄

Xl = x̄ +
(√

(L + λ)Pxx

)
l
; l = 1, . . . , L

Xl+L = x̄−
(√

(L + λ)Pxx

)
l
; l = 1, . . . , L

Calculate Weights

W
(m)
0 = λ/(L + λ)

W
(c)
0 = λ/(L + λ) + (1− α2 + β)

W
(m)
l = W

(c)
l = 1/2(L + λ); l = 1, 2, . . . , 2L
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Calculate σ-points

X0 = x̄

Xl = x̄ +
(√

(L + λ)Pxx

)
l
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Xl+L = x̄−
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(L + λ)Pxx
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Calculate Weights
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Summary

1 Construct x σ-points: Xl , l = 0, . . . , 2L.

2 Transform each point to the respective y σ-points:
Yl = f (Xl) , l = 0, . . . , 2L.

3 Use weighted averaging, ȳ ≈
∑2L

l=0 W
(m)
l Yl to estimate y

mean.

4 Use weighted outer product,

Pyy ≈
∑2L

l=0 W
(c)
l (Yl − ȳ) (Yl − ȳ)T

to estimate y covariance and

Pxy ≈
∑2L

l=0 W
(c)
l (Xl − x̄) (Yl − ȳ)T

to estimate the cross-covariance between x and y.
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Unscented Transform

The Unscented Kalman Filter (UKF)
Unscented Transform

S(t − 1|t − 1)

UT

Current Sigma Points

ŝ(t − 1|t − 1)

Pss(t − 1|t − 1)
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The Extended Kalman Filter
“Monte Carlo” Propagation
Unscented Transform

The Unscented Kalman Filter (UKF)
Propagation Stage

Current Sigma Points

S(t − 1|t − 1)

S(t|t − 1)

R(t|t − 1)

Predicted Sigma Points

Signal & Measurement

Non-Linear System

Dynamics & Measurement

{Φ, h}

Sharon Gannot Localization using UKF



Problem Formulation
Time Difference of Arrival Estimation

Localization
Bayesian Methods

Experimental Study
Summary

The Extended Kalman Filter
“Monte Carlo” Propagation
Unscented Transform

The Unscented Kalman Filter (UKF)
Inverse Unscented Transform

S(t|t − 1)

R(t|t − 1)
UT−1

ŝ(t|t − 1), Pss(t|t − 1)

r̂(t|t − 1), Psr(t), Prr(t)
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The Extended Kalman Filter
“Monte Carlo” Propagation
Unscented Transform

The Unscented Kalman Filter (UKF)
Update Stage

Optimal Weighting

K(t) = Psr(t)P
−1
rr (t)r(t),r̂(t|t − 1)

Signal Estimate

Predicted

ŝ(t|t − 1), Pss(t|t − 1)

New

Signal & Error Covariance

& Measurment & Error Covariance

ŝ(t|t)

Pss(t|t)
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Test Scenario
Cramér Rao Lower Bound
Tracking Scenario
Switching Scenario

Test Scenario

−2

0

2

4

6 −2

0

2

4

6
−2

−1

0

1

2

y[meter]

Trajectory (3D)

x[meter]

z[
m

et
er

]

source
Mic
Noise

mT
1 =

[
0.9 0 0

]
mT

2 =
[
0.45 0.7794 0

]
mT

3 =
[
−0.45 0.7794 0

]
mT

4 =
[
−0.9 0 0

]
mT

5 =
[
−0.45 −0.7794 0

]
mT

6 =
[
0.45 −0.7794 0

]
mT

7 =
[
0 0 0.9

]
mT

8 =
[
0 0 −0.9

]
.

xs (t) = R(cos( t
R

) + 2.5)

ys (t) = R(sin( t
R

) + 2.5)

zs (t) = t
10
− 1.5.
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Test Scenario
Cramér Rao Lower Bound
Tracking Scenario
Switching Scenario

Cramér Rao Lower Bound
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Conclusions

Azimuth and Elevation angles can be better estimated than the
Cartesian coordinates and the Distance.
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Test Scenario
Cramér Rao Lower Bound
Tracking Scenario
Switching Scenario

Tracking Scenario
Gaussian Noise
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Test Scenario
Cramér Rao Lower Bound
Tracking Scenario
Switching Scenario

Tracking Scenario
Gaussian Noise and Anomalies
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Test Scenario
Cramér Rao Lower Bound
Tracking Scenario
Switching Scenario

Tracking Scenario
Typical Realization
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Test Scenario
Cramér Rao Lower Bound
Tracking Scenario
Switching Scenario

Switching Scenario
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Summary

Two stage approach for speaker localization.

Polar coordinates are better estimated than Cartesian
coordinates.

Temporal methods outperforms non-temporal methods.

Advantage of Bayesian methods even with naive propagation
scheme.

EKF and UKF have comparable performance
(and computational complexity).
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