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Abstract

In this paper we present asupervisedgraph-based framework for sequential processing and employ

it to the problem of transient interference suppression. Transients typically consist of an initial peak

followed by decaying short-duration oscillations. Such sounds, e.g. keyboard typing and door knocking,

often arise as an interference in everyday applications: hearing aids, hands-free accessories, mobile

phones, and conference-room devices. We describe a graph construction using a noisy speech signal and

training recordings of typical transients. The main idea isto capture the transient interference structure,

which may emerge from the construction of the graph. The graph parametrization is then viewed as

a data-driven model of the transients and utilized to define afilter that extracts the transients from

noisy speech measurements. Unlike previous transient interference suppression studies, in this work the

graph is constructed in advance from training recordings. Then, the graph is extended to newly acquired

measurements, providing a sequential filtering framework of noisy speech.
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I. INTRODUCTION

Transients typically consist of an initial peak followed bydecaying short-duration oscillations of length

ranging from10ms to 50ms. Such sounds, e.g. keyboard typing and door knocking, often arise as an

interference in everyday applications: hearing aids, hands-free accessories, mobile phones, and conference-

room devices. Unfortunately, the wide-spread assumption of stationary noise poses a major limitation on

traditional speech enhancement algorithms. In particular, it makes them inadequate in transient interference

environments, as transients are characterized by a sudden burst of sound.

In [1] and [2] we proposed an algorithm that infers the geometric structure of the transient interference

using nonlocal (NL) diffusion filtering [3] [4] [5] [6] [7] [8]. The key idea was to exploit the intrinsic

transient structure, instead of relying on estimates of noise statistics. We utilized the fact that a

distinct pattern appears multiple times. Specifically, thelocations of the repeating pattern were implicitly

identified, and the transient interference was extracted byaveraging over all these instances. In [9] and

[10] this work was improved and extended to support a wider variety of transient interferences. A robust

approach to distinguish between transients and speech was employed based on the observation that speech

components are slowly varying with respect to transient interferences, just as pseudo-stationary noise is

slowly varying with respect to speech. Thus, by employing common speech enhancement techniques,

configured to track rapid variations, the “abrupt” transients can be enhanced while suppressing the

slowly varying speech components. In addition, a manifold learning approach termeddiffusion maps

was utilized to compute a robust intrinsic metric for comparison [11]. It enabled to cluster different

transient interference types, and when incorporated into the NL filter, it provided a better affinity metric

for averaging over transient instances.

Recently severalsupervisedspeech enhancement algorithms, which rely on the prior knowledge of the

typical interference patterns, have been proposed [12], [13], [14]. In these algorithms, nonnegative matrix

factorization (NMF) is employed to compute a basis for the interferences, which is then utilized to enhance

the speech and suppress the noise. However, these algorithms suffer from several limitations. They require

training recordings of both the interference and the speech, which, as shown in [13], makes the algorithms

speaker-dependent. In addition, the application of NMF is required for every new measurement and its

computational burden is high. Finally, when applied to enhance speech and suppress noise, as in [14], a

temporal smoothing is applied which makes the algorithm inadequate for transient interferences.

In this paper we present asupervisedgraph-based framework for sequential processing and employ
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it to the problem of transient interference suppression. In[15], Haddad et al. presented a novel filtering

framework based on a reference set. They introduce a graph-based method that relies on local models

and enables to extract given patterns from images. Based on this work, we describe a graph construction

relative to a measured signal and training recordings. The objective of the graph is to capture the

underlying structure of the training data, which has to represent all the variations of a certain signal

of interest. The graph parametrization is then viewed as a data-driven model of the signal of interest and

utilized to define a filter that extracts this signal from the measurement. The construction of the graph is

based on an affinity kernel between the measurement and the training recordings. As proposed in [15],

we rely on a specially-adapted metric based on local models of the signal of interest obtained from the

training data.

We show that the application of the proposed scheme to the task of transient interference suppression

provides accurate and efficient speech enhancement. Commonspeech enhancement algorithms fail to

deal with transient interferences since their noise estimation component is not designed to track the

rapid variations characterizing transients. Thus, similarly to [1] and [9], the main component of the

proposed algorithm is the estimation of the spectral variance of the transient interference. Then, the

optimally modified log-spectral amplitude (OM-LSA) estimator [16] [17], which is a single-channel

speech enhancement algorithm, is employed to enhance the speech based on the estimate of the transient

signal spectral variance. In this setting, the training recordings include typical transient interferences.

Based on training recordings of the transient signal, the graph enables to accurately capture the structure

of the transients. Then, the graph-based filter extracts it from the noisy speech and provides accurate

spectral variance estimate. Previous studies, e.g., [1] and [9], infer the geometric structure of the transients

from the noisy signal and employ batch processing. In this work, the graph is constructed in advance

from training recordings, and a special focus is given to extending the graph to new measurements and

to proposing a sequential filtering framework of the noisy signal.

This paper is organized as follows. In Section II, we formulate the problem. In Section III, we present

the graph construction and the corresponding processing framework. In this section, we describe a batch

processing of a finite observation interval. In Section IV, we compute local models of the transients from

the training data and incorporate them into the construction of the graph. In Section V, we present an

efficient sequential implementation which may be adapted torealtime speech communication systems.

Finally, in Section VI, experimental results are presented, demonstrating the improved performance of

the proposed algorithm.
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II. PROBLEM FORMULATION

Let x(n) denote a clean speech signal picked up with a single microphone. The observed signaly(n)

is given by

y(n) = x(n) + t(n) + u(n) (1)

where t(n) and u(n) are additive transient interference and stationary background noise, respectively,

andn is the time index. The transient componentt(n) may consist of multiple types of interferences.

Let Y (l, k) denote the short-time Fourier transform (STFT) of the microphone signaly(n) in time-

frame l and frequency-bink. Let N denote the number of nonnegative frequency bins corresponding to

analysis and synthesis windows of length2(N − 1), and letR denote the time frame shift. Accordingly,

(1) is represented in the STFT domain as

Y (l, k) = X(l, k) + T (l, k) + U(l, k)

whereX(l, k), T (l, k) andU(l, k) are the STFTs ofx(n), t(n) andu(n), respectively.

Defineλy(l, k) = E
[

|Y (l, k)|2
]

to be the short-time spectral variance of the measured signal. Assuming

the speech, the transient interference, and the stationarynoise are mutually uncorrelated, the spectral

variance of the measurement is given by

λy(l, k) = λx(l, k) + λt(l, k) + λu(l, k) (2)

whereλx(l, k) = E
[

|X(l, k)|2
]

, λt(l, k) = E
[

|T (l, k)|2
]

, andλu(l, k) = E
[

|U(l, k)|2
]

.

In this work, our objective is to estimate the clean speech signal x(n) given the noisy measurements

y(n). The processing of the measured signal is performed sequentially in the time-frequency domain.

In order to exploit the spectral structure of the transients, we collect the spectral features from all the

frequency bins of each time frame into vectors. Letλy(l) be a vector of the spectral variance values of

the measured signal corresponding to time framel, defined by

λy(l) = [λy(l, 0), . . . , λy(l,N − 1)]T (3)

and letλt(l) be a vector of spectral variance values of the transient signal, defined similarly as

λt(l) = [λt(l, 0), . . . , λt(l,N − 1)]T . (4)

As described in the introduction, our focus is on estimatingthe spectral variance of the transient

interference. Given a new time frame of measurements, our objective is to estimateλt(l) based on

λy(l). Then, the estimated spectrum is used for enhancing the speech.
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Suppose a training recording of a typical transient signalt̄(n) is available in advance1. The recording

comprises a collection of transient instances representing the various possible types which are assumed to

be known a-priori. The training recording is processed in the time-frequency domain using the STFT with

the same analysis and synthesis windows and the same time shift. Let λ̄t(l̄, k) be the spectral variance

of the training recording, and let̄M be the number of available training time frames. Similarly to (3)

and (4) we define

λ̄t(l̄) =
[

λ̄t(l̄, 0), . . . , λ̄t(l̄, N − 1)
]T

. (5)

Each of the vectors can be viewed as anN -dimensional point. Collecting all the vectors yields a set
{

λ̄t(l̄)
}

l̄
of M̄ training points in anN -dimensional space.

Let Nt be the number of transient types in the training recording, and letT i be the set of training time

frame indices containing theith type. We assume no more than a single transient exists in one time frame

which implies thatT i ∩T j = ∅ for i 6= j. In addition, we assume the duration of each transient eventis

shorter than a single short-time frame. Longer transient interferences are broken into separate sets and

considered as few transient types. In [9], the examination of a wide variety of transient interferences

led us to the observation that each transient event consistsof an abrupt sound followed by decaying

oscillations. Thus, in [9], a transient is modeled as a composition of two parts - abrupt and decaying. In

this work, each part is treated independently as a differenttype of transient. LetT = T 1 ⊕ · · · ⊕ T Nt

denote the set of training time frames indices containing any transient interference. The remaining time

frames of the training recording are silent.

III. G RAPH-BASED PROCESSING

A. Graph Construction

Following [18] [19] [20], we define a “one-sided” kernel consisting of an affinity measure between the

observed data points and the training points. LetM be the number of available observation time frames.

In Section V we extend the following derivation to support sequential processing where the observations

are not available in advance. LetW be anM × M̄ kernel matrix defined using a Gaussian as

Wl,l̄ = exp

{

−
∥

∥log(λy(l))− log(λ̄t(l̄))− η
∥

∥

2

2σ2

}

(6)

whereσ2 is the variance andη is a constant vector. For simplicity,log(x) denotes a pointwise logarithm

operation on the coordinates of the vectorx. We operate in the logarithmic domain because empirical

1For simplicity, in the remainder of the paper we denote with abar all the terms associated with the training recording.
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experiments show better results than the linear domain. As in many speech processing applications in the

logarithmic domain, small values are clipped. For simplicity, the clipping is omitted from the derivation.

The presence of the unusual constantη becomes apparent in Section III-B, where we discuss its role

and describe how to determine its value.

The one-sided kernel defines a bipartite graph [21], where
{

λ̄t(l̄)
}

l̄
and{λy(l)}l are the two disjoint

sets of nodes, andWl,l̄ determines the weight of the edge connectingλy(l) andλ̄t(l̄). We normalize the

one-sided kernel to create a transition matrix of a Markov process on the graph, i.e.,A = D
−1

W with

D a diagonal matrix defined byDl,l =
∑M̄

l̄=1 Wl,l̄. Accordingly,Al,l̄ is the transition probability in a

single step from nodeλy(l) to nodeλ̄t(l̄).

Let K̄ be a “two-sided” kernel of sizēM×M̄ defined on the training nodes bȳK , A
T
A. According

to the definition, each component of the two-sided kernel is given by

K̄l̄,l̄′ =

M
∑

l=1

Al,l̄Al,l̄′ .

Thus,K̄l̄,l̄′ can be interpreted as an affinity metric between a training node λ̄t(l̄) and a training node

λ̄t(l̄
′) via any observable nodeλy(l).

Similarly, K is a “two sided” kernel of sizeM ×M defined on the observed points byK , AA
T ,

i.e.,

Kl,l′ =

M̄
∑

l̄=1

Al,l̄Al′,l̄.

Then,Kl,l′ can be interpreted as an affinity metric between an observed nodeλy(l) and an observed

nodeλy(l
′) via any training nodēλt(l̄). It further implies that two observations are similar if they “see”

the training points in the same way.

B. Probabilistic Interpretation

Suppose that the transient part in the observation at time framel equals to one of the training points,

i.e., λt(l) = λ̄t(l̄). By (2) we have for every frequency bink

log (λy(l, k))− log
(

λ̄t(l̄, k)
)

= log

(

1 +
λx(l, k) + λu(l, k)

λt(l, k)

)

> 0.

Our experiments show that the empirical probability density function of the right hand term has a single

peak. We observe that the peak (mean) is located remotely from zero, and the empirical probability

density function is almost symmetric. Thus, we approximatethe probability density function by a normal

distribution with η mean andσ2 variance, such that the negative tail is negligible. The values of the



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. XX, NO. Y, MONTH 2012 7

mean and variance can then be determined according to the empirical mean and variance of the set

{log (λy(l))− log (λt(l))}. Accordingly,

Pr
(

log(λy(l))|λt(l) = λ̄t(l̄)
)

=
1√
2πσ2

exp

{

−‖ log(λy(l)) − log(λ̄t(l̄))− η‖2
2σ2

}

. (7)

We further assume that the transient signal in the observation and the training transient signal have similar

distributions. In addition, we assume that the spectral feature vector of the transient signal in each time

frame can uniformly take one of a finite set of spectral feature vectors of cardinalityγ (as each transient

type has a distinct characteristic structure), i.e.,Pr
(

λt(l) = λ̄t(l̄)
)

= 1/γ. By the law of total probability

we obtain

Pr (log(λy(l))) =
1

γ

∑

l̄

Pr
(

log(λy(l))|λt(l) = λ̄t(l̄)
)

. (8)

We assume statistically independent frames neglecting potential frame overlap. This assumption is not

respected in practice, especially since we use75% overlapping frames. However, it enables us to provide

a probabilistic interpretation of the kernel. The conditional joint probability of frames with the same

transient component can be expressed similarly

Pr
(

log(λy(l)), log(λy(l
′))

∣

∣λt(l) = λt(l
′)
)

=
1

γ

∑

l̄

Pr
(

log(λy(l)), log(λy(l
′))

∣

∣λt(l) = λt(l
′) = λ̄t(l̄)

)

=
1

γ

∑

l̄

Pr
(

log(λy(l))
∣

∣λt(l) = λ̄t(l̄)
)

× Pr
(

log(λy(l
′))

∣

∣λt(l
′) = λ̄t(l̄)

)

. (9)

A significant benefit from this particular kernel is expressed by the following proposition.

Proposition 1 (Probabilistic Interpretation). Under the probabilistic assumptions (7), (8), and (9), the

elements of the kernel satisfy

Kl,l′ = Pr
(

λt(l) = λt(l
′)
∣

∣λy(l),λy(l
′)
)

Proof: See Appendix I.

Proposition 1 implies that the affinity metric defined by the kernel is the probability of comparing a

pair of observable vectors with the same transient pattern.Accordingly, this kernel entails a comparison

between the underlying spectral features of the transients“neutralizing” the speech and background noise.

This way, the constructed graph may convey the desired transient interference spectral structure.
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C. Graph-based Filter

Let {µj ,ψj}j be the eigenvalue decomposition ofK, which satisfies

K = ΨΛΨ
T (10)

with

Ψ =
[

ψ0 · · ·ψM−1

]

and Λ is a diagonal matrix consisting of the eigenvalues in a descending orderµ0 ≥ µ1 ≥ . . . > 0.

Each eigenvectorψj is of lengthM and its lth coordinate parameterizes thelth time frame. By the

orthogonality of the eigenvectors, the set{ψj}j forms a complete basis for any functionf : Γ → R with

Γ = {λy(l)}l. In particular, letik : Γ → R be a function that retrieves thekth frequency bin from the

spectral vectorλy(l), i.e., ik (λy(l)) = λy(l, k). It implies that each spectral component can be expanded

according to the set of eigenvectors as

λy(l, k) = ik (λy(l)) =

M−1
∑

j=0

µj〈ik,ψj〉ψj(l)

where the inner product is defined as〈ik,ψj〉 , λf
y (k)ψj with λf

y(k) = [λy(1, k), . . . , λy(M,k)].

The constructed graph captures the structure of the transients, characterized by a distinct spectral

structure, by connecting similar spectral observations. Specifically, as implied by Proposition 1, strong

connections represent a high probability that the same transient pattern exits in the connected time

frames. Consequently, there exists a subset ofℓ eigenvectors which represents the transient interference.

For simplicity, we assume this subset consists of the dominant eigenvectors, i.e.,{ψj}ℓ−1
j=0. In practice,

we may determine the appropriate eigenvectors by observingtheir spectral structure.

We define the following graph-based filter that approximatesthe transient spectral component by

projecting the spectral variance of the observation onto the eigenvectors spanning the transient interference

subspace

λ̂t(l, k) =

ℓ−1
∑

j=0

µj〈ik,ψj〉ψj(l). (11)

Let λy be anM ×N matrix where its(l, k)th element is defined asλy(l, k). Then (11) can be re-written

in a matrix form as

λ̂t(l) = λ
T
y

ℓ−1
∑

j=0

µjψj(l)ψj . (12)

In practice, few speech “leftovers” may appear in the estimated spectral variance. Human speech

consists of both harmonic and nonharmonic sounds and it can span across a wide range of frequencies.
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Thus, many speech phonemes can be represented (at least partially) by the transients “building blocks”.

Existence of such residuals in the spectral variance estimate of the transient signal degrades the quality of

the speech when incorporated into an enhancement algorithm. Since the leftovers usually exist in periods

where the transient signal is absent, we are able to easily distinct them by their low magnitude compared

to the magnitude of the transients. Thus, we remove potential leftovers by employing a hard threshold.

D. Speech Enhancement

To enhance the speech, we employ the OM-LSA with a modified noise estimate. LetG(l, k) denote the

spectral gain of the OM-LSA estimator given the noisy measurementY (l, k). Thus, the speech estimate

is obtained by

X̂(l, k) = G(l, k)Y (l, k).

In [16], the optimal spectral gain with respect to the minimum log spectral amplitude (LSA) error criterion

is controlled by the speech presence probability. Since it is unknown, the speech presence probability is

estimated based on the timefrequency distribution of the a-priori signal-to-noise ratio (SNR), where the

noise variance is estimated using the improved minima controlled recursive averaging (IMCRA) [22].

Unfortunately, short and abrupt bursts of transient interferences are falsely detected as speech components.

Hence, the transient interference is not a part of the noise PSD estimate obtained by the IMCRA approach,

and as a result, is not attenuated. In this work, we set the optimal spectral gain to correspond to the sum

of the spectral variance estimate of the transient interferenceλ̂t(l, k) and the stationary noisêλu(l, k).

The former estimate is obtained by the graph-based filter (11) following the hard thresholding, and the

latter estimate is obtained by the IMCRA. The IMCRA and the OM-LSA parameters used in this stage

are similar to the set of parameters used to enhance speech and reduce stationary background noise as

described in [16].

Since the optimal spectral gain is controlled by the transient interference spectrum, the suppression of

transients is now attainable. For more details regarding the optimal gain derivation and estimation of the

speech presence probability and the noise spectrum, we refer the reader to [16] and references therein.

A Matlab code of the OM-LSA is available at [23].

IV. T RANSIENT LOCAL MODELS AND AN AFFINITY FUNCTION

The estimation of the spectral variance of the transient interference is employed by the graph-based filter

defined in (11). Thus, the estimation accuracy heavily depends on the ability of the graph to extract the

structure of the spectral variance of the transients. As discussed in Section III and implied by Proposition
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1, the graph connects nodes with the same transient type. In order to enhance this property, we define a

local data-driven model for each transient interference type based on the training recording. We assume

the labeling of the transient recording
{

T i

}Nt

i=1
is available. Let

{

λ̄t(l̄)
}

l̄∈T i
be the set of training spectral

vectors corresponding to theith transient type. We assume it consists of several transient events which

define the variability of the transient type. Letη̄i be the empirical mean vector of the set, i.e.,

η̄i =
1

∣

∣T i

∣

∣

∑

l̄∈T i

log
(

λ̄t(l̄)
)

and letC̄i be the empirical covariance matrix of the set

C̄i =
1

∣

∣T i

∣

∣

∑

l̄∈T i

(

log
(

λ̄t(l̄)
)

− η̄i
) (

log
(

λ̄t(l̄)
)

− η̄i
)T

where
∣

∣T i

∣

∣ is the cardinality of the setT i. The pair (η̄i, C̄i) may be used as the learned model of

the ith transient type. This implicit Gaussian representation is set for simplicity and was previously

used in [13] and [24]. This assumption is supported by the fact that the logarithm has support for both

negative and positive values. By employing principal component analysis (PCA), the large eigenvectors

of C̄i, which correspond to the principal “parameters”, capture most of the information disclosed in the

data. Hence, the dimensionality is significantly reduced byconsidering only the subspace spanned by

a few principal eigenvectors. Let{v̄i,j}Lj=1 be the set ofL such principal eigenvectors. A well-known

limitation of PCA is that it is linear and able to capture onlythe global structure of the training data.

The training set of transient instances admits a complicated global structure (often referred to as a non-

linear manifold). Thus, a low-dimensional linear subspacemay not faithfully describe the data in our

setting. However, a PCA-based approach may perform rather well when applied locally, i.e., on a data set

sufficiently condensed in a small neighborhood. In our setting, this corresponds to defining a model for

each transient interference type. Then, incorporating these local models in the graph provides integration

of all the acquired models together.

We definePi to be a linear projection operator of each spectral feature vector onto the local model of

the ith transient type as

Pi(λy(l)) = η̄i +

L
∑

j=1

〈log (λy(l)) − η̄i, v̄i,j〉v̄i,j (13)

where the inner product is defined as〈log (λy(l)) − η̄i, v̄i,j〉 , (log (λy(l)) − η̄i)T v̄i,j. The linear

projection (13) can be used as a stand-alone estimator for the spectral variance of the transients. In

practice it does not yield satisfactory results. However, it provides essential information which may be

incorporated into the graph construction. The graph provides integration of all transient instances and
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their local models together. Capitalizing the connectionsbetween the entire set of data, rather than using

a single local model, attains significantly improved results.

Based on the projection, we define a pairwise metric between spectral feature vectors for each transient

type

di
(

λy(l),λy(l
′)
)

=
∥

∥Pi(λy(l))− Pi(λy(l
′))

∥

∥ . (14)

The definition of the local metric (14) enables to adjust the kernel computation in (6). We now define

the affinity kernel as

Wl,l̄ = exp

{

−
∥

∥log(λy(l))− log(λ̄t(l̄))− η
∥

∥

2

2σ2

}

× exp

{

−d2i
(

λy(l), λ̄t(l̄)
)

2σ̃2

}

. (15)

for l̄ ∈ T i with scale σ̃2 corresponding to the values ofdi. The first term ensures that the kernel is

defined locally by comparing the spectral features of the vectors. The second term conveys the affinity of

the observable vector to the training vector in terms of theith transient interference type. Consequently,

two vectors are similar if their underlying transient is similar and the observable speech component does

not distort the transient significantly. The remainder of the graph construction, namely, the computation

of the transition matrixA and the kernels̄K andK, remains unaltered. Compared to the kernel defined

in (6), the new kernel enhances the connection between time frames that consist of transient events.

Consequently, the spectral representation of the constructed graph better captures the transient structure,

and the estimation of the transient spectral variance in (11) becomes more accurate. Experimental results

show improved transient extraction and speech enhancementusing the adjusted local kernel (15) compared

with (6).

V. IMPLEMENTATION

We start by drawing the algebraic connection between the eigen-decomposition of the kernelsK and

K̄.

Proposition 2. The kernelsK and K̄ share the same eigenvaluesµj . The eigenvectorψj of K

corresponding to nonzero eigenvaluesµj > 0 satisfies

ψj =
1

√
µj

Aϕj

whereϕj is the eigenvector of̄K corresponding to eigenvalueµj. In addition, the eigenvector sets
{

ϕj

}

j

and
{

ψj

}

j
are orthogonal.
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Proof: See Appendix II.

The main property emerged from Proposition 2 is the natural extension of the eigenvalue decomposition.

Given a training recording and an initial observation interval, the matrixA and the kernel̄K can be

constructed. Next, the singular value decomposition (SVD)of A is computed, which allows us to define

the graph-based filter (11) used to estimate the spectral variance of a transient in the initial observation

interval. Proposition 2 can then be applied to extend the spectral representation of the kernel matrix

K, which defines the filter, to a new observation. The extensionimplied by Proposition 2 is efficiently

computed and can be implemented in a sequential manner basedon the spectral representation ofK̄

(which is computed in advance using the training data).

For each spectral feature vectorλy(l
′) corresponding to a new time frame observationl′, we have by

Proposition 2 that

ψj(l
′) =

1
√
µj

a
T
l′ϕj (16)

whereal′ is a vector of lengthM̄ with elements given by

al′(l̄) =
1

dl′
exp

{

−
∥

∥log(λy(l
′))− log(λ̄t(l̄))− η

∥

∥

2

2σ2

}

× exp

{

−d2i
(

λy(l
′), λ̄t(l̄)

)

2σ̃2

}

(17)

and where

dl′ =

M̄
∑

l̄′=1

exp

{

−
∥

∥log(λy(l
′))− log(λ̄t(l̄

′))− η
∥

∥

2

2σ2

}

× exp

{

−d2i
(

λy(l
′), λ̄t(l̄

′)
)

2σ̃2

}

.

Then, the corresponding graph-based estimator based on theextended eigenvector is given by (12), i.e.,

λ̂t(l
′) = λT

y

ℓ−1
∑

j=0

µjψj(l
′)ψj . (18)

The sequential estimation of the spectral variance of the transient signal via the graph-based processing

framework is summarized in Algorithm 1. A particular attention should be given to the efficiency and

low computational complexity of the enhancement stage of each time frame. Following is a description

of the naı̈ve computational cost (number of operations) foreach step in the enhancement stage. Step 1

involves fast Fourier transform which yieldsO(N logN) operations. Computing the affinity between the

new observation and thēM training vectors in Step 2 yieldsO(NM̄) operations, treating the number of

principal local-model eigenvectorsℓ as a constant. Accordingly, Step 3 costsO(M̄) operations. Finally,
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Algorithm 1 Graph-based Processing Algorithm
Training stage:

1) Obtain a training recording of typical transients and compute a training set
{

λ̄t(l̄)
}M̄

l̄=1
of M̄ spectral

variance feature vectors.

2) Obtain an initial measurement and compute a set{λy(l)}Ml=1 of M spectral variance feature vectors.

3) Compute the “one-sided” kernel matrixW of sizeM × M̄ according to (15).

4) Construct the transition matrixA of sizeM × M̄ .

5) Obtain the eigenvalue decomposition
{

µj,ϕj

}

j
and

{

µj,ψj

}

j
of K̄ and K, respectively, by

computing the SVD ofA.

Enhancement stage:

1) Obtain a new time frame of the observable signal and compute the corresponding new feature

vectorλy(l
′).

2) Compute the affinity of the new observation vector to the training vectors according to (17).

3) By Proposition 2, extend the eigenvectors to the new frameaccording to (16).

4) Construct the graph-based filter corresponding to the newframe according to (18) using the extended

vector. Obtain an estimate of the spectral variance for the transient interferencêλt(l
′).

5) Compute the optimal gain of the OM-LSA based onλ̂t(l
′) and employ it on the new time frame

to enhance the speech.

6) Return to 1 in the Enhancement stage.

employing the graph-based filter in Step 4 requiresO(MM̄). By assuming thatM,M̄ > N , we have a

total computational burden ofO(MM̄). We note that this cost is mainly due to a matrix multiplication

which can be implemented very efficiently.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

We evaluate the performance of the proposed algorithm on recorded speech and transient signals

sampled at16 KHz. Speech signals are taken from the TIMIT database [25], and recorded transient

interferences are taken from an online free corpus [26]. Thetime domain measurements are constructed

according to (1). We re-scale the speech and transient interference to have equal maximal amplitude in

the measured interval. The additive stationary noise part is a computer generated white Gaussian noise
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with SNR of 20 dB. Each measurement is20 seconds long and consists of several speech utterances of

5 different speakers and30 transient events. For the time-frequency representation,we use time frames

of 512 samples length which correspond toN = 257 positive frequency bins. In addition, we use75%

overlap between successive frames.

We examine the suppression of three transient interferencesignals. The first transient interference is

keyboard typing. We enhance a measurement interval containing 30 key strokes with different amplitudes.

The different key strokes are organized into three clustersof similar spectral structures. Based on a training

recording of similar keyboard strokes, we train three transient models corresponding to the three key stroke

types as described in Section IV. The second interference consists of three types of household knocks.

One of the knocks has a relatively long duration which exceeds a single time frame. Consequently,

we attach two models to this interference type (one for the first abrupt part and one for the following

decaying part) and another two models corresponding to the other two types of knocks, which results in

four different models. The measurement signal consists of several different instances of each type with

varying amplitudes. Finally, the third interference consists of three types of door knocks. Accordingly,

we train three corresponding models based on the training recordings. Similarly to the other transient

interferences, the measurement consists of several different instances of these door knocks with varying

amplitudes. We note that each training recording consists of 10 instances of transients from each type. In

addition, in order to represent the transients and define thegraph-based filter (11) we use the principal

ℓ = 20 eigenvectors of the graph. For each transient interferencewe empirically set the parameters (kernel

scale) which yield maximal performance.

B. Performance Evaluations

In Fig. 1 we show an example for the transient spectral variance estimation. Figure 1(a) presents the

waveform and spectrogram of an instance of a door knock, and Figure 1(b) presents the waveform and

spectrogram of the transient instance estimate by the graph-based filter (11). We observe similar waveform

and spectral features. A particular attention should be given to the accurate estimate of the spectral

“pattern” of the abrupt first part of the transient. Unfortunately, we also detect inaccurate estimation of

the high frequencies in the decaying second part of the transient. The decaying part is noise-like and less

structured compared to the abrupt part. Thus, it is more difficult to capture its characteristic geometry.

On the other hand, it is usually of low energy and thus in practice inaccurate estimation may not have

significant influence.

Figure 2 depicts the waveforms and spectrograms of the measurements and enhanced signals. Figures



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. XX, NO. Y, MONTH 2012 15
F

re
qu

en
cy

 [k
H

z]

0

2

4

6

8

0.05 0.1 0.15 0.2 0.25 0.3 0.35
Time [Sec]

A
m

pl
itu

de

(a)

F
re

qu
en

cy
 [k

H
z]

0

2

4

6

8

0.05 0.1 0.15 0.2 0.25 0.3 0.35
Time [Sec]

A
m

pl
itu

de

(b)

Fig. 1. Transient waveforms and spectrograms. (a) A clean transient (door knock) event. (b) The estimated transient.

2 (a), (c), and (e) show the noisy signals with keyboard typing, household interferences, and door knocks,

respectively. Figures 2 (b), (d), and (f) show the corresponding enhanced signals. We observe that the

proposed method attains significant transient interference reduction, while imposing very low distortion.

Merely few transient residuals (e.g., near1.3 s in Fig. 2 (b)) appear in the enhanced signal. Furthermore,

the waveforms of the enhanced signals suggest that the transient suppression does not leave “holes” in

the signal, but rather maintains the speech component.

We compare the performance of the proposed algorithm to the algorithm proposed in [9]. The proposed

algorithm introduces two new aspects with respect to the previous work: learning transient models from

training recordings and online processing, which are both incorporated into an integrated processing

framework. We note that the online processing is obtained naturally given the trained models, since the

employment of the models on the entire observation intervalis equivalent to the employment of the models

frame-by-frame. Thus, the comparison between the algorithms does not reflect the additional training

stage of the proposed algorithm nor the advantage that the measurement is processed frame-by-frame.

The online processing makes the proposed algorithm more adequate to communication applications. In

addition, learning transient models in advance circumvents the requirement of the algorithm proposed in

[9] to have several instances of transients in order to properly capture the model from the measurements.

In the following experiment we expect better results using the batch algorithm in case the observation

interval contains several instances of transients with similar structure and amplitude. On the other hand, the

graph-based algorithm is advantageous in case of multiple transient types and in case of high variability

in the amplitudes of the transients.
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Fig. 2. A segment of the measurements and enhanced signals waveforms and spectrograms. (a) Noisy signal with7 key strokes.

(b) Enhanced speech with suppressed keyboard typing. (c) Noisy signal with4 events of household interferences. (d) Enhanced

speech with suppressed household interferences. (e) Noisysignal with a door knock. (f) Enhanced speech with suppressed door

knocks.
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TABLE I

SPEECHENHANCEMENT EVALUATION .

Transient Type SNR Improvement [dB] LSD Improvement [dB]2

Batch Algorithm Online Graph-based Batch Algorithm Online Graph-based

Proposed in [9] Filtering Proposed in [9] Filtering

Keyboard Typing 9.47 7.78 2.71 2.12

Household Interferences 5.20 6.62 1.83 2.04

Door Knocks 8.17 9.79 2.96 2.39

We evaluate the output of the algorithms using two objectivemeasures [27]. The first is the common

SNR, defined as

SNRin = 10 log10
E
{

x2(n)
}

E {(y(n)− x(n))2}

SNRout = 10 log10
E
{

x2(n)
}

E {(x̂(n)− x(n))2} (19)

The second is the mean log spectral distance (LSD) between the measured signal and the desired source,

which is specifically adapted to speech signals and defined as

LSDin , El

[

1
N

N−1
∑

k=0

|ℓ(λx(l, k))− ℓ(λy(l, k))|2
]

1

2

(20)

LSDout , El

[

1
N

N−1
∑

k=0

∣

∣

∣
ℓ(λx(l, k)) − ℓ(λ̂x(l, k))

∣

∣

∣

2
]

1

2

(21)

where

ℓ (λ) = max {10 log10 λ, δ} (22)

and δ is a small value defined byδ = maxλx(l, k) − 50, used to confine the dynamic range of the

log-spectrum to50 dB. These measures are computed only in time periods where the estimate of the

PSD of transients exists. This way we are able to focus on the performance of the proposed algorithm

and evaluate the speech enhancement and the artifacts introduced by the algorithm simultaneously. In

periods where the transient estimate does not exit, only stationary noise suppression is attained, and the

performance of the algorithm equals to the performance of the OM-LSA.

Table I summarizes the objective evaluation of the speech enhancement algorithms. We observe

improvement in all tested cases. For keyboard typing the batch algorithm indeed demonstrates better SNR

2Since lower LSD is better, LSD improvement is defined as LSDin − LSDout.
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TABLE II

PERCEPTUALEVALUATION OF SPEECHQUALITY (PESQ) SCORES.

Transient Type Noisy Batch Algorithm Proposed in [9] Online Graph-based Filtering

PESQ Scores PESQ Scores Improvement PESQ Scores Improvement

Keyboard Typing 2.165 0.601 0.749

Household Interferences 2.028 0.663 0.644

Door Knocks 1.933 0.593 0.536

and LSD improvements since it exploits the presence of similar key strokes with similar amplitudes. For

door knocks the proposed algorithm yields better SNR improvement whereas the batch algorithm yields

better LSD improvement. Thus, no obvious advantage to any ofthe algorithms is reported; The repeating

door knocks in the observation interval have a similar structure which may be better exploited by the

batch algorithm, however, the knocks have high amplitude variability which can be better handled by the

graph-based algorithm. For household interferences the proposed online algorithm outperforms the batch

algorithm. In this case the noisy signal consists of multiple types of interferences with various spectral

structures and with both short- and long-durations. Thus, it demonstrates the robustness and flexibility

of the proposed algorithm attained by training several interference models.

Table II depicts the improvement of the perceptual evaluation of speech quality (PESQ) scores [28]

with respect to the noisy signal. This measure cover a different aspect compared to Table I. We note that

even a small increase in the PESQ score suggests noticeable improvement, as any sudden increase of

power (e.g., attenuated transients) is audible. We observethat the speech quality is improved in all tested

cases in comparison with the noisy signal. In addition, the PESQ score improvement is larger when using

the proposed algorithm compared to the algorithm in [9] in case of keyboard typing, whereas it is smaller

in household interferences and door knocks. This trend complements the reported results in Table I. In

general, we note that milder transient suppression (conveyed by lower SNR and LSD improvements)

usually leads to smaller speech distortion (conveyed by higher PESQ values).

It is worthwhile noting that informal hearing tests confirm the objective measures and demonstrate

significant reduction of the transient interference. In addition, we employed the proposed algorithm on

noisy speech corrupted by keyboard typing recorded in a laptop. The obtained results are comparable to

the reported results on the simulated data. Audio samples ofthe presented results are available online in

[29].

The comparison between the algorithms shows similar results where neither of the algorithms
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TABLE III

SPEECHENHANCEMENT EVALUATION IN MULTI -CONDITION CASE.

Transient Type SNR Improvement [dB] LSD Improvement [dB] PESQ Score Improvement

Keyboard Typing 7.46 2.04 0.597

Household Interferences 4.72 1.69 0.418

Door Knocks 8.75 1.81 0.528

demonstrates clear advantage based on the objective measures. Thus, the preferred algorithm mainly

depends on the listener preferences. However, the proposedalgorithm results are achieved by online

processing and demanding lower computational burden. In addition, the proposed algorithm does not

introduce lag into the system. In practice, these properties make the proposed algorithm more suitable

for real-time communication systems.

In Tables I and II, the reported results correspond to a matched-condition setup, where each testing

sample contains a certain type of transient, and the training data that is used for applying the algorithm

to the testing sample contains exactly this type of transient. This scenario is suitable for applications in

which the typical transients are known in advance, e.g., keyboard typing in phone- and conference-call

software. To further illustrate the applicability of the proposed algorithm under real-world conditions, we

evaluate the proposed algorithm in a multi-condition training scenario. In this experiment, transients from

all types are used for training a single model, which is then used to suppress all the testing samples. For a

fair comparison we employed the testing stage on the same noisy recordings as in the matched-condition

experiment. Table III presents the SNR and LSD improvementsand the PESQ score obtained under the

multi-condition case. As expected in this challenging scenario, we observe degradation in the transient

suppression and speech quality compared to the matched-condition case in Tables I and II. However,

the suppression of the transients and the enhancement of thespeech are significant and audible. This

illustrates the ability of the proposed algorithm to train ageneric single model consisting of a dictionary of

a wide variety of transients, which can then be suppressed from real-world recording in various scenarios.

VII. C ONCLUSIONS

We have presented a supervised graph-based processing framework for sequential transient interference

suppression. Based on training recordings, we propose to construct a graph that captures the intrinsic

structure of the transients. Then, by relying on the graph parametrization we define a filter that extracts

the transients from noisy speech measurements. The application of the filter is shown to be efficient
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Kl,l′ =

∑

l̄ exp
{

−‖ log(λy(l))−log(λ̄t(l̄))−η‖2

2σ2

}

exp
{

−‖ log(λy(l′))−log(λ̄t(l̄))−η‖2

2σ2

}

∑

l̄′ exp
{

−‖ log(λy(l))−log(λ̄t(l̄′))−η‖2

2σ2

}

∑

l̄′ exp
{

−‖ log(λy(l′))−log(λ̄t(l̄′))−η‖2

2σ2

} (24)

Kl,l′ =

∑

l̄ Pr
(

log(λy(l))|λt(l) = λ̄t(l̄)
)

Pr
(

log(λy(l
′))|λt(l

′) = λ̄t(l̄)
)

∑

l̄′ Pr
(

log(λy(l))|λt(l) = λ̄t(l̄′)
)
∑

l̄′ Pr
(

log(λy(l′))|λt(l′) = λ̄t(l̄′)
) (25)

and adapted to online processing, by sequentially extending the graph parametrization to newly acquired

observations. To capture the underlying structure of the transients, a suitable metric is defined based

on local models computed from the training recordings. Experimental results show significant transient

interference suppression and low speech distortion for various transient interference types.

The ability to capture the underlying structure of trainingrecordings and then sequentially extracting it

from noisy measurements provides efficient, generic, and robust processing framework. Given sufficient

training recordings, this framework may handle a wider variety of interferences, and might be naturally

extended to other problems and applications.

APPENDIX I

PROBABILISTIC INTERPRETATION

Proof: By definition we have

Kl,l′ =
(

AA
T
)

l,l′
=

∑

l̄

Al,l̄Al′,l̄ =
∑

l̄

Wl,l̄
∑

l̄′ Wl,l̄′

Wl′,l̄
∑

l̄′ Wl′,l̄′

=

∑

l̄ Wl,l̄Wl′,l̄
∑

l̄′ Wl,l̄′
∑

l̄′ Wl′,l̄′
(23)

Substituting the “one-sided” affinity function (6) into (23) yields (24). Then, by the probability assumption

(7) we have (25).

Substituting (8) and (9) into (25) yields

Kl,l′ =
1

γ

Pr (log(λy(l)), log(λy(l
′)) |λt(l) = λt(l

′) )

Pr (log(λy(l))) Pr (log(λy(l′))

=
Pr (log(λy(l)), log(λy(l

′)) |λt(l) = λt(l
′) )

Pr (log(λy(l)), log(λy(l′)))

× Pr
(

λt(l) = λt(l
′)
)

.

Finally, by Bayes’ theorem we obtain

Kl,l′ = Pr
(

λt(l) = λt(l
′)
∣

∣λy(l),λy(l
′)
)

(26)
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APPENDIX II

EIGEN-DECOMPOSITIONCONNECTION

Proof: By the definition of the kernels, namelyK = AA
T andK̄ = A

T
A, we obtain (1) the left

singular vectors ofA are the eigenvectorψj of K; (2) the right singular vectors ofA are the eigenvectors

ϕj of K̄; (3) the nonzero singular values ofA are the square roots of the eigenvaluesµj of eitherK or

K̄. According to the singular value decomposition, it impliesthatK andK̄ share the same eigenvalues

and the sets
{

ϕj

}

j
and

{

ψj

}

j
are orthogonal. Moreover, we obtain

Aϕj =
√
µjψj

which yields

ψj =
1

√
µj

Aϕj
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