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Multi-Microphone Speech Dereverberation and
Noise Reduction Using Relative Early Transfer

Functions
O. Schwartz, S. Gannot, Senior Member, IEEE, and Emanuël A.P. Habets, Senior Member, IEEE

Abstract—In speech communication systems the microphone
signals are degraded by reverberation and ambient noise. The
reverberant speech can be separated into two components,
namely, an early speech component that includes the direct path
and some early reflections, and a late reverberant component that
includes all the late reflections. In this paper, a novel algorithm to
simultaneously suppress early reflections, late reverberation and
ambient noise is presented. A multi-microphone minimum mean
square error estimator is used to obtain a spatially filtered version
of the early speech component. The estimator constructed as a
minimum variance distortionless response (MVDR) beamformer
(BF) followed by a postfilter (PF). Three unique design features
characterize the proposed method. First, the MVDR BF is
implemented in a special structure, named the nonorthogonal
generalized sidelobe canceller (NO-GSC). Compared with the
more conventional orthogonal GSC structure, the new structure
allows for a simpler implementation of the GSC blocks for
various MVDR constraints. Second, In contrast to earlier works,
relative early transfer functions (RETFs) are used in the MVDR
criterion rather than either the entire relative transfer functions
(RTFs) or only the direct-path of the desired speech signal. An
estimator of the RETFs is proposed as well. Third, the late
reverberation and noise are processed by both the beamforming
stage and the PF stage. Since the relative power of the noise
and the late reverberation varies with the frame index, a com-
putationally efficient method for the required matrix inversion is
proposed to circumvent the cumbersome mathematical operation.
The algorithm was evaluated and compared with two alternative
multichannel algorithms and one single-channel algorithm using
simulated data and data recorded in a room with a reverberation
time of 0.5 s for various source-microphone array distances (1-
4 m) and several signal-to-noise levels. The processed signals
were tested using two commonly used objective measures, namely
perceptual evaluation of speech quality and log-spectral distance.
As an additional objective measure, the improvement in word
accuracy percentage of an automatic speech recognition system
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is also demonstrated.

I. INTRODUCTION

Dereverberation aims at the reduction of reverberation that
is caused by a multitude of reflections from walls and other
objects and has become a major research subject in the
last decade due to theoretical advances in understanding the
reverberation phenomenon and available computational power.
Highly reverberant speech can be difficult to understand for
both humans and machines, and can lead to listening fatigue.
Existing dereverberation methods can be divided into two
categories: reverberation cancelation and reverberation sup-
pression [1]. Reverberation cancelation can be accomplished
directly by inverting the acoustic system, or indirectly by first
identifying and then equalizing the acoustic system. Since the
clean speech is unobservable, these algorithms need to blindly
estimate the acoustic system or its inverse directly. Reverber-
ation suppression algorithms circumvent the cumbersome task
of blind identification of the acoustic system and instead apply
spectral enhancement procedures.

In the category of reverberation cancelation, multichannel
linear prediction techniques were used to blindly equalize the
acoustic impulse response (AIR) without the need to first
identify the AIRs [2], [3]. In [4], a dual-channel reconstruction
method was presented based on cepstrum techniques. A single-
channel dereverberation method was presented in [5] based
on the harmonic structure of the anechoic speech signal.
The direct path was approximated by extracting its harmonic
parameters from the reverberant signal and then the AIR was
estimated by a division in the frequency domain. In [6], a two
stage multichannel dereverberation method was proposed. In
the first stage, the AIRs were extracted from the null subspace
of the data matrix. In the second stage, these estimates were
used to equalize the microphone signals using the classi-
cal multichannel inverse theorem (MINT) method [7]. More
recently, researchers proposed to apply channel shortening
techniques to compute the inverse of the AIRs [8]–[11].
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Various technique fall into the category of reverberation
suppression. Polack, in [12], formulated the AIR as an in-
dependent and identically distributed white Gaussian noise
with an exponential decaying variance. This property was first
utilized in [13] to show that the late reverberant power spectral
density (PSD) can be expressed as a delayed and attenuated
version of the instantaneous reverberant PSD. In [13], [14], a
spectral subtraction algorithm was used to obtain an estimate
of the early speech component using Polack’s statistical model.
This method was extended to the multi-microphone case
in [15], by employing the single-channel spectral subtraction
algorithm to the output of a delay and sum (DS) beamformer
(BF). In this case, the late reverberant PSD was estimated by
computing the spatial expectation.

In [16], [17], both reverberation and noise were consid-
ered by adding the late reverberation and noise PSDs. Since
Polack’s model does not take the direct-path into account,
the reverberant PSD is overestimated when the direct-to-
reverberation ratio (DRR) is larger than 0 dB. A model and
PSD estimator that takes the DRR into account was proposed
in [1], [18].

In [19], a single-channel estimate maximize (EM)-based
algorithm for speech dereverberation and noise reduction was
presented. The acoustic path was modeled as an auto regressive
(AR) system, and the anechoic speech PSD was given an all-
pole model. In the E-step, the reverberant speech is estimated
(without the noise component), and in the M-step the acoustic
path and the speech parameters are estimated (the noise
parameters are assumed to bo known). Dereverberation is
obtained by applying a multichannel Wiener filter. The EM
algorithm is also used in [20]. The acoustic path of the late
reverberation is modelled as an AR system. In the E-step, the
Kalman smoother is applied to estimate the reverberant speech
while in the M-step the AR coefficients of the acoustic path
are estimated.

The minimum variance distortionless response (MVDR)
BF, usually implemented using a generalized sidelobe can-
celler (GSC) structure [21], is a popular noise reduction
algorithm [22], [23] that can be also useful for dereverber-
ation. In [24] the AIRs are modelled as convolutive transfer
function (CTF) to circumvent the requirement for very long
processing frames in high reverberation levels. Similar to [23],
the algorithm in [24] focuses on noise reduction and yields
reverberant outputs. In [25] the fixed BF block in the GSC
structure is replaced by a simple DS BF, while other blocks
remain intact. It is interesting to note that the branches of

the resulting GSC are not orthogonal anymore. In the current
contribution we further elaborate on this issue.

In [26]–[29], a structure comprised of an MVDR BF and
a postfilter (PF) was proposed. The MVDR was designed to
suppress the ambient noise and the AIRs were modeled as
delayed versions of the anechoic speech. The late reverberation
was only suppressed by the PF stage, using a late reverberation
level estimate based on Polack’s model. In [29], the spatial
coherence matrix of the noise is either estimated from the
noisy data or alternatively, if an insufficient number of noise-
only frames is available, set as a noise matrix of ideal
diffused sound field with diagonal loading. In [30], a two
stage approach was presented to jointly suppress reverberation
and noise. In the first stage, a super-directive beamformer
(SDBF) is used to generate a reference signal consisting of
a dereverberated speech signal and residual noise. In the
second stage, the microphone signals were utilized to obtain
an estimate of the dereverberated speech signal. Various spatial
filter structures and estimators were considered.

In the current contribution, we propose a multichannel
minimum mean square error (MMSE) estimator (i.e. the mul-
tichannel Wiener filter (MWF)) to jointly reduce reverberation
and noise. The estimator can be decomposed into a MVDR
BF followed by a single-channel Wiener filter [31], [32]. In
an ideal diffuse sound field the MVDR BF [33], [34] attains
maximum directivity [35]. Therefore, by adopting the well-
established modeling of the late reverberation as a diffuse
sound field [36], [37], the MVDR BF is a natural choice for
reverberation reduction.

The AIR is modeled by two components (that are as-
sumed to be uncorrelated), namely the early reverberation
(including the direct path and some early reflections) and
the late reverberation [14], [36], [38]. The early reverberation
is characterized by discrete reflections of sound waves on
the walls and other rigid objects. In the short-time Fourier
transform (STFT) domain, the early speech component can be
modeled as a multiplication of the transformed signal frame
and the frequency response of the early component of the
AIR. The late reflections are usually dense, since they are a
summation of many reflections arriving from all directions.
Therefore, the late reverberation and ideal diffuse sounds field
have very similar spatial properties. In the STFT domain the
late reverberation can be modelled as a diffuse sound field
with a time-varying level.

The MVDR BF is conveniently implemented in a GSC
structure, comprised of three blocks in two branches. The
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fixed beamformer (FBF), which constitutes the upper branch,
is responsible for maintaining a desired response towards the
signal of interest. The lower branch, responsible of interference
reduction, is comprised of the other two blocks: The blocking
matrix (BM) blocks the signal of interest while the noise
canceller (NC) cancels the interference. The two branches are
usually orthogonal.

In our work, we have taken a unique design approach for
the blocks of the GSC. First, we have adopted a GSC structure
in which the two branches are nonorthogonal. Similarity,
to [25], the FBF is implemented as a DS BF in order to
enhance the direct arrival while incoherently adding the early
reflections. In contrast to many earlier works, the proposed
lower branch is not orthogonal to the upper branch. The BM
is constructed such that the entire early speech component
is blocked. For that, estimates of the relative early transfer
functions (RETFs) are required. We propose to use the least
squares (LS) estimator for this purpose. Since the interference
signal in our case is highly non-stationary (since reverbera-
tion is actually a speech signal), implementing an adaptive
solution is a cumbersome task. We are therefore proposing
to implement the NC in a closed-form multichannel MMSE
structure, utilizing the late reverberation level obtained by
previously developed estimators. An efficient implementation
of this block is then derived.

This paper is organized as follows. In Section II we for-
mulate the joint dereverberation and noise reduction prob-
lem. In Section III the optimal MMSE multichannel solution
is presented. In Section IV the MVDR component of the
multichannel MMSE BF is implemented in a nonorthogonal
generalized sidelobe canceller (NO-GSC) structure. In Sec-
tion V estimation procedures for the various parameters of the
system, namely the RETF and the interference PSD matrix,
are presented. In Section VI, the performance of the proposed
algorithm is evaluated. Section VIII is dedicated to concluding
remarks.

II. PROBLEM FORMULATION

We formulate the problem in the STFT domain where m de-
notes the time frame index and k denotes the frequency index.
The late reverberation and the ambient noise are modeled as
additive interference such that the ith microphone signal can
be expressed as:

Yi(m, k) = Xe,i(m, k) +Ri(m, k) + Vi(m, k), (1)

where Ri(m, k) and Vi(m, k) denote the additive late rever-
beration and ambient noise received by the ith microphone,
respectively. The early speech component of the observed
signal microphone signal is denoted by Xe,i(m, k). We further
assume that the various components Xe,i(m, k), Ri(m, k) and
Vi(m, k) are mutually uncorrelated.

We also assume that the observed early speech component at
the ith microphone can be approximated in the STFT domain
as a multiplication of an anechoic speech signal S(m, k) and
the slowly time-varying early transfer function (ETF) Ge,i(k),
that models the direct path and some early reflections from
the source to the ith microphone:

Xe,i(m, k) = Ge,i(k)S(m, k). (2)

The N microphone signals can be stacked in a vector form:

y(m, k) =
[
Y1(m, k) Y2(m, k) . . . YN (m, k)

]T
= xe(m, k) + r(m, k) + v(m, k)

= ge(k)S(m, k) + r(m, k) + v(m, k), (3)

where

xe(m, k) =
[
Xe,1(m, k) Xe,2(m, k) . . . Xe,N (m, k)

]T
r(m, k) =

[
Y1(m, k) Y2(m, k) . . . YN (m, k)

]T
v(m, k) =

[
V1(m, k) V2(m, k) . . . VN (m, k)

]T
ge(k) =

[
Ge,1(k) Ge,2(k) . . . Ge,N (k)

]T
.

It should be noted that the signal model in (3) differs
from the model proposed in [23], in which the microphone
signal was defined as the sum of i) the entire reverberant
signal that consists of the direct-path, early reflections, and
late reverberation, and ii) the noise signal.

The probability density function (p.d.f.) of the observed data
given the anechoic speech and the p.d.f. of the anechoic speech
are, respectively, modelled as a complex Gaussian probability
functions:

f(y(m, k)|S(m, k); ge(k),Φ(m, k))

= NC (y(m, k); ge(k)S(m, k),Φ(m, k)) (4)

f(S(m, k);φS(m, k)) = NC (S(m, k); 0, φS(m, k)) (5)

where Φ(m, k) is the PSD matrix of the late reverberation
plus ambient noise:

Φ(m, k) = Φr(m, k) + Φv(m, k), (6)

with Φr(m, k) = E{r(m, k)rH(m, k)} and Φv(m, k) =
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E{v(m, k)vH(m, k)} the PSD matrices of the late reverber-
ation and the ambient noise, respectively. The PSD of the
anechoic speech is denoted φS(m, k) = E{|S(m, k)|2}. The
conjugate-transpose of a is denoted aH and E{A} denotes
the mathematical expectation of the random variable A.

The aim of this work is to provide an optimal multichannel
estimate of a filtered version of the source signal that is given
by

SF (m, k) = F (k)S(m, k) (7)

where F (k) denotes the transfer function of a filter. The
MMSE estimate of SF (m, k) is then given by

ŜF (m, k) = E {SF (m, k)|y(m, k)} . (8)

In the following section the MMSE estimator of SF (m, k)

is implemented as a concatenation of the MVDR BF and a
single-channel Wiener filter.

III. OPTIMAL MULTICHANNEL DEREVERBERATION AND

NOISE REDUCTION

In this section we first describe the optimal MMSE estimator
of the filtered signal SF (m, k) and then discuss various
possible choices for F (k). To simplify the derivation, we first
rewrite the received signal model (3) in terms of the filtered
signal:

y(m, k) =
ge(k)

F (k)
F (k)S(m, k) + r(m, k) + v(m, k)

= g̃e(k) SF (m, k) + r(m, k) + v(m, k) (9)

where g̃e(k) , ge(k)/F (k). Define also, φSF
(m, k) as the

PSD of the filtered version of the source signal.

A. MMSE Estimator

Since SF (m, k) and y(m, k) are assumed to be zero-mean
complex Gaussian random variables, the MMSE estimator of
SF (m, k) can be calculated using:

ŜF (m, k) = E{SF (m, k)yH(m, k)} (10)

× E{y(m, k)yH(m, k)}−1 y(m, k)

= φSF
(m, k)g̃H

e (k)

×
[
φSF

(m, k)g̃e(k)g̃H
e (k) + Φ(m, k)

]−1
y(m, k). (11)

Using the Woodbury identity [39] and some straightforward
algebraic steps, ŜF (m, k) can be expressed as

ŜF (m, k) =
φSF

(m, k)

φSF
(m, k) + [g̃H

e (k)Φ−1(m, k)g̃e(k)]−1︸ ︷︷ ︸
HW(m,k)

× g̃H
e (k)Φ−1(m, k)

g̃H
e (k)Φ−1(m, k)g̃e(k)︸ ︷︷ ︸

hH
MVDR(m,k)

y(m, k). (12)

The MVDR BF, hMVDR(m, k), is the well-known solution of
the following optimization criterion:

hMVDR(m, k) = argmin
h

hHΦ(m, k)h

subject to hH g̃e(k) = 1 (13)

and HW(m, k) is the single-channel Wiener filter at the output
of hMVDR(m, k).

B. Alternative Constraints

Different choices for F (k) yield different array manifold
vectors, g̃e(k). Some array manifold vectors can be more
easily estimated than the others.

With F (k) = 1 we aim at estimating the anechoic speech
S(m, k), requiring an estimate of ge(k). Although this would
be a very attractive choice, it remains a major challenge to
blindly estimate the ETFs ge(k).

Adopting the idea presented in [23], we can aim instead
at estimating the early speech component, as received by the
first microphone by using F (k) = Ge,1(k). As a result, we
require an estimate of the RETF g̃e(k) that can be estimated
more easily compared to the ETF ge(k).

Here we aim at a more general filtered version of the early
speech component. We can either apply a single-channel filter
to the anechoic speech, as proposed in [40], or a multichannel
filter, as proposed in [25], [30], [41]. Here, the latter idea is
adopted such that

F (k) = hH
d (k) ge(k). (14)

where hd(k) denotes a filter vector of a signal-independent
BF. In contrast to the aforementioned works, we aim here at
finding a spatially filtered version of the ETFs, hH

d (k) ge,
rather than the acoustic transfer functions (ATFs), given by
hH

d (k) g.
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IV. A NONORTHOGONAL GSC AND POSTFILTERING

The MVDR BF is conveniently implemented in a GSC
structure [23], [42]:

hMVDR(m, k) = h0(k)−B(k)hNC(m, k) (15)

where h0(k) is the FBF satisfying hH
0 (k)ge(k) = F (k), B(k)

is the BM satisfying BH(k)ge(k) = 0, and hNC(m, k) is the
NC that is responsible of mitigating the residual reverberation
and ambient noise at the output of the FBF.

In previous works the MVDR filter vector is commonly
decomposed into two orthogonal filter vectors. In this work
we propose to decompose the MVDR filter vector into two
nonorthogonal filter vectors, as illustrated in Fig. 1.

A. Fixed Beamformer

Following the orthogonal decomposition, the fixed BF is
given by [23]

h0(k) =
ge(k)

‖ge(k)‖2
F ∗(k) =

g̃e(k)

‖g̃e(k)‖2
, (16)

which can be slowly time-varying and difficult to implement.
Specifically, it can be easily verified that this FBF is a
noncausal filter and might be relatively long.

Using the constraint in (14), the FBF is given by

h0(k) = hd(k). (17)

It can be easily verified that

hH
0 (k)y(m, k) = hH

d (k)ge(k)︸ ︷︷ ︸
F (k)

S(m, k)

+ hH
d (k) [r(m, k) + v(m, k)]︸ ︷︷ ︸
residual reverberation and noise

. (18)

The latter choice for the FBF is independent of ge(k), and
therefore no transfer functions have to be estimated to con-
struct the FBF.

By selecting hd(k) =
[

1 0 . . . 0
]T

it follows that
F (k) = Ge,1(k). We, however, are using instead the well-
known DS BF given by:

hd(k) =
1

N

[
1 exp(jkτ2) . . . exp(jkτN )

]T
, (19)

where τi is the time difference of arrival (TDOA) between the
ith and the 1st microphone. Apart from the direct path, all of
the other early reflections are assumed to be incoherent, such
that the DS BF enhances the direct path and suppress the
early reflections. Alternatively, we can use a super-directive
BF, as proposed in [30]. While the SDBF achieves the highest

-
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Fig. 1. Geometric interpretation of the nonorthogonal GSC components.

directivity index, we have chosen the DS BF since it is simpler
to implement and since it achieves the highest white noise gain
(WNG), hence exihibiting higher robustness to sensor gain and
phase mismatches compared with the SDBF.

B. Blocking Matrix

The purpose of the BM is to block the early speech compo-
nents and to provide a good reference for the late reverberation
(and ambient noise). It is very important to avoid leakage of
early speech components to the BM output to mitigate the self-

cancellation phenomenon, which usually results in a severe
speech distortion. Note that the BM does not dependent on
F (k).

As mentioned above, the blocking matrix should sat-
isfy BH(k)ge(k) = 0, and therefore should also satisfy
BH(k)g̃e(k) = 0. Provided that the multiplicative transfer
function (MTF) assumption holds, the sparse blocking ma-
trix [23] based on the RETFs is given by

B(k) =



−G̃∗e,2(k) −G̃∗e,3(k) . . . −G̃∗e,N (k)

1 0 . . . 0

0 1 . . . 0
...

...
. . . 0

0 0 . . . 1


,

(20)
where A∗ denotes the conjugate of A, G̃e,i(m, k) is the RETF,
defined as the ratio of the ETF from the source to the ith mi-
crophone and the ETF from the source to the first microphone
(arbitrarily chosen here as the reference microphone), i.e.,

G̃e,i(k) =
Ge,i(k)

Ge,1(k)
. (21)
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C. Noise Canceller

The NC is obtained by minimizing the interference power
at the output of the MVDR BF. Since the FBF satisfies the
constraint, and the blocking matrix ensures that all reference
signals are uncorrelated with respect to S(m, k), the NC
filters can be obtained by solving the following unconstraint
minimization problem:

hNC(m, k) =

argmin
h

(h0(k)−B(k)h)H Φ(m, k) (h0(k)−B(k)h).

(22)

It is easily verified that h(m, k) is a multichannel Wiener filter,
where the input signals are the BM output signals and the
FBF output signal is the desired signal. If the BM outputs
are indeed free from the early speech components, the Wiener
filter tends only to reduce the residual late reverberation and
ambient noise at the FBF output. Otherwise, cancellation of
the early speech components at the MVDR BF output might
occur. The closed-form solution of (22) is given by:

hNC(m, k) =(
BH(k)Φ(m, k)B(k)

)−1 ×BH(k)Φ(m, k)h0(k).

(23)

D. Postfilter

As shown in [32], [43] and (12), the multichannel Wiener
filter can be decomposed into an MVDR BF and a single-
channel Wiener filter HW(m, k). The single-channel Wiener
filter can be written as

HW(m, k) =
ξ(m, k)

ξ(m, k) + 1
, (24)

where ξ(m, k) is the a priori signal-to-reverberation plus
noise ratio (SRNR) that is usually unobservable. The a priori

SRNR can be recursively estimated by the posterior SRNR as
proposed in [14]:

ξ(m, k) =βr|HW(m− 1, k)|2γ(m− 1, k)

+ (1− βr) max {γ(m, k)− 1, 0} , (25)

where βr is a weighting factor and γ(m, k) is the a posteriori

SRNR at the MVDR output given by:

γ(m, k) =
|wH

MVDR(m, k) y(m, k)|2

φ̃R(m, k) + φ̃V (m, k)
. (26)

The residual reverberation φ̃R(m, k) and the residual noise
φ̃V (m, k) at the output of the MVDR stage are given by
wH

MVDRΦrwMVDR and wH
MVDRΦvwMVDR, respectively.

To minimize speech distortion and musical noise, the
Wiener filter is lower-bounded by a time and frequency
dependent gain Hmin(m, k). In this work, Hmin(m, k) is chosen
such that a weighted minimum attenuation of the noise and
the reverberation is obtained. The lower bound is then given
by

Hmin(m, k) =
Hmin,R φ̃R(m, k) +Hmin,V φ̃V (m, k)

φ̃R(m, k) + φ̃V (m, k)
, (27)

where Hmin,R and Hmin,V are used to control the maximum
amount of reverberation and noise reduction, respectively.

V. PARAMETERS ESTIMATION

The MMSE estimator requires an estimate of two parame-
ters, namely the PSD matrix of the interference and the RETFs.
The PSD matrix of the late reverberation is modeled as a
diffuse sound field and the reverberation level is estimated by
Polack’s model [38]. To estimate the RETFs, we first estimate
the early speech components X̂e,1(m, k), . . . , X̂e,N (m, k) uti-
lizing N single-channel dereverberation filters. Then, the
RETFs are identified using N independent LS estimators.

A. Interference PSD Matrix Estimation

First, we derive an estimator for the interference PSD
matrix. Since the late reverberation and the noise are assumed
to be uncorrelated, the estimation of their PSD matrices can
be made separately. Here we model the late reverberation as
a diffuse sound field with time-varying level.

An estimate of the PSD level at each microphone,
φRi(m, k), can be obtained using Polack’s model [12]
(c.f. [14], [26], [38], [44], [45]) after compensating for the
noise level φ̂V,i(m− L, k) at each microphone:

φ̂R,i(m, k) = exp(−2αRL)

×
[
φ̂Y,i(m− L, k)− φ̂V,i(m− L, k)

]
, (28)

where α = 3 log(10)
T60fs

, L is the time in frames (measured with
respect to the arrival time of the direct sound) indicating the
beginning of late reverberation, R is the number of samples
between two subsequent STFT frames, T60 is the reverberation
time, and fs is the sampling frequency in Hz.

The PSD of Yi(m, k) can be directly estimated from the
microphone signals using

φ̂Y,i(m, k) = βyφ̂Y,i(m− 1, k) + (1− βy)|Yi(m, k)|2 (29)

where βy is a forgetting factor. We assume that the source
is sufficiently far from the microphones and that the late
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reverberant sound field is homogeneous such that the rever-
beration level is approximately equal for all microphones,
i.e., φR,i(m, k) ≡ φR(m, k) for all i ∈ {1, 2, . . . , N}. This
assumption might be violated if the distance between the
speaker and microphones is small. When this assumption
holds, an estimate of the reverberation level is obtained by
averaging the PSD estimates across all channels [26], [28]:

φ̂R(m, k) =
1

N

N∑
i=1

φ̂R,i(m, k). (30)

By modeling the late reverberation as an ideal spherical
diffuse sound field the interference PSD matrix is given by:

Φ(m, k) = φR(m, k)Γ(k) + Φv(m, k) (31)

where Γ(k) is the spatial coherence matrix of the spherical
diffuse sound field [46], [47]

Γ(k) =


sinc

(
fskd1,1

Kc

)
. . . sinc

(
fskd1,N

Kc

)
...

. . .
...

sinc
(

fskdN,1

Kc

)
. . . sinc

(
fskdN,N

Kc

)
 , (32)

where sinc(x) = sin(x)/x, K is the number of frequency bins,
di,j is the inter-distance between microphones i and j, and c
is the sound velocity.

The noise PSD matrix Φv(m, k) can be estimated during
speech-absence by using an estimate of the speech presence
probability (c.f. [48]–[51]). Estimating the noise PSD matrix
is beyond the scope of this contribution.

B. Relative Early Transfer Function Estimation

According to (21), it can be easily verified that

Xe,i(m, k) = G̃e,i(k)Xe,1(m, k); i = 2, . . . , N. (33)

Therefore, an estimate of the RETF G̃e,i(k) can be obtained
using an estimate of the early speech components X̂e,1(m, k)

and X̂e,i(m, k).

Here we propose to use a single-channel dereverberation
filter to estimate the ith early speech component in the MMSE
sense. An estimate of the early speech component is given by

X̂e,i(m, k) = He,i(m, k)Yi(m, k), (34)

where He,i(m, k) denotes the single-channel Wiener filter
applied to the ith microphone that is given by:

He,i(m, k) =
ξi(m, k)

1 + ξi(m, k)
. (35)

The a priori SRNR ξi(m, k) can be recursively estimated

similarly to (25), with the a posteriori SRNR being:

γi(m, k) =
|Yi(m, k)|2

φ̂R,i(m, k) + φ̂V,i(m, k)
. (36)

Here φ̂R,i can be replaced by φ̂R using (30). Finally, a lower
bound is applied to the Wiener filter to control the maximum
attenuation of the noise and reverberation and to limit the
distortion of the early speech component:

Hmin,i(m, k) =
Hmin,r φ̂R,i(m, k) +Hmin,v φ̂V,i(m, k)

φ̂R,i(m, k) + φ̂V,i(m, k)
.

(37)

Multiplying both sides in (34) by X∗e,1(m, k) and taking the
expectation, we find that

φXe,i,Xe,1
(m, k) = G̃e,i(k)φXe,1,Xe,1

(m, k), (38)

which can be used to formulate a LS optimization criterion
for the estimation of the RETF. Assuming that the RETF
are slowly time varying, and hence mat be considered time-
invariant during the latest M time frames, an LS estimate of
G̃e,i(m, k) is given by1:

̂̃Ge,i(m, k) =

∑m
m′=m−M+1 φXe,i,Xe,1(m′, k)φXe,1,Xe,1(m′, k)∑m

m′=m−M+1 φ
2
Xe,1,Xe,1

(m′, k)
.

(39)
The auto- and cross-PSDs are, respectively, recursively esti-
mated using:

φ̂Xe,1,Xe,1
(m, k) =

βeφ̂Xe,1,Xe,1(m− 1, k) + (1− βe)|X̂e,1(m, k)|2

(40)

and

φ̂Xe,i,Xe,1
(m, k) =

βeφ̂Xe,i,Xe,1(m− 1, k) + (1− βe)X̂e,i(m, k)X̂∗e,1(m, k).

(41)

The procedure for estimating the RETFs is summarized in
Algorithm 1. Finally, note that the early speech components
that are estimated using the single-channel Wiener filter are
only used to estimate the RETFs. The final estimate of the
early speech component is obtained in the MMSE sense using
all microphone signals.

1Since Xe,i(m, k) is estimated using the single-channel Wiener filter, the
obtained phase of X̂e,i(m, k) is equal to the phase of Yi(m, k). Therefore,
there is an inherent inaccuracy in the estimation of Xe,i(m, k). If the phase
error has zero-mean, the LS estimate minimizes this inaccuracy.
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C. Reducing the Computational Complexity

It should be noted that the late reverberant signal component
is highly time-varying and therefore the NC given by (23)
needs to be calculated for every time frame m and frequency
bin k, which results in a high computational burden. If the
RETFs and the noise PSD matrix are slowly time-varying,
it can be deduced that B, h0 and Φv are also slowly time-
varying. Since the spatial properties of the late reverberation
are assumed to be time-invariant, the respective spatial co-
herence matrix Γ is also time-invariant. The only parameter
that is (highly) time-dependent is the late reverberation level,
φR(m, k).

In a noiseless or, at least, high signal to noise ratio (SNR)
scenarios, the noise PSD φV (m, k) can be neglected, and
hence the late reverberation PSD φR(m, k) in (23) cancels
out2 yielding:

hNC = (BHΓB)−1BHΓh0. (42)

This entails significant computational efficiency, since all the
GSC components can be calculated in advance.

However, when the SNR is low, the MVDR should also
suppress the noise. In this case, the PSD matrix Φ(m, k) of the
late reverberation plus noise is dependent on the instantaneous
reverberation-to-noise ratio and is therefore time-varying. This
requires the calculation of hNC for each time frame and
frequency bin. The most expensive operation in this calculation
is the matrix inversion (BHΦB)−1. In the following, we show
how to reduce the number of calculations by following some
algebraic steps.

First, define the eigenvalue decomposition (EVD) of the
matrix BHΓB:

BHΓB = QDQH (43)

from which it can be deduced that

D−
1
2 QH(BHΓB)QD−

1
2 = RH(BHΓB)R = I (44)

where R = QD−
1
2 is an invertible matrix. Now, the matrix

inversion in (23), (BHΦB)−1, can be expressed as:

(BHΦB)−1 = RR−1(BHΦB)−1R−HRH

= R
(
RHBHΦBR

)−1
RH

= R
(
RHBH(φRΓ + Φv)BR

)−1
RH (45)

where the last transition is due to (31). Using (44), we obtain

(BHΦB)−1 = R
(
φRI + RHBHΦvBR

)−1
RH . (46)

2The time and frequency indices are omitted for brevity.

Algorithm 1: RETF estimation.

for i = 1, . . . , N do
Estimate φ̂R,i(m, k) using (28).
Calculate γi(m, k) using (36) and He,i(m, k)
using (35).
Estimate X̂e,i(m, k) using (34).
Estimate φ̂Xe,1,Xe,1

(m, k), φ̂Xe,i,Xe,1
(m, k) using (40)

and (41).

Estimate ̂̃Ge,i(k) using (39).
end

We can now further decompose RHBHΦvBR using EVD
once again:

RHBHΦvBR = VΛVH . (47)

By substituting (47) in (46) and by using the orthonormality
of V, namely VVH = I, the desired matrix inversion can be
rewritten as

(BHΦB)−1 = R
(
φRVVH + VΛVH

)−1
RH

= RV (φRI + Λ)
−1

(RV)H . (48)

Finally, substituting (BHΦB)−1 in (23), hNC can be ex-
pressed as:

hNC = RV (φRI + Λ)
−1

(RV)HBHΦh0. (49)

The matrix R depends on the spatial sound field of the
reverberant signal, namely the RETF and the diffused sound
coherence function, and is hence time-invariant in static sce-
narios. Assuming the ambient noise is stationary (or at least
slowly time-varying), the matrices V and Λ are also time-
invariant. Comparing (23) and (49) we conclude that the
(M − 1) × (M − 1) matrix inversion (O(M3) operations)
is substituted by a simpler procedure, involving the multipli-
cation of the (M−1)×M matrix R V (that can be calculated
in advance) with the inverse of a diagonal matrix φRI+Λ and
then with the matrix (R V)H . The latter procedure requires
only O(M2) operations, implying a significant reduction in
the computational burden, especially for large number of
microphones.

The overall dereverberation and noise reduction algorithm is
summarized in Algorithm 2 and its block diagram is depicted
in Fig. 2.

VI. PERFORMANCE EVALUATION

The performance of the proposed algorithm is evaluated in
terms of two objectives measures that are commonly used
in the speech enhancement community, namely perceptual
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Algorithm 2: Multi-microphone speech dereverberation
and noise reduction.
for all time frames m do

Estimate φ̂R(m, k) using (30).
Calculate the MVDR
hMVDR(m, k) = h0(k)−B(m, k) hNC(m, k) with:
if SNR is low then

Calculate hNC(m, k) using (49)
else

Calculate hNC(k) using (42)
end
Calculate γ(m, k) using (26) and ξ(m, k) using (25).
Calculate the PF HW(m, k) using (24).
Calculate the MMSE estimate
ŜF (m, k) = HW(m, k) hH

MVDR(m, k) y(m, k).
end

hDS(k) HW(m, k)- - n++

−
- -

B(k) hNC(m, k)

?

G̃e,i(k)

- -

6

φR(m, k) EST.-

6

6

H/L SNR

y(m, k) ŜF (m, k)

GSC

φ̂R(m, k)

Fig. 2. Block diagram of the proposed algorithm.

evaluation of speech quality (PESQ) [52] and log-spectral
distance (LSD), and the word accuracy of an automatic speech
recognition (ASR) system. The following scenarios were
considered: 1) simulated reverberant signals without additive
noise; 2) simulated reverberant signals with spatially white
Gaussian noise; 3) recorded reverberant signals (high SNR);
4) recorded reverberant signals plus recorded air-condition
noise.

A. Setup

In all our experiments, a loudspeaker (Fostex 6301BX) was
positioned in various distances (i.e., 0.15, 1, 2, 3, 4 m) in front

Air-conditioner 

Loudspeaker 

3cm 3cm 4cm 

Microphones 

Fig. 3. Illustration of microphones and speaker setup.

of a four microphone array, such that no delay compensation
is required in the FBF. The FBF was therefore set to h0 =

hd = 1
N

[
1 1 . . . 1

]T
. The inter-distances between the

microphones were [3, 4, 3] cm. An illustration of the setup
with the various loudspeaker positions is depicted in Fig. 3.
The sampling frequency was 16 kHz, the frame length of the
STFT was 32 ms with 8 ms between successive time frame
(i.e., 25 % overlap). For measuring the speech quality we set
the following values for the parameters. The forgetting factor
βe for the PSD estimation was set to 0.7 and the weighting
factor βr for the decision directed a priori SRNR estimator
in (25) was set to 0.9. The lower bounds Hmin,R and Hmin,V

were set to -18 dB and -15 dB, respectively. We assumed
that the late reverberation starts 32 ms after the arrival of the
direct-path by using L = 4.

An ASR system, known as PocketSphinx [53], was used
with 39 Mel frequency cepstral coefficient (MFCC) features
including delta and delta-delta features. The acoustic model
consisted of a hidden Markov model with 5000 states. Each
state observation was modeled with a Gaussian mixture
model with 16 mixture components. The acoustic model was
trained using the Wall Street Journal (WSJ) database [54] and
recorded speech with a source-microphone distance of 15 cm
(i.e., only close talking). Finally, the 20,000-word vocabulary
language model was trained using WSJ as well. For testing
the ASR performance we have used a database comprising 5
female and 5 male speakers, each uttering approximately 150
English sentences. The utterances were provided by Samsung
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Electronics and were taken from different speech databases3

(samples from the WSJ were not included). Overall, the test
database consists of 1497 sentences, 2–4 sec long (2–8 words).
The recorded speech was then played from the loudspeaker in
our lab, as explained above.

The performance of the proposed algorithm was compared
with the following algorithms: 1) single-channel derverber-
ation algorithm based on spectral substraction and Polack’s
model [13], [14]; 2) the proposed NO-GSC algorithm without
the PF; 3) the proposed NO-GSC algorithm (with the same
PF) with some modifications. The noise matrix Φ in (23)
was substituted by the spatial coherence matrix in (32) with
diagonal loading. The role of the diagonal loading is to reduce
the sensitivity of the BF by limiting its white noise gain. In
the noisy case a value of 10−3 was used while in the noiseless
case a value of 10−5 was chosen. Due to this modification the
matrix Φ becomes time-invariant. Similarly to the proposed
method, the PF was calculated at the output of the BF.
The GSC was designed to satisfy a constraint on the direct
component of the acoustic path rather than a constraint on the
RETF as in the proposed method. Henceforth this reference
algorithm will be referred to as SDBF with PF.

VII. PERFORMANCE MEASURES

The speech quality was evaluated by computing the PESQ
score and LSD. Both the PESQ and the LSD were measured
by comparing ŜF (m, k) with SF (m, k), where SF (m, k) was
obtained by filtering the anechoic speech S(m, k) with the
average early transfer function 1/N

∑N
i=1Ge,i(k). For the

simulated reverberant signals, the first 32 ms (measured from
the arrival time of the direct-path) of the AIRs were convolved
with the anechoic signal to create the reference signal. For
the recorded signals scenario, the early transfer functions
are not available, and are therefore first identified using a
supervised system identification method. The average LSD
between ŜF (m, k) and SF (m, k) is given by

LSD =
1

M

∑
m

√√√√ 1

K

∑
k

[
20 log10

(
max{|SF (m, k)|, ε}
max{|ŜF (m, k)|, ε̂}

)]2
(50)

where

ε = 10−AdB/10 max
m,k
{|SF (m, k)|}

ε̂ = 10−AdB/10 max
m,k
{|ŜF (m, k)|}. (51)

3Some examples are given at http://www.eng.biu.ac.il/gannot/
speech-enhancement.

The parameter AdB is set to the desired dynamic range, which
in our case is set to 60 dB. For comparison, we also evaluated
the performance of the single-channel dereverberation algo-
rithm proposed in [14]. The PESQ scores and LSD measure
were computed by averaging the results obtained using 295
sentences, 146 uttered by female and 149 by male speakers,
drawn from the same database, used for the ASR experiments.

A. Simulated Data

The AIRs were computed using an efficient implementation
of the image method [55], [56]. Room dimensions were set
to [6.1, 5.3, 2.7] m and the reverberation time was set to
T60 = 0.5 s. Sampling rate for simulating the AIRs was
set to 16 kHz. Finally, the AIRs were truncated to 12 · 103

coefficients. Four source-microphone distances were tested.
The obtained PESQ scores, LSD, and word accuracy (WAcc)
are summarized in Table I. The best results are highlighted in
boldface. The results show that for all methods the processed
signals attain a higher PESQ score, lower LSD, and higher
word accuracy compared with the unprocessed signal. The
proposed NO-GSC multichannel dereverberation algorithm
without the PF exhibits inferior performance measures, em-
phasizing the importance of the single-channel postfiltering
stage. The proposed method with PF is slightly superior to
the SDBF with PF, in all cases but for the 1 m distance.
These results can be interpreted as follows. In the noiseless
case the interference PSD matrix, used in the BF design, is
equivalent in both methods. Moreover, in the 1 m case, the
difference between the direct-path and the early reflections
is not pronounced due to high DRR, therefore resulting in
an advantage for the simpler, direct-path only model. In the
following experiment, spatially-white noise was added to the
simulated reverberant signals to obtain various SNR levels.
The noise PSD, φV (m, k), was estimated from one of the
microphones during speech absence (assuming an ideal voice
activity detector). Finally, the spatial noise PSD matrix was
set to Φv(m, k) = φv(m, k) I, where I is an M ×M identity
matrix. In Table II the results for several SNR levels and a
speaker-array distance of 3 m are depicted. We observe that
the performance gain between the unprocessed and processed
signals monotonically increases with decreasing SNR. More
importantly, the proposed multichannel algorithm evidently
outperforms the SDBF with PF. This can be attributed to the
better modelling of the interference PSD matrix, taking into
account the time-varying nature of the reverberation-to-noise
ratio.
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PESQ 15cm 1m 2m 3m 4m

Unprocessed 3.29 2.34 2.24 2.05 2.1
Single-channel derev. 2.67 2.59 2.30 2.39
Proposed NO-GSC w.o. PF 2.54 2.48 2.45 2.43
SDBF w. PF 2.84 2.66 2.4 2.51
Proposed NO-GSC w. PF 2.82 2.83 2.64 2.69

LSD 15cm 1m 2m 3m 4m

Unprocessed 1.77 4.26 4.21 4.57 4.89
Single-channel derev. 3.48 3.59 3.67 4.04
Proposed NO-GSC w.o. PF 3.45 3.57 3.58 4.04
SDBF w. PF 3.17 3.39 3.47 3.84
Proposed NO-GSC w. PF 3.24 3.45 3.40 3.84

WAcc 15cm 1m 2m 3m 4m

Unprocessed 78 29.9 31.5 22.3 21.6
Single-channel derev. 54.8 54.8 42.6 41.3
Proposed NO-GSC w.o. PF 43.3 46 40.4 37.7
SDBF w. PF 66.3 64.3 59.3 57.8
Proposed NO-GSC w. PF 65.2 65.4 60.9 59.4

TABLE I
SIMULATED ENVIRONMENT (NOISELESS). FOR CLEAN UTTERANCES

WACC =84.2%.

PESQ 10 dB 20 dB 30 dB

Unprocessed 1.535 1.88 2.01
Single-channel derev. 1.85 2.17 2.26
Proposed NO-GSC w.o. PF 1.96 2.22 2.32
SDBF w. PF 1.68 2.21 2.40
Proposed NO-GSC w. PF 2.25 2.46 2.55

LSD 10 dB 20 dB 30 dB

Unprocessed 16.34 9.4 5.23
Single-channel derev. 8.85 4.87 3.82
Proposed NO-GSC w.o. PF 8.61 4.47 3.83
SDBF w. PF 7.79 4.62 3.54
Proposed NO-GSC w. PF 4.81 3.64 3.35

WAcc 10 dB 20 dB 30 dB

Unprocessed 2.8 15.5 23.5
Single-channel derev. 4.1 33.1 42.9
Proposed NO-GSC w.o. PF 7.4 26.1 36.6
SDBF w. PF 10.3 21.9 56.2
Proposed NO-GSC w. PF 20.9 48.5 56.5

TABLE II
SIMULATED REVERBERANT SIGNALS PLUS SPATIALLY-WHITE NOISE FOR

A SPEAKER-ARRAY DISTANCE OF 3 M.

PESQ 15cm 1m 2m 3m 4m

Unprocessed 3.68 2.74 2.35 2.26 2.27
Single-channel derev. 3.16 2.64 2.6 2.54
Proposed NO-GSC w.o. PF 2.82 2.44 2.37 2.38
SDBF w. PF 3.24 2.67 2.61 2.51
Proposed NO-GSC w. PF 3.27 2.75 2.73 2.64

LSD 15cm 1m 2m 3m 4m

Unprocessed 1.38 2.96 3.89 4.29 4.47
Single-channel derev. 3.12 3.43 3.69 3.69
Proposed NO-GSC w.o PF 2.83 3.67 4 4.17
SDBF w. PF 2.92 3.37 3.69 3.74
Proposed NO-GSC w. PF 2.80 3.19 3.44 3.56

WAcc 15cm 1m 2m 3m 4m

Unprocessed 81.63 59 36.9 31.5 31.1
Single-channel derev. 71.9 57.6 53.5 48.6
Proposed NO-GSC w.o. PF 66 45.5 39.7 38.9
SDBF w. PF 76.3 60.8 57.3 50.3
Proposed NO-GSC w. PF 76.7 64.2 61.4 56.6

TABLE III
RECORDED REVERBERANT SIGNALS WITH HIGH SNR. FOR CLEAN

UTTERANCESWACC =84.2%.

B. Recorded Data

For the following experiment reverberant signals with and
without air-conditioning noise were recorded in the var-echoic
acoustic laboratory at Bar-Ilan University, Israel. The speech
utterances were played in the room using a Fostex 6301BX
loudspeaker and were recorded by four AKG CK32 om-
nidirectional microphones, mounted on a metal ruler. The
room dimensions are [6, 6, 2.4] m. Reverberation time was
set by adjusting the room panels, and was measured to be
approximately T60 = 0.5 s.

The results without the air-conditioning are summarized in
Table III. The average SNR in this case was approximately
40 dB. We observe that the PESQ and LSD scores as well as
the ASR results for the recorded reverberant signals are better
compared to the results in simulated environment, presented
above. Moreover, for all performance measures the proposed
multichannel algorithm outperforms the competing algorithms.
The performance gain, also for the 1 m case, can be attributed
to the small noise level in the real recordings.

For the last experiment, real air-conditioner noise was
recorded and added to the recorded reverberant speech signals
with several SNR levels. The spatial PSD matrix Φv(m, k),
which in this case is non-diagonal, was estimated using
inactive speech periods. The results of this experiment in
various noise levels are given in Table IV. Although lower
performance measures are demonstrated in comparison with
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PESQ 10 dB 20 dB 30 dB

Reverberant, noisy signals 1.75 2.10 2.22
Single-channel derev. 2.07 2.41 2.55
Proposed NO-GSC w.o. PF 1.97 2.25 2.34
SDBF w. PF 2.17 2.47 2.57
Proposed NO-GSC w. PF 2.25 2.59 2.71

LSD 10 dB 20 dB 30 dB

Unprocessed 9.52 6.31 4.78
Single-channel derev. 5.92 4.20 3.70
Proposed NO-GSC w.o. PF 7.14 5.14 4.28
SDBF w. PF 5.55 4.34 3.92
Proposed NO-GSC w. PF 5.40 4.00 3.50

WAcc 10 dB 20 dB 30 dB

Reverberant, noisy signals 22.9 36.7 35
Single-channel derev. 40.3 56.4 59.2
Proposed NO-GSC w.o. PF 22.3 35.3 36.4
SDBF w. PF 40 56 58.1
Proposed NO-GSC w. PF 45.8 59.7 61.7

TABLE IV
RECORDED REVERBERANT SIGNALS AT A SOURCE-ARRAY DISTANCE OF

3 M AND WITH ADDITIVE AIR-CONDITIONING NOISE.

the high SNR case, the difference between the algorithms
is emphasized. Again, this performance advantage can be
attributed to the better modelling of both the early reflec-
tions and the time-varying sPSD matrix of the interference
signals (noise and reverberation). The performance gain of
the proposed algorithm with respect to the SDBF with PF
is more pronounced in the lower SNR values. The significant
contribution of the postfiltering stage is also evident.

The results for recorded signals with moderate noise level
can also be verified by assessing the speech sonograms as
depicted in Fig. 4. It can be clearly deduced that both the
proposed algorithm and the SDBF with PF indeed reduces
both noise and reverberation while maintaining low distortion
and significantly outperforms the single-channel algorithm4.
Informal listening tests verify that the proposed method out-
performs the SDBF with PF.

VIII. CONCLUSIONS

In this contribution we have derived a multi-microphone
MMSE estimator implemented as an MVDR BF followed
by a PF. The aim was to obtain an estimate of a spatially
filtered version of the early speech component. The MVDR
BF was implemented in a NO-GSC structure. We chose the
DS BF as the FBF block in order to reduce early reflections.

4Sound examples are available at http://www.eng.biu.ac.il/gannot/
speech-enhancement.
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(a) Microphone signal.
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(b) Early reverberation.
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(c) Output of the single-channel algo-
rithm.
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(d) Output of the proposed NO-GSC
without PF .
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(e) Output of the SDBF with PF.
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(f) Output proposed NO-GSC with
PF.

Fig. 4. Sonograms of a real recording with a segmental SNR of 20 dB and
source-array distance of 3 m.

An identification procedure for the RETFs was proposed and
used to block the early speech components at the output of
the BM. The late reverberation was modeled as a diffuse
sound field, while the reverberation level was estimated by
the average of the marginal reverberation levels at the mi-
crophones. We also derived an expression for the NC that
requires less calculations per frame when the SNR is slowly
time-varying. The presented experimental study consists of
both simulated and recorded signals. The algorithm was tested
in a room with a reverberation time of 0.5 s for various
source-array distances (1–4 m), and for several signal-to-noise
levels and compared with various competing algorithms. In
terms of objective quality measures and ASR performance the
proposed algorithm significantly outperforms: 1) a baseline
single-channel algorithm; 2) the same NO-GSC without the
PF; 4) and a simpler combination of SDBF and a PF. By using
these algorithms we would like to evaluate the role of the PF
and its combination with the BF, and the advantage of using
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a more complex spatial correlation matrix for the interference
signal and of considering early speech reflections rather than
only the direct-path in the MVDR design.
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