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Abstract

This paper proposes a distributed multiple constraints generalized sidelobe canceler (GSC) for speech

enhancement in an N -node fully connected wireless acoustic sensor network (WASN) comprising M̄

microphones. Our algorithm is designed to operate in reverberant environments with P constrained

speakers (including both desired and competing speakers). Rather than broadcasting M̄ microphone

signals, a significant communication bandwidth reduction is obtained by performing local beamforming

at the nodes, and utilizing only N +P transmission channels. Each node processes its own microphone

signals together with the transmitted signals. The GSC-form implementation, by separating the constraints

and the minimization, enables the adaptation of the BF during speech-absent time segments, and relaxes

the requirement of other distributed LCMV based algorithms to re-estimate the sources RTFs after

each iteration. We provide a full convergence proof of the proposed structure to the centralized GSC-

beamformer (BF). An extensive experimental study of both narrowband and (wideband) speech signals

verifies the theoretical analysis.
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I. INTRODUCTION

Recent advances in the fields of nano-technology and communications encourage the development of

low-cost, low-power and miniaturized modules which can be incorporated in wireless sensor network

(WSN) applications. A WSN comprises several nodes (WSN modules) interconnected in some manner

via a wireless medium. Each node consists of one or more sensors, a processing unit and a wireless

communication module allowing them to exchange data. The goal of the system is to perceive some

physical phenomenon, to process it, and to yield a required result. In classical array processing systems,

the sensing and the processing of the acquired data are concentrated in a single location denoted a fusion

center. A phenomenon originating in the enclosure, results in a disturbance that propagates in space. The

closer the sensors are to the origin of the phenomenon, the higher is the signal to noise ratio (SNR)

of the acquired signal, resulting in lower estimation errors and better quality at the output of the signal

processing procedure. The concept of the WSN is to distribute the system resources (sensors, processing

units and actuators) and to provide a scalable, easy to deploy, and robust structure. The wireless interface

allows for the extension of the sensing range beyond the limits of the wired fusion center systems. The

distribution of the sensors in a larger volume enables a better coverage with higher SNR. For a survey on

the topic of WSN please refer to [1], [2], [3], [4]. Limited power and communication bandwidth resources

set bounds on the amount of data shared between nodes and necessitate developing distributed algorithms.

In recent years, many contributions to the field of WASN have been introduced, circumventing the severe

network constraints [5], [6], [7], [8], [9], [10], [11]. A trivial solution is obtained by utilizing only

microphones local to the node without any communication link. However this solution fails to utilize the

entire information from the network and hence is sub-optimal. A common scheme for distributed signal

processing algorithms in WASNs comprises the following steps. First, local processing of microphone

signals results in intermediate signals or estimates at each node, requiring less communication-bandwidth.

Second, the results of the first step are broadcast in the WASN. Finally, a global estimate or an enhanced

signal is obtained by merging all intermediate signals or estimates. Since the data available at each node

is incomplete, an iterative (or time-recursive) solution becomes necessary.

Several contributions have considered using a WASN system for speech processing applications. Two

main criteria are common in speech beamforming applications: the minimum mean squared error (MMSE)

and the minimum variance distortionless response (MVDR). The mean squared error (MSE) between the

output signal and the desired signal comprises two components, namely the distortion and the residual

noise. The multi-channel Wiener filter (MWF)-BF [12], [13], [14] minimizes the MSE between the
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desired signal and the output signal, while the MVDR, first introduced by Capon [15], minimizes the

noise power at the output signal while maintaining a distortionless response towards the desired signal,

i.e., resulting in zero distortion. Er and Cantoni [16] generalized the single distortionless response to a

set of linear constraints, and denoted the BF as linearly constrained minimum variance (LCMV)-BF. The

speech distortion weighted (SDW)-MWF-BF, proposed by Doclo et al. [17], generalizes both BF criteria.

It introduces a trade-off factor between noise reduction and distortion. It can be shown that two special

cases of the SDW-MWF are the MWF-BF and, in case of a single desired speaker, the MVDR-BF.

Signals and parameters at a node which are obtained by processing its own microphone signals are

denoted “local” to the node. Other signals and parameters which are obtained by processing data received

from other nodes in the WASN are denoted “global”. Doclo et al. [7] addressed the problem of enhancing

a single desired speaker contaminated by a stationary noise. They adopted the SDW-MWF criterion and

used a binaural hearing aid system comprising two apparatuses with multiple microphones in each ear.

Bertrand and Moonen [8] considered the more general case of an N node WASN and P desired sources.

They allowed each node to define individual desired signals by using different weighting of the spatial

components of the speech. They proposed a distributed adaptive node-specific signal estimation (DANSE)-

P algorithm which necessitates transmission of P channels from each node and proved the convergence

of the algorithm to the global SDW-MWF-BF. In complicated scenarios where multiple speakers exist

and more control over the beampattern is desired, the LCMV-BF is a more suitable option. The linear

constraints set can be designed to maintain undistorted desired speakers while mitigating competing

speakers.

Adaptive formulation of the MVDR-BF was proposed by Frost [18]. Frost developed a constrained least

mean squares (LMS) algorithm for the adaptation of the BF coefficients. Griffiths and Jim [19] showed

that the MVDR criterion, can be equivalently described in a two branch structure, denoted GSC. This

structure conveniently separates the constraining and the minimization operations. Breed and Strauss [20]

further proved the equivalence between the closed-form LCMV and the GSC-form in the case of multiple

constraints.

Gannot et al. [21] considered the single desired source case and suggested to implement the MVDR-

BF in its GSC-form in the short time Fourier transform (STFT) domain. They also proposed to use the

relative transfer function (RTF) rather than the acoustic transfer function (ATF) of the desired speaker,

and proposed an applicable estimation procedure based on the non-stationarity of the speech. Markovich-

Golan et al. [22] considered the multiple speakers case and proposed to use an LCMV-BF in a GSC-form.

They constructed a constraints set from an estimate of the RTFs of the desired speakers and an estimate
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of the basis spanning the ATFs of the competing speakers and the stationary noise. In [9] the authors

adopted the MVDR criterion and proposed an iterative distributed MVDR-BF for a binaural hearing aid

system. Bertrand and Moonen [23] proposed a distributed LCMV algorithm, denoted linearly constrained

DANSE (LC-DANSE). They considered the case of P speakers and noise picked up by microphones

of an N node WASN. Assuming that each node may define the set of desired speakers differently, they

proposed that the constraints matrix will be common to all nodes, whereas the desired response will be

node-specific. Their proposed algorithm constructs P node-specific constraints LCMV-BFs that require

each node to transmit P audio channels. A total of N × P transmission channels (the output signals

of all local BFs) are required. At each iteration, each node has to re-estimate two sets of basis vectors

spanning the ATFs of the desired and the interfering speakers.

Ahmed and Vorobyov [24] presented a novel technique for controlling the sidelobe level in collaborative

beamforming for WSNs where nodes comprise both sensors and actuators. They considered the problem

of transmitting multiple data streams from different clusters of nodes to some remote target nodes. Each

cluster forms a beam pattern by properly setting the phases and amplitudes at the transmission such that

the signals received at the designated target node are with equal phases and amplitudes. An efficient

algorithm for controlling the inter-channel interference is based on repeatedly and randomly selecting the

nodes which participate in the beamforming, and using low communication-bandwidth feedback channels

from the target nodes which report the interference level that they experience.

In the current contribution we consider the case where the nodes agree on the classification of desired

and competing speakers and share a common constraints set as well as desired responses. A distributed

time-recursive version of the centralized GSC, denoted distributed GSC (DGSC), is proposed. We prove

that the proposed algorithm converges to the centralized GSC. The proposed algorithm requires the

transmission of only N + P audio channels. In static scenarios, the RTFs of the sources need to be

estimated only once at the initialization stage. The estimation procedure of the RTFs may require non-

overlapping activity patterns of the speakers.

The structure of the paper is as follows. In Sec. II, the problem is formulated. In Sec. III, a closed-

form and a GSC structure of the centralized LCMV-BF are presented. We show that, under certain

conditions, an LCMV which operates on a transformation of the inputs is equivalent to the regular BF.

In Sec. IV, we derive the DGSC algorithm. The latter is based on a specific transformation which allows

to reformulate the centralized BF as a sum of local GSC-BFs. The proposed algorithm makes use of

shared signals, one for each source, which are broadcast in the WASN. We give an analytical proof of

the equivalence between the DGSC and the centralized GSC-BF. In Sec. V, we propose a scheme for
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constructing the shared signals. We compare the proposed DGSC and the LC-DANSE in Sec. VI. An

extensive experimental study, which verifies the equivalence of the DGSC and the centralized GSC, is

presented in Sec. VII. Conclusions are drawn in Sec. VIII.

II. PROBLEM FORMULATION

Consider a WASN of microphones comprised of N nodes. Denote the number of microphones in the

nth node by M̄n. The total number of microphones is denoted M̄ and equals

M̄ ,
N∑

n=1

M̄n. (1)

The problem is formulated in the STFT domain where k denotes the frequency index and ℓ denotes

the time-frame index. The vector of signals received by the microphones of all nodes is z̄(ℓ, k). It is

composed by concatenating the microphone signals of all nodes:

z̄(ℓ, k) ,
[
z̄T1 (ℓ, k) · · · z̄TN (ℓ, k)

]T
(2)

where z̄n(ℓ, k) is an M̄n × 1 vector consisting of locally received signals at the nth node. The vector of

all received signals is given by:

z̄(ℓ, k) , H̄(ℓ, k)s(ℓ, k) + v̄(ℓ, k) (3)

where

s(ℓ, k) ,
[
s1(ℓ, k) · · · sP (ℓ, k)

]T
(4)

is a P × 1 vector comprised of the speech sources, and

H̄(ℓ, k) ,
[
h̄
1
(ℓ, k) · · · h̄

P
(ℓ, k)

]
(5)

is an M̄ × P matrix which columns are the ATFs relating the P speakers and the M̄ microphones. The

vector v̄(ℓ, k) is a vector of interfering signals picked up by the microphones. Assuming that the P

speakers’ signals and the noise sources are uncorrelated, the M̄ × M̄ dimensional covariance matrix of

the received signals may be written as:

Φ̄zz(ℓ, k) , H̄(ℓ, k)Γ(ℓ, k)H̄
†
(ℓ, k) + Φ̄vv(k, ℓ). (6)

where (•)† denotes the conjugate-transpose operator, Γ(ℓ, k) = diag
{
λ1(ℓ, k), . . . , λP (ℓ, k)

}
is the P×P

dimensional covariance matrix of the P speech signals and Φ̄vv(ℓ, k) is the covariance matrix of the noise.

Note that multiple speakers and noise sources may be simultaneously active at each frequency bin. We
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assume that the network is fully connected, hence any transmitted signal is available to all nodes. In

cases that the network is not fully connected a hierarchial algorithm, for example based on a spanning

tree of the network, can be sought. However, this is beyond the scope of the current contribution. As an

example for a distributed algorithm in a partially connected WASN please refer to [25]. The locations

of the speakers are assumed static, therefore their corresponding ATFs are time-invariant, and hence

the frame index is omitted in H̄(k). The algorithm is applied to each frequency bin independently. For

brevity, the index k is hereafter omitted. The noise statistics is assumed to vary significantly slower than

the convergence-time of the algorithm. For brevity, the index ℓ is also omitted from Φ̄vv hereafter.

Denote the set of microphone indexes at the nth node by M̄n ,
{
mn(1), . . . ,mn(M̄n)

}
, where

M̄n , |M̄n| and | • | denotes the number of elements in a set. The vector of the received signals at the

nth node is given by

z̄n(ℓ) = T†
nz̄(ℓ) (7)

where Tn is an M̄×M̄n selection matrix which extracts the M̄n entries that correspond to the microphone

indexes of the nth node:

Tn =
[
0M̄n×(

∑n−1

n′=1
M̄n′) IM̄n

0M̄n×(
∑N

n′=n+1
M̄n′)

]T
(8)

and Im is an m×m identity matrix.

III. AN EQUIVALENT CENTRALIZED LCMV-BF

In the following, the centralized LCMV-BF is formulated. We show that under certain conditions, an

LCMV-BF which operates on a transformation of the inputs is equivalent to the LCMV-BF which directly

processes the microphone signals. A common design relaxation of using the RTFs rather than the ATFs is

formulated, and the GSC-form implementation is defined. The distributed algorithm, derived in Sec. IV,

will be based on a specific transformation matrix, that will conveniently split the centralized BF into a

sum of N BFs. Each of the BFs utilizes only local microphones and P shared signals, generated as a

linear combination of the local microphone signals in some remote nodes. Together with the transmission

of the N local BF outputs, a total of N + P transmission channels is required.

The centralized LCMV-BF, denoted w̄LCMV, is given by:

w̄LCMV , argmin{
w;

¯H
†
w=g

}
{
w†Φ̄vvw

}
(9)
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where the global constraints set is

H̄
†
w̄ = g (10)

and g is a P × 1 desired response vector. Typically, the desired response vector g is comprised of

values of zeros and ones, where a value of 1 is associated with a desired speaker and a value of 0 is

associated with an interfering speaker. In this case the BF is required to yield a combination of all the

desired speakers while mitigating the interfering speakers and the noise. Generally, g can be any arbitrary

P × 1 vector. We assume that the ATFs are linearly independent, i.e., the column rank of the constraints

matrix H̄ is P . In practice, when M̄ ≫ P the latter assumption usually holds, however, of course it

is not guaranteed. In cases for which the ATFs are linearly dependent, the constraints set might consist

of contradicting requirements. Hence, no solution that satisfy all constraints can be obtained. When

contradicting constraints exist, the system designer has to compromise and alleviate the contradiction by

reducing the number of constraints. The closed-form solution of (9) is given by Van Veen and Buckley

in [12]:

w̄LCMV = Φ̄
−1
vv H̄

(
H̄

†
Φ̄

−1
vv H̄

)−1
g (11)

where we assume that Φ̄vv is invertible since one of its components is a spatially white sensor noise.

The output of the LCMV-BF is given by:

ȳLCMV(ℓ) =

P∑
p=1

(gp)∗sp(ℓ) + w̄†
LCMVv̄(ℓ) (12)

where g =
[
g1 · · · gP

]T
. Note that the output comprises of the sum of the constrained sources

weighted by their corresponding desired responses and a residual noise component.

Suppose that rather than z̄(ℓ), a linear transformation of the inputs is available:

z(ℓ) , U†z̄(ℓ) (13)

where U† is an M × M̄ matrix and M > M̄ . Assuming that the column-subspace of U† is full rank,

i.e., its rank is M̄ , we will show that the LCMV-BFs in the original and in the transformed domains are

equivalent. Denote the following terms in the transformed domain:

H̃ ,U†H̄ (14a)

Φvv ,U†Φ̄vvU. (14b)
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Consider the following constraints set in the transformed domain:

H̃
†
w̃ = g. (15)

According to the fundamental theorem of linear algebra, any M × 1 BF, w̃, in the transformed domain

can be expressed as the sum of two components:

w̃ = w̃u + w̃uc (16)

where w̃u and w̃uc lie in the column-subspace of U† and its complementary subspace, respectively.

Similarly to (9), the LCMV criterion in the transformed domain is:

w̃LCMV , argmin{
w̃;

˜H
†
w̃=g

}
{
w̃†Φvvw̃

}
. (17)

Note that from the definition of H̃ and Φvv in (14a) and (14b), their columns lie in the column-subspace

of U†. Hence, substituting (16) in the transformed constraint set (15) and in the minimization of the

transformed LCMV-BF (17) yields:

H̃
†
w̃u =g (18a)

w̃u
LCMV = argmin{

w̃u
;
˜H

†
w̃u

=g
}
{
(w̃u)†Φvvw̃

u
}

(18b)

w̃LCMV =w̃uc + w̃u
LCMV (18c)

where the orthogonal component w̃uc can be chosen arbitrarily, since it affects neither the noise power

at the output nor the satisfaction of the constraints set. Any w̃u can be expressed as a linear combination

of the columns of U†:

w̃u , U†ω (19)

where ω is an M̄ × 1 vector.

Substituting (19) in (18a),(18b),(18c), w̃LCMV becomes:

w̃LCMV = w̃uc

+U† argmin{
ω;

(
U ˜H

)†
ω=g

}
{
ω†UΦvvU

†ω
}
. (20)

Note that

UΦvvU
† = UU†Φ̄vvUU† (21)
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is a full-rank M̄×M̄ matrix since both UU† and Φ̄vv are M̄×M̄ dimensional rank-M̄ matrices. Hence,

similarly to (11), the closed-form LCMV-BF of (20) in the transformed domain equals:

w̃LCMV =w̃uc +U†
(
UΦvvU

†
)−1

×UH̃

((
UH̃

)† (
UΦvvU

†
)−1

UH̃

)−1

g. (22)

Substituting (14a),(14b) and (11) in (22) yields

w̃LCMV = U†
(
UU†

)−1
w̄LCMV + w̃uc, (23)

where we also used the invertibility of UU†. It can be easily deduced that the BFs in the original and

transformed domains are equivalent as their outputs coincide:

w̃†
LCMVz(ℓ) = w̄†

LCMVz̄(ℓ). (24)

In practice the ATFs of the speakers are unknown, and difficult to estimate. A practical solution can

be obtained by replacing the sources in (12) with filtered versions thereof [21], [22], [26], [27]. Let

hpref; p = 1, . . . , P be such filters. The RTF of the pth source in the transformed domain is defined as:

hp , h̃
p

hpref
. (25)

The filters hpref; p = 1, . . . , P will be determined in Sec. IV. Note that these procedures may require

non-overlapping activity patterns of the speakers.

Define the transformed ATF and RTF matrices of dimensions M × P , respectively:

H̃ ,
[
h̃
1 · · · h̃

P
]

(26a)

H ,
[
h1 · · · hP

]
. (26b)

The modified constraints set is finally given by substituting H̃ by H in (10):

H†wLCMV = g. (27)

The modified centralized LCMV-BF (in the transformed domain), which satisfies the modified

constraints set in (27), is denoted by wLCMV and is given in closed-form, similarly to (22):

wLCMV =wuc +U†
(
UΦvvU

†
)−1

×UH

(
(UH)†

(
UΦvvU

†
)−1

UH

)−1

g. (28)
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where wuc is an arbitrary vector lying in the null-subspace of the column-subspace of U†. Similarly to

(18b),(18c) we identify that the component of wLCMV which lies in the column-subspace of U† is:

wu
LCMV =U†

(
UΦvvU

†
)−1

×UH

(
(UH)†

(
UΦvvU

†
)−1

UH

)−1

g. (29)

The GSC-form implementation of (29), denoted centralized GSC-BF [19], [21], is obtained by splitting

wu into two components:

wu
LCMV , qGSC −BGSCfGSC. (30)

Both qGSC and the columns of BGSC lie in the column-subspace of U†. The vector qGSC, denoted fixed

beamformer (FBF), lies in the column-subspace of H. qGSC is responsible for maintaining the modified

constraints set (27), and equals:

qGSC = H
(
H†H

)−1
g. (31)

The blocking matrix (BM) matrix BGSC blocks the RTFs of the constrained speakers. Explicitly,

BGSC
†H = 0. (32)

Since the ranks of U† and H are M̄ and P , respectively, the rank of BGSC is M̄ −P and its dimensions

are M×
(
M̄ − P

)
. The BM is not unique and can be obtained in several ways, for example, as suggested

in [12], [28], by applying the singular value decomposition (SVD). To construct the BM, the SVD is

applied to the M̄ × P matrix UH, rather than H, and then projected to the transformed domain. Using

this procedure a M × (M̄ − P ) BM is obtained. Denote the noise canceler (NC) by an (M̄ − P ) × 1

vector fGSC. According to [12] it equals:

fGSC =
(
BGSC

†ΦvvBGSC

)−1
BGSC

†ΦvvqGSC. (33)

Note that the invertibility of BGSC
†ΦvvBGSC is guaranteed by the definition (14b) and by the BM

construction procedure above.

To enable the construction of the DGSC in Sec. IV, an extended GSC-structure is proposed:

w , q−Bf (34)
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where the regular GSC components, qGSC, BGSC and fGSC, are replaced by:

q =qGSC +Ba+ quc (35a)

B =BGSC +Buc (35b)

f =
(
B†ΦvvB

)−1
B†Φvvq. (35c)

Here, the regular FBF qGSC is extended by the vectors Ba and quc, and the regular BM BGSC is

extended by the matrix Buc. The extensions quc and Buc lie in the columns null-subspace of the matrix

U†, and Ba lies in null-subspace of H. For any choice of a, quc, Buc the modified constraints set (27)

is maintained. Note that the regular GSC can be obtained as a special case of (35a), (35b) and (35c) by

setting a = 0, quc = 0 and Buc = 0. As will be seen in the sequel, the introduction of a ̸= 0, quc ̸= 0

and Buc ̸= 0 will enable us to derive a distributed version of the GSC.

Now, we show that:

w†z(ℓ) = w†
LCMVz(ℓ) (36)

i.e., that w and wLCMV are equivalent. By substituting (35a), (35b), (35c) in (34), it is evident that:

w =qGSC +Ba+ quc −B
(
B†ΦvvB

)−1
B†Φvvq

(33)
= qGSC −BGSCfGSC

+ quc −Buc
(
B†

GSCΦvvBGSC

)−1
B†

GSCΦvvqGSC

(29)
= wu

LCMV +wuc (37)

where wuc is identified as:

wuc = quc −Buc
(
B†

GSCΦvvBGSC

)−1
B†

GSCΦvvqGSC. (38)

This concludes the proof of the equivalence between the extended and the regular GSC-structures.

The output signal of the proposed GSC-structure is given by:

y(ℓ) ,w†z(ℓ) (39)

=yFBF(ℓ)− yNC(ℓ)

where yFBF(ℓ) and yNC(ℓ) are the outputs of the upper and lower branches of the GSC, respectively:

yFBF(ℓ) ,q†z(ℓ) (40a)

yNC(ℓ) ,f †u(ℓ) (40b)

u(ℓ) ,B†z(ℓ) (40c)
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and u(ℓ) are the noise reference signals at the output of the BM. Substituting the constraints set of (27)

in (39) yields:

y (ℓ) =
P∑

p=1

g∗ph
p
refs

p (ℓ) +w†v (ℓ) . (41)

Note that the output of the GSC in the transformed domain and, by equivalence, the LCMV in the

original domain, is comprised of a summation of filtered versions of the P sources and a residual noise

component. It is interesting to compare the different combinations of the constrained sources at the output

of the regular LCMV-BF (12) and the extended GSC-BF (41).

In conclusion, applying a transformation U† that preserves the rank-M̄ signal subspace, guarantees

the equivalence between the LCMV-BFs in the original and the transformed domains. Furthermore, an

equivalent extended GSC structure exists in the transformed domain. Its optimality can be guaranteed by

designing a FBF (35a) which satisfies the transformed constraints set (27), and by designing a BM (35b)

with M̄ − P linearly independent noise references.

In the following section we propose a specific transformation U which enables the construction of a

distributed version of the extended GSC-BF.

IV. DGSC

A recursive distributed version of the GSC-BF is now proposed. We present a specific transformation

matrix U which conveniently splits the centralized GSC into a sum of N GSC-BFs, denoted wn for

n ∈ {1, . . . , N}, operating in each of the WASN nodes. The proposed transformation matrix consists of

N sub-matrices:

U ,
[
U1 · · · UN

]
(42)

where the transformed inputs of the nth node are constructed by

zn(ℓ) , U†
nz̄(ℓ) (43)

and the concatenation of all transformed inputs yields:

z(ℓ) ,
[
zT1 (ℓ) · · · zTN (ℓ)

]T
. (44)

Note that Un is an M̄ ×Mn matrix and the corresponding transformed input zn(ℓ) is an Mn × 1 vector

for n = 1, . . . , N . The sub-matrices Un; n = 1, . . . , N will be later defined.

The transformed inputs of each node will comprise all of its local microphone signals and a subset of

the P shared signals. With the proposed transformation each node has at least P input signals, allowing
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for P constraints to be maintained locally, without unnecessary sacrificing degrees of freedom, as will

be shown in the following sub-sections. In this section, the selection of the P shared signals is arbitrary,

and should only satisfy linear independence. We will elaborate on this matter in Sec. IV-C. A specific

and simple selection of the P shared signals is given in Sec. V. The N outputs of the GSC-BFs, denoted

yn(ℓ) for n = 1, . . . , N , and the P shared signals are transmitted in the WASN, where:

yn(ℓ) , w†
nzn(ℓ) (45)

and wn is the GSC-BF at the nth node. Hence, a total of N + P transmission channels are required by

the algorithm. These channels effectively extend the number of available microphones at each node and

should be continuously broadcast (also after the algorithm has converged). Note that for a node n that

comprises a single microphone, i.e., M̄n = 1, no communication-bandwidth reduction is obtained, since

the single microphone signal is transmitted. The global GSC-BF is given by augmenting the N nodes’

BFs:

w ,
[
w†

1 · · · w†
N

]†
. (46)

The final output of the algorithm is obtained by substituting (44), (45) and (46) in (39):

y(ℓ) =

N∑
n=1

w†
nzn(ℓ)

=

N∑
n=1

yn(ℓ). (47)

The GSC-BF at the nth node is given by:

wn , qn −Bnfn (48)

where qn, Bn and fn are the FBF, BM and NC at each node. Substituting (48) in (47), the output of

the algorithm can be restated as:

y(ℓ) =

N∑
n=1

(qn −Bnfn)
† zn(ℓ). (49)

Considering (49), we identify the global components of the GSC-BF (34) as a concatenation of qn and

fn for n ∈ {1, . . . , N}, respectively:

q ,
[
qT
1 · · · qT

N

]T
(50a)

f ,
[
fT1 · · · fTN

]T
. (50b)
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The global BM, B, is constructed as a block-diagonal matrix with N blocks:

B , blkdiag
{

B1, · · · , BN

}
. (51)

Similarly to the notation in (39), (40a), (40b), (40c) for the global GSC, the outputs of the upper and

lower branches, and the noise references at the nth node, are defined as:

yn(ℓ) ,yFBF
n (ℓ)− yNC

n (ℓ) (52a)

yFBF
n (ℓ) ,q†

nzn(ℓ) (52b)

yNC
n (ℓ) ,f †nun(ℓ) (52c)

un(ℓ) ,B†
nzn(ℓ). (52d)

The global noise references vector is given by augmenting the noise reference signals of all nodes:

u(ℓ) ,
[
uT
1 (ℓ) · · · uT

N (ℓ)
]T

. (53)

A proper selection of P shared signals ensures that the number of noise references at the output of the

global BM is M̄−P , and hence satisfies the requirement that B†ΦvvB is a full-rank (M̄−P )×(M̄−P )

matrix.

In the following, we prove analytically that the proposed DGSC converges to the centralized GSC.

In Sec. IV-A we propose a proper transformation matrix U, that will allow us to split the BF into the

structure defined by (49). We show that the proposed transformation matrix preserves the rank-M̄ signals

subspace, as required for the equivalence shown in Sec. III. The design of the FBF, the BM, and the NC

of the DGSC is presented in Secs. IV-B,IV-C,IV-D. This structure is shown to satisfy the requirements

of Sec. III.

A. The transformation matrix

In the following, we define some notations for formulating the DGSC. The node that transmits the

shared signal of the pth speaker is denoted as the “owner” of the pth source. In Sec. V we describe the

procedure for selecting the owners of each of the P signals1, and for generating the shared signals. Denote

by χ(p) the index of the node which is the owner of the pth source. The shared signals are denoted by

rp(ℓ); p = 1, . . . , P . Consider the pth shared signal, corresponding to the pth source. Assume that the

1A node can be the owner of several sources.
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pth source is owned by the nth node, i.e., χ(p) = n. We suggest to construct the shared signal as:

rp(ℓ) , (dp
n)

† z̄n(ℓ)

= (dp
n)

†T†
n

 P∑
p=1

h̄
p
sp (ℓ) + v̄ (ℓ)

 (54)

where dp
n is an M̄n×1 “local” BF that processes only the microphone signals of the nth node. A specific

choice of the BFs dp
n for p = 1, . . . , P and n = χ(p) will be defined in Sec. V.

Denote by Pn ,
{

pn(1), · · · , pn(Pn)
}

the set of sources owned by the nth node, and by

Pn , |Pn| the number of sources owned by the nth node. The shared signals generated by the nth node,

are defined in a vector notation by the Pn × 1 vector:

rn(ℓ) ,
[
rpn(1)(ℓ) · · · rpn(Pn)(ℓ)

]T
(55)

=D†
nz̄n(ℓ) (56)

where

Dn ,
[
d
pn(1)
n · · · d

pn(Pn)
n

]
. (57)

The M̄n×Pn dimensional matrix Dn should be properly constructed to have a rank Pn. As each source

is exclusively owned by a single node

P =

N∑
n=1

Pn. (58)

The P × 1 vector of all shared signals is constructed by augmenting the contributions of all nodes:

r(ℓ) ,
[
rT1 (ℓ) · · · rTN (ℓ)

]T
. (59)

Note, that some of the nodes may own no sources. For instance, suppose that the n′th node does not own

any source. In that case, Pn′ = 0 and the corresponding vector of shared signals rn′ (ℓ) will be empty.

The set of indexes of the P speakers is denoted by P , {1, . . . , P}. Denote the set of shared signals

that the nth node receives as Ṗn. It comprises the indexes of all sources except the self-owned sources:

Ṗn ,P\Pn

=
{

ṗn(1) · · · ṗn(Ṗn)
}

(60)
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where \ denotes the set subtraction operation and Ṗn = |Ṗn|. The Ṗn×1 vector of shared signals received

by the nth node is denoted by:

ṙTn (ℓ) ,[
rT1 (ℓ) · · · rTn−1(ℓ) rTn+1(ℓ) · · · rTN (ℓ)

]
. (61)

As previously defined in (43), the signals available for processing at the nth node are denoted by zn(ℓ),

an Mn × 1 vector:

zn(ℓ) , U†
nz̄(ℓ)

where

Un ,
[
Tn Ṫn

]
(62a)

Ṫn ,
[
T1D1 · · · Tn−1Dn−1

Tn+1Dn+1 · · · TNDN

]
. (62b)

From (62a), the number of transformed input signals at the nth node is given by:

Mn = M̄n + Ṗn. (63)

Note that Tn and Tn′ ∀n ̸= n′ are linearly independent, since they comprise different microphones.

Now, since the rank of Dn in (57) is Pn, it follows that the rank of TnDn is also Pn. Hence, we argue

that the rank of Ṫn is
∑

n′ ̸=n Pn′ = Ṗn. A similar argument can be applied to Un. Constructed as a

concatenation of Tn and Ṫn, its rank equals Mn.

We designate the pth shared signal, rp(ℓ), as the reference microphone for the pth source RTF (25).

We identify the acoustic transfer function (TF) relating the pth source and the pth shared signal (54) as:

hpref , (dp
n)

†T†
nh̄

p
. (64)

Now, the pth RTF (25) can be defined with respect to the pth shared signal. Considerations for constructing

dp
n; p = 1, . . . , P will be discussed in Sec. V.

The proposed M̄ ×M dimensional transformation matrix is finally given by:

U ,
[
U1 · · · UN

]
(65)

where we note that

M =

N∑
n=1

Mn =

N∑
n=1

(
M̄n + Ṗn

)
=M̄ + (N − 1)P. (66)
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It can be easily shown that the rank of the column-subspace of U is M̄ , since a permutation of[
T1 · · · TN

]
= IM̄ is its sub-matrix. Hence, U is a valid transformation matrix, rendering w

and w̄LCMV equivalent (24).

According to (43) and (62a), the transformed input vector in the nth node is the Mn-dimensional

vector:

zn(ℓ) =
[
z̄Tn (ℓ) ṙTn (ℓ)

]T
(67)

where the received shared signals at the nth node are given by the Ṗn × 1 vector ṙn(ℓ) , Ṫ
†
nz̄(ℓ).

Examining (3) and (43), the transformed inputs vector of the nth node is given by:

zn(ℓ) = H̃ns(ℓ) + vn(ℓ) (68)

where H̃n = U†
nH̄ is an Mn × P matrix and vn(ℓ) = U†

nv̄(ℓ).

Define

Hr , D†H̄ (69)

where D is defined as

D ,
[
T1D1 · · · TNDN

]
(70)

and Dn is defined in (57). The elements of the P ×P matrix Hr are the ATFs relating the speakers and

the P shared signals. We assume that Hr is a full rank matrix. The condition for the invertibility of Hr

is given is Sec. V.

We now show that the rank of H̃n is P for n = 1, . . . , N . Notice that the matrix Hr is a column

permutation of the P × P matrix:  Dn 0M̄n×Ṗn

0Ṗn×Pn
IṖn×Ṗn

†

H̃n.

Since P = rank {Hr} ≤ rank
{
H̃n

}
≤ P , we conclude that rank

{
H̃n

}
= P .

Determining U as above is instrumental for transforming, the centralized GSC-BF into a sum of N

GSC-BFs in the transformed domain. The total output of the DGSC algorithm is available at each of the

nodes in the WASN.

In the following sections we substitute H̃n by the RTFs matrix

Hn , U†
nH (71)

for n = 1, . . . , N . A block-diagram of the proposed algorithm is depicted in Fig. 1.
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Ṗn × 1

P

NM̄n × 1 (Mn − P )× 1 fn

Fig. 1. The DGSC.

B. The distributed FBF

Had H been known to all nodes, it would have been possible to calculate the classic centralized FBF,

qGSC. In our case, we propose a distributed FBF consisting of a summation of local FBFs, which are

calculated from the transformed RTFs at each node. Explicitly, the proposed distributed FBF at the nth

node is defined as:

qn , 1

N
Hn

(
H†

nHn

)−1
g. (72)

As Hn equals H̃n up to a different column scaling, its rank equals P . Therefore, H†
nHn is an invertible

matrix. As stated earlier, the FBF is not unique, and can have different forms with different selections of

a,quc,Buc in (35a),(35b). Various choices of the FBF will differ in their robustness to estimation errors.

It can be easily verified, by substituting (72) in (50a), that the global distributed FBF (35a) satisfies
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the global constraints set (27) since

H†q =

(
N∑

n=1

H†
nqn

)

=
1

N

N∑
n=1

g

=g. (73)

This simple FBF design utilizes each of the WASN microphones and is not optimal in any sense. The

robustness analysis of the proposed algorithm to estimation errors is out of the scope of the current

contribution.

C. The distributed BM

As mentioned earlier, the BM is not unique, and several procedures for its construction are available.

Recently, we have proposed an efficient implementation of a sparse BM [28]. Similarly to the construction

of the BM in Sec. III, we propose that the nth node will construct a transformed BM by applying the

SVD to Hn, for n = 1, . . . , N . The SVD of Hn is

Hn =
[
Γn Bn

] Λn

0(Mn−P )×P

Θ†
n. (74)

where the column-space of Hn is spanned by the column-space of Γn. The null-subspace of Hn is

spanned by the column-subspace of Bn and hence is an adequate BM at the nth node. Since the column

rank of Hn is P , The dimensions of the BM at the nth node are Mn × (Mn − P ), and its column rank

is Mn − P .

Next, we prove that B is a valid BM. From its construction (51), it trivially blocks H, hence, in order

to complete the proof, we need to show that B†ΦvvB is of full-rank. From the definition of Φvv in

(14b), and since Φ̄vv is full-rank (rank-M̄ ), the latter condition is equivalent to showing that the column

rank of UB =
[
U1B1 · · · UNBN

]
is M̄ − P .

The rank of Un is Mn. A one-to-one linear transformation from Un to
[
Qn H̄

]
exists for n =

1, . . . , N where Qn is an M̄ × (Mn − P ) matrix orthogonal to H̄. It follows that U1, . . . ,UN share

at least P degrees of freedom (the columns of H̄). Now, since the rank of U is M̄ , we conclude that

U1, . . . ,UN share exactly P degrees of freedom. Hence, the rank of
[
Q1 · · · QN

]
is M̄ − P . By

construction, Qn is an M̄×(Mn−P ) BM of H̄, and its Mn−P outputs Q†
nz̄(ℓ) are equivalent (represent

the same noise signals) to the Mn − P outputs B†
nzn(ℓ) = B†

nU
†
nz̄(ℓ). Finally, UB is a concatenation
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of the sub-matrices UnBn for n = 1, . . . , N . Hence, it has the same rank as the concatenation of

Qn for n = 1, . . . , N . Based on the above discussion, it is guaranteed that B†ΦvvB is a full-rank(
M̄ − P

)
×
(
M̄ − P

)
matrix.

D. The distributed NC

The normalized LMS (NLMS) adaptation of the global NC in [21] is given by:

f(ℓ) = f(ℓ− 1) + µ
u(ℓ)y∗(ℓ)

Pu(ℓ)
(75)

where Pu(ℓ) is a recursive estimator of the power of the noise reference signals, i.e., E
{
∥u(ℓ)∥2

}
:

Pu(ℓ) = ρPu(ℓ− 1) + (1− ρ)∥u(ℓ)∥2 (76)

where ρ is a forgetting factor (typically 0.8 < ρ < 1). Due to inevitable estimation errors, some of

the speech signals might leak to the noise reference signals. In order to prevent the self-cancelation

phenomenon, which is manifested in a severe speech distortion, the NC is updated according to (75)

only when the speakers are inactive. A perfect voice activity detector (VAD) is assumed for this purpose.

The total output of the algorithm, y(ℓ), is available to all nodes as the summation in (49). As clearly

seen in (75), the noise reference signals at the nth node, un(ℓ), only affect fn(ℓ). Hence, updating the

NC is equivalent to N simultaneous updates of the distributed NCs fn(ℓ); n = 1, . . . , N . Explicitly, the

recursive update of the distributed NC is given by:

fn(ℓ) = fn(ℓ− 1) + µ
un(ℓ)y

∗(ℓ)

Pu,n(ℓ)
(77)

where Pu,n(ℓ) is the estimated power of the global noise reference vector E
{
∥u(ℓ)∥2

}
at the nth node.

We assume that the power of the local noise reference signals at the various nodes are approximately the

same, i.e E
{
∥u(ℓ)∥2

}
= M̄−P

Mn−Pn
E
{
∥un(ℓ)∥2

}
; n = 1, . . . , N . Hence the estimated power at the nth

node is:

Pu,n(ℓ) = ρPu,n(ℓ− 1) + (1− ρ)
M̄ − P

Mn − Pn
∥un(ℓ)∥2. (78)

The latter assumption can be circumvented by sharing estimates of the variance of the noise reference

signals un(ℓ); n = 1, . . . , N in the WASN. Assuming that the noise statistics is slowly varying, the latter

exchange of power estimates does not consume a large bandwidth.
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V. SHARED SIGNALS CONSTRUCTION

Here, we propose a simple procedure for generating the shared signals, which is based on selecting

the microphones with the highest SNR for each of the sources. Since the pth shared signal is used as the

reference signal in the definition of the RTF (64), and since in practice the RTF is unknown and has to

be estimated, it is desired that the SNR of the pth source will be maximal. The SNR of a microphone

with respect to some source p is defined as the ratio between the source power and the power of the

slowly time-varying noise.

As mentioned in Sec. IV, the shared signals should satisfy that the column rank of Hr is P . Therefore,

a microphone that was selected as the shared signal of a certain source, cannot be chosen as a shared

signal for another source, or else the rank of Hr will be lower than P .

During the initialization of the algorithm each node sets Jn ,
{
1, . . . , M̄n

}
the index set of candidate

microphones for shared signals. For each source p ∈ {1, 2, . . . , P} the following procedure is applied.

First, the nth node estimates γpn(j); j ∈ Jn, the pth source SNR at each of its available local microphones,

mn(j); j ∈ Jn. Each node selects the microphone with the highest SNR. The SNR and the index of the

candidate microphone of the nth node are:

γpn ,max
j∈Jn

γpn(j) (79a)

jpn , argmax
j∈Jn

γpn (j) . (79b)

Each node shares the maximal SNR γpn with the rest of the nodes.

The node n′ with the maximum SNR will be declared the owner of the source p, i.e., χ(p) = n′:

χ(p) , argmax
n=1,...,N

γpn. (80)

The n′th node constructs the BF that extracts the pth shared signal

dp
n′ ,

[
01×(jp

n′−1) 1 01×(M̄n′−jp
n′ )

]T
(81)

and removes jpn′ from its set of candidate microphones to own a signal

Jn′ = Jn′\jpn′ . (82)

This way, it is guaranteed that a single microphone will not be chosen more than once. The procedure

is repeated for all sources, resulting in the entire set of shared signals. Note that some nodes may be

the owners of more than a single source, and some nodes may have no ownership on sources. The

proposed method is very simple, and does not require any processing for constructing the shared signals.
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In practice, Hr is usually full-rank, however, this is not guaranteed. In case, that Hr is rank-deficient, a

simple procedure of replacing some of the shared signals until the rank is full can be applied.

VI. A COMPARISON BETWEEN THE DGSC AND THE LC-DANSE

We compare the proposed DGSC and the LC-DANSE [23]. Both algorithms converge to the centralized

LCMV-BF. The LC-DANSE implements a distributed version of the closed-form LCMV, whereas the

DGSC adopts the GSC implementation of the LCMV structure. In the DGSC a common objective to all

nodes, i.e., the classification of desired and competing speakers, yields a single common constraints set.

A more general approach is adopted by the LC-DANSE, which allows node-specific constraint sets. In

practice, this enables each node to define its own objective, i.e., a set of desired and competing speakers.

The LC-DANSE is an iterative algorithm (although, the iterations can be carried out recursively over time),

while the DGSC is a time-recursive algorithm. The GSC structure conveniently decouples the task of

noise reduction from the task of satisfying the constraints set. Hence, allowing the adaptive noise canceler

(ANC) to adjust to variations in the noise statistics. The DGSC requires N + P transmission channels,

whereas the LC-DANSE requires N×P transmission channels. Both algorithms, require estimates of the

sources RTFs. In static scenarios, the DGSC requires a single estimate thereof, whereas in the LC-DANSE,

each iteration requires additional RTF estimates. In the following section, we experimentally compare

the DGSC and the LC-DANSE.

VII. EXPERIMENTAL STUDY

In order to verify the equivalence between the centralized GSC and the proposed DGSC, a comprehen-

sive experimental study is carried out. The validity of the proposed algorithm is tested for narrowband

signals in Sec. VII-A and for speech signals in Sec. VII-B. We compare the following five algorithms,

namely, the centralized closed-form LCMV, the centralized GSC, a single node local GSC (arbitrarily

chosen as the first node), the LC-DANSE and the proposed DGSC algorithm. The comparison criteria

are noise reduction and distortion of the constrained sources. Opposed to the global BFs and the DGSC

algorithms where the number of constraints can be as large as the total number of microphones in the

WASN (P ≤ M̄ ), the local GSC is constrained to handle only scenarios where P ≤ M̄1. The performance

is averaged over multiple Monte-Carlo experiments in various scenarios.

A. Narrowband signals

A WASN comprising N = 4 nodes, each consisting of M̄n = 4 microphones was simulated. We

denote by constrained sources, sources for which desired responses exist and are maintained with a
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proper linear constraints set. Furthermore, we denote by unconstrained sources, all interfering sources

that v̄(ℓ, k) comprises. We examine a total of 28 scenarios: all combinations of P = 1, 2, . . . , 7 constrained

sources and Pi = 1, 3, 5, 7 unconstrained sources. A spatially white Gaussian sensor noise is added to

the microphone signals. In each scenario (a specific selection of P and Pi) ,10 sets of source ATFs and

a vector of desired responses are randomized. For each set, 10 realizations of 105 samples of P + Pi

independent identically distributed (IID) Gaussian processes are randomized. These signals serve as the

constrained and unconstrained sources. Note that in the narrowband case all sources are stationary. A

total of 3200 Monte-Carlo experiments are used for the comparison of the various algorithms. The SNR,

the ratio between the constrained signals power and the sensors spatially white noise, is set to 30dB,

and the interference to noise ratio (INR), the ratio between the unconstrained sources power and the

sensors noise, is set to 25dB. The step-size of the NLMS algorithms is set to µ = 0.25. The results of

the LC-DANSE algorithm are measured after 10 iterations. We assume that the RTFs are known without

estimation errors, hence no distortion to the constrained signals is measured for the centralized LCMV,

the centralized GSC, and the DGSC for all values of P ≤ M̄ = 16. For the single node GSC, there

is no distortion for P = 1, 3 ≤ M̄1 = 4, but for P = 5, 7, due to lack of degrees of freedom (there

are only M̄1 = 4 beams that can be steered), distortion is inevitable. The distortion measured in the

LC-DANSE is also low (< −23dB) in all scenarios. The noise reduction (NR) of the various algorithms

after convergence for Pi = 3 versus the number of constraints, P , is depicted in Fig. 2. The figure

of merit is defined as the ratio between the slowly time varying noise power at the input and at the

output. As expected, the NR of the centralized GSC is about 0.35dB lower than the centralized LCMV.

This is a result of using the LMS algorithm, which suffers from excess MSE. It can be mitigated by

reducing the step-size µ compromising convergence rate. The NR of the proposed DGSC is 0.52dB lower

than the centralized GSC (probably since longer convergence time is required), whereas the of the NR

single node GSC is much lower (from 7.7dB to 47.6dB, depending on the number of constraints). The

NR performance of all BFs reduces as the number of constraints increases. The convergence of the NR

versus the number of samples is depicted in Fig. 3 for a scenario with P = 5 and Pi = 3. Although

the proposed DGSC and the centralized GSC converge to more or less the same NR as the centralized

LCMV, the convergence time of the DGSC is higher. This may result from the higher condition number,

defined as the ratio of the largest and smallest eigenvalues, of the noise references covariance matrix

B†ΦvvB. Higher condition number is known to increase the convergence time [29]. For example, in the

depicted scenario, the average condition number of the noise references covariance matrix of the DGSC

is 6.9dB higher than of the centralized GSC. The latter phenomenon may be attributed to the vector
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a ̸= 0 in (35a), which increases the norm of the ANC in (35c), however, this subject requires further

research.

The ratio of the noise level at the output of the DGSC and the noise level at the output of the centralized

GSC is given in Table I for P = 1, 2, . . . , 8 and Pi = 1, 3, 5, 7.

TABLE I

THE RATIO OF THE NOISE LEVEL AT THE OUTPUTS OF THE DGSC AND THE CENTRALIZED GSC [DB].

P\Pi 1 3 5 7

1 0.03 0.20 0.18 0.26

2 0.08 0.22 0.37 0.44

3 0.32 0.22 0.39 0.62

4 0.25 0.56 0.48 0.75

5 0.51 0.50 0.89 0.66

6 0.38 0.90 0.45 1.01

7 0.15 1.29 0.91 0.95

8 0.31 0.75 0.90 0.84

B. Speech signals

The performance of the various BFs is tested in a simulated room scenario, by using a room impulse

response (RIR) generator [30],[31]. The dimensions of the simulated room are 4m × 3m × 3m, and its

reverberation time is set to T60 = 300ms. An N = 4 nodes WASN where each node comprises M̄n = 2

microphones at a distance of 5cm is set. The nodes are located at the center of each of the four walls, 10cm

from the walls surface and at a height of 1.5m. A desired female speaker and a competing male speaker,

are located in the room as well as two white Gaussian stationary interferences. The figures of merit of

the BFs are tested by 90 Monte Carlo experiments, where in each experiment the sources locations are

randomly selected, and the microphone constellation remains fixed. The room setup of one of the Monte

Carlo experiments is depicted in Fig. 4. The microphone signals are sampled at a sampling rate of 8kHz.

The length of the STFT window is 4096 points with 75% overlap between frames. The estimated RTFs

are double sided filters 3072 coefficient long. They are estimated using the subspace method as in [22].

In the DGSC algorithm, in order to save communication-bandwidth, the signals undergo inverse STFT

prior to the broadcast in the network. We use the overlap and save scheme for applying the filters in

the STFT domain [32],[21]. The SNR improvement, signal to interference ratio (SIR) improvement and

distortion measures of the centralized GSC, the DGSC and the single node GSC for the various Monte
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Fig. 2. The NR of the tested algorithms versus the number of constraints P , for Pi = 3.

Carlo experiments are depicted in Figs. 5,6,7, respectively. The SNR is the ratio between the powers

of the desired speaker and the stationary noise, the SIR is the ratio between the powers of the desired

speaker and the competing speaker, and the distortion is the ratio between the MSE of the desired speech

at the output and the power of the desired speech signal. The SNR and the SIR at the input are set

to 13dB and 0dB, respectively. It is clear from these figures that the NR values of the DGSC and the

centralized GSC are equivalent, and that both outperform the single node GSC. The average figures of

merit of the various algorithms is depicted in Table II. The SNR improvement of the DGSC and the

centralized GSC are similar (20.1dB and 19.3dB, respectively. The slight differences may be explained

as in the narrowband case), while the SNR improvement of the single node GSC is significantly lower

(1.7dB). The SIR improvement and the distortion of the centralized GSC are 22.9dB and −23.0dB,

respectively, whereas the corresponding measures of the DGSC are a bit worse 18.6dB and −20.3dB,

respectively. This may be attributed to differences in the robustness of the BFs against RTF estimation

errors (see discussion in the narrowband case). Due to the significantly lower number of microphones, the
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Fig. 3. The convergence of the tested algorithms versus the number of samples for P = 5 constraints and Pi = 3.

SIR improvement and distortion of the single node GSC (11.0dB and −14.1dB, respectively) are much

worse than the centralized GSC. The centralized GSC and the DGSC exhibit comparable convergence

behaviour as depicted in Fig. 8. Note, that the single node GSC converges much faster, but its overall

performance is very poor.

Sonograms of the various components of the signal received in the first microphone, and the outputs

of the centralized GSC, the DGSC and the single node GSC are depicted in Fig. 9. The equivalence of

the DGSC and the centralized GSC and their superiority to the single node GSC can be deduced from

the figures.

VIII. CONCLUSIONS

In this paper, we have introduced the DGSC, a novel distributed algorithm for speech enhancement in

multiple speakers, noisy and reverberant environment. It is proven analytically that the proposed algorithm

converges to the optimal centralized GSC-BF. The adaptive procedure of the DGSC is based on the low

October 3, 2012 DRAFT



27

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4  

 

Microphone
Desired speaker
Competing speaker
Interference

Fig. 4. The room setup of one of the Monte Carlo simulations.

TABLE II

PERFORMANCE COMPARISON OF THE CENTRALIZED GSC, THE DGSC AND THE SINGLE NODE GSC ALGORITHMS WITH

SPEECH SIGNALS.

Algorithm SNR imp. SIR imp. Dist.

[dB] [dB] [dB]

Cent. GSC 20.1 22.9 −23.0

DGSC 19.3 18.6 −20.6

1 node GSC 1.7 11.0 −14.1

complexity, time recursive NLMS algorithm. A common P linear constraints set, comprising the speakers’

ATF, is shared by all nodes in the network. The algorithm requires N+P transmission channels. The GSC

structure splits the BF into two components. The first component lies in the constraints (speakers) subspace

and the second component lies in its corresponding null-space. The constraints subspace component of the

DGSC is determined at the initialization phase of the algorithm where P shared signals are constructed
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Fig. 5. The SNR improvement of the tested algorithms in various Monte Carlo experiments.

by a selection procedure in the WASN. In static environments this procedure should be applied only at

the initialization stage. The second component is implemented as an adaptive algorithm which converges

in speech-absent time segments.

A comprehensive experimental study validates the equivalence between the centralized GSC and the

DGSC algorithms. The proposed algorithm was tested successfully for both narrowband and speech

signals in multiple Monte Carlo experiments.
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Fig. 9. Sonograms of the various components of the signal received in the first microphone, and the outputs of the centralized

GSC, the DGSC and the single node GSC.
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