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Tree-based recursive expectation-maximization
algorithm for localization of acoustic sources

Yuval Dorfan and Sharon Gannot

Abstract— The problem of distributed localization for ad hoc
wireless acoustic sensor networks (WASNs) is addressed in this
paper. WASNs are characterized by low computational resources
in each node and by limited connectivity between the nodes. Novel
bi-directional tree-based distributed expectation-maximization
(DEM) algorithms are proposed to circumvent these inherent
limitations. We show that the proposed algorithms are capable
of localizing static acoustic sources in reverberant enclosures
without a priori information on the number of sources. Unlike
serial estimation procedures (like ring based algorithms), the new
algorithms enable simultaneous computations in the nodes and
exhibit greater robustness to communication failures. Specifically,
the recursive distributed EM (RDEM) variant is better suited
to online applications due to its recursive nature. Furthermore,
the RDEM outperforms the other proposed variants in terms of
convergence speed and simplicity. Performance is demonstrated
by an extensive experimental study consisting of both simulated
and actual environments.

Index Terms— Recursive expectation-maximization;
Distributed signal processing; Bi-directional tree topologies;
Wireless acoustic sensor networks; Speaker localization.

I. INTRODUCTION

The localization of multiple acoustic sources has
various civil [1] and military [2] applications. Both
Bayesian [3],[4],[5] and non-Bayesian [6],[7] localization
approaches have been proposed in the literature. The
algorithms derived in this work belong to the family of
non-Bayesian estimation algorithms, more specifically to the
maximum likelihood (ML) estimation family of algorithms.
ML estimation procedures for localization are usually
characterized by high computational complexity and the
nonexistence of closed-form solutions. For these reasons
either iterative expectation-maximization (EM) procedures [8]
or recursive EM (REM) procedures [9] have been suggested.

The sparsity of speech signals in the short-time Fourier
transform (STFT) domain is widely used in the context of
speaker localization [9],[10],[11]. In [9] for example, the
localization task was carried out by using spatially distributed
microphone nodes (more specifically, each node was com-
prised of a pair of microphones).

Sometimes, due to limited computational resources in each
node and the bandwidth (BW) constraint on the communi-
cation link connecting the nodes, distributed computation is
resorted to. Distributed networks can be utilized to jointly esti-
mate parameters [12],[13] or signals by applying beamforming
techniques [14],[15].
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Distributed localization algorithms for WASN that only
use the amplitude or power of the received signals, but
ignore phase information, can be found in [16],[17],[18]. It
is well-known from the radio frequency (RF) literature, that
localization schemes based on phase differences exhibit higher
accuracy, robustness and lower sensitivity than schemes that
are solely based on the received signal strength [19].

An EM-based method to estimate the angle of arrival for
multiple sources that uses phase information extracted from
stereo recordings was proposed in [20]. This method was
extended to a two dimensional localization problem by an
array of microphone pairs in [9]. In addition, in [9] two
recursive algorithms were proposed based on the Cappé and
Moulines recursive EM (CREM) [21] and the Titterington
recursive EM (TREM) [22] schemes for multiple acoustic
source tracking. Both [9] and [20] use centralized computation
approaches.

A DEM scheme was presented by Nowak in [23] for cluster-
ing stochastic variables obeying a mixture of Gaussians (MoG)
probability density function (p.d.f.). MoG p.d.f. is also the
underlying probabilistic model in [9]. A detailed description
of EM usage for MoG can be found in [24], where latent
indicators are used for the estimation of the MoG parameters.
Our derivations are based on the same latent variables. Several
paradigms for distributed inference of the parameters of a
MoG p.d.f., which are based on the EM framework, are
summarized in [25]. This contribution does not address speech
signals and are therefore not utilizing the specific attributes
of speech signals in acoustic environments, e.g. sparsity and
reverberation. In [26] three distributed strategies are presented
for the MoG EM (incremental, consensus and diffusion).

An incremental variant of the EM, denoted incremental
EM (IEM), was proposed by Neal and Hinton [27]. The
REM mechanism was also addressed in this contribution.
The convergence speed and accuracy of the IEM procedure
was analyzed and demonstrated in [28] and [29], where it is
shown through many examples that the incremental strategy
enables faster convergence. In addition, the IEM has a higher
probability to converge to the ML. In other words, it does not
tend to converge to a local optimum. There is no mathematical
proof for these properties, but they are explained intuitively
and demonstrated empirically.

Based on this method we recently proposed a distributed
scheme for source localization [30] which we dubbed
incremental distributed expectation-maximization (IDEM). It
was implemented over a directed-ring constellation. The IEM
concept was also mentioned in [25] in the context of a local
E-step computation.

Distributed computation, as opposed to centralized solu-
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tions, requires a new perspective on the EM iterations intro-
ducing local hidden variables in conjunction or instead of the
global hidden variables addressed above. The current work
adopts this paradigm and proposes a novel DEM family of
algorithms for phase-based localization of acoustic sources
in reverberant environments. We propose two different al-
gorithms based on a bi-directional tree topology (for a de-
tailed description of network topologies the reader is referred
to [31].). Both proposed algorithms employ estimation of the
local hidden variables.

In the first algorithm, dubbed batch distributed EM
(BDEM), a simultaneous E-step followed by a global M-step
are implemented over a bi-directional tree topology. The leaves
of the tree execute partial E-step based on a batch of local
measurements, and aggregates the results towards the root of
the tree in the fusion stage. The root of the tree applies the
M-step to produce the next estimation of the parameters (the
root is the only node to apply the M-step). This estimation is
then broadcast through the same bi-directional tree topology
in the opposite direction towards all leaves in the diffusion
stage. The fusion and the subsequent diffusion constitute one
iteration of the algorithm.

As explained above, recursive variants of the classical EM
method; namely REM schemes that exhibit some advantages
over the EM framework, were introduced in [21],[22] and [27].
The second algorithm proposed in this work, dubbed recursive
distributed EM, uses the TREM [22] scheme for recursively
estimating the global parameters. In the proposed RDEM
scheme, the BDEM iterations are substituted by a recursion
along the time-axis.

The RDEM is also defined on the bi-directional tree topol-
ogy. It also propagates the local estimations towards the root
and then (after applying the M-step) broadcast the recent
parameter estimates in the opposite direction. Unlike the
BDEM, the RDEM does not operate in a batch mode, but
rather adapts a recursive mode that runs along the time axis,
frame by frame.

In this work we show that the RDEM has several advantages
over the BDEM scheme in online applications. In addition, it
is demonstrated that the RDEM and BDEM outperform the
classical steered response power-phase transform (SRP-PHAT)
algorithm [32] in scenarios with two concurrent speakers in
an acoustic room.

The remainder of this paper is organized as follows. In
Section II we present the statistical model for localizing con-
current sources in a noisy and reverberant environment. The
new local hidden variables are presented in Section III. Two
novel DEM algorithms for distributed localization based on the
bi-directional tree are proposed in Section IV. Section V deals
with implementation issues related to the proposed algorithms.
Section VI is dedicated to the experimental study, based on
simulations as well as actual recordings carried out in our
acoustic lab. Conclusions are drawn in Section VII.

II. THE STATISTICAL MODEL

The problem is formulated in the STFT domain with
t = 1, . . . , T as the time index and k = 0, . . . ,K − 1 as

STFT

STFT

z1m

z2m

z1m(t, k)

z2m(t, k)

φm(t, k)
ej[

� (z1m)−� (z2m)]

Fig. 1
PRE-PROCESSING AT THE mTH MICROPHONE PAIR TO EXTRACT THE PRP.

the frequency index. S acoustic signals are captured by M
microphone pairs. The signal received by the ith microphone,
i = 1, 2, of the mth pair, m = 1, . . . ,M , is given by:

zim(t, k) =

S∑
s=1

aism(t, k)vs(t, k) + nim(t, k), (1)

where s = 1, . . . , S is the source index. vs(t, k) denotes the
sth source signal, nim(t, k) denotes additive noise as captured
by the ith microphone of the mth pair, and aism(t, k) denotes
the acoustic transfer function (ATF) from the sth source to
the ith microphone of the mth node. The ATF in reverberant
environments consists of a direct path (which bears the desired
information for localization) and reflections (which usually
degrade the localization performance). The model in (1) is
commonly referred to as the multiplicative transfer function
(MTF) model [33]. It is only valid if the STFT window-
length is sufficiently larger than the reverberation time T60.
If this does not hold, the indicated relation can be viewed as
an approximation.

The first stage of all localization procedures discussed below
consists of pair-wise relative phase ratio (PRP) extraction, here
given for the mth microphone pair:

φm(t, k) ,
z2m(t, k)|z1m(t, k)|
z1m(t, k)|z2m(t, k)| . (2)

The rationale for using these PRP values is explained below.
First, consider a single source in a noiseless environment:

zim(t, k) = aism(t, k)vs(t, k); ∀m, s = 1, i = 1, 2. (3)

To motivate the usage of the PRP, we first assume similar
amplitudes. The time difference between the received signals
at the microphone pair is then given by:

z2m(t, k)/z1m(t, k) = ejw(τ2
m−τ

1
m)∀m. (4)

Based on this simple result, the PRP can be interpreted as
an extension of the time difference of arrival (TDOA) to the
reverberant case and (4) only approximately holds.

A schematic block diagram of the pre-processing stage
is depicted in Fig. 1. STFT is applied to each microphone
signal and the PRPs are subsequently calculated for each
time-frequency bin separately. These PRPs are induced by the
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TDOA between the microphone-pair signals as a response to
an acoustic source located in p ∈ P:

τm(p) ,
||p− p2

m|| − ||p− p1
m||

c
, (5)

where p1
m and p2

m are the locations of the microphones in pair
m, ||·|| denotes the Euclidian norm and c is the sound velocity.
P is a set of all possible source locations in the enclosure1. In
this work we selected a regular grid of possible locations with
a desired resolution. Note that any PRP can be associated with
multiple source locations. The locus of all these locations is a
one-sheet hyperboloid.

The various speakers are assumed to exhibit sparse activity
in the STFT domain [9],[10] and [11]. This assumption is
often referred to as the W-disjoint orthogonality of the speech
signal [34].

Under this assumption, and an upper bound on the number
of concurrent speakers, each time-frequency bin can be asso-
ciated with a single active speaker (and therefore, in our case,
also with a single active position). The following deterministic
nominal set of PRPs, φ̃km(p), associated with a possible room
position p on the predefined grid, can be calculated in advance:

φ̃km(p) , exp

(
−j 2πkτm(p)

KTs

)
; ∀p ∈ P, (6)

where Ts denotes the sampling time.
We can now express the PRP per node and per time-

frequency bin in the following statistical model:

φm(t, k) ∼
∑
p∈P

ψpN c
(
φm(t, k); φ̃km(p), σ2

)
, (7)

where ψp is the probability that the speaker emitting in time-
frequency bin (t, k) is located at position p. Similarly to [9],
every speaker can be located in any (fixed) position within
this set of speaker positions in the room. However, unlike [9]
that uses a separate distribution function for each speaker, we
simplify the model and use a single joint distribution function
for all speakers. Using this simplification it is not necessary
to determine the number of speakers in advance.
N c(·; ·, ·) denotes the complex-Gaussian probability with

variance σ2:

N c
(
φm(t, k); φ̃km(p), σ2

)
=

1

πσ2
exp

(
−|φm(t, k)− φ̃km(p)|2

σ2

)
. (8)

Being a probability function the following holds:∑
p∈P

ψp = 1, 0 < ψp < 1; ∀p ∈ P. (9)

The complex-Gaussian distribution, which cannot model the
PRP with absolute value equals 1, is used here as in [9],[30],
although inaccurate. In [20] the real-Gaussian is used for phase
distribution, although it is inaccurate either. The von Mises
distribution is sometimes used for TDOA estimation [35],[36]

1Evidently, the speech sources can be located anywhere in the enclosure.
Confining the possible locations to a finite set of room coordinates is
equivalent to spatial sampling that reduces the localization resolution.
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Fig. 2
COMPLEX-GAUSSIAN DISTRIBUTION (VARIANCE SET TO 0.01).

since it better fits the periodicity of phase measurements.
To alleviate the model inaccuracies, we set the variances σ2

(assumed equal for all complex-Gaussians in the mixture) to
a small (known) value, increasing the probability that the
absolute value of the PRP is sufficiently close to 1 (in our
experiments we have set σ2 = 0.01). The variance captures
the level of the noise and the reverberation effects, and has
therefore an important impact on the performance of the
proposed algorithms. In a future study mechanisms for setting
the variance value will be explored. In the current contribution,
the value was empirically chosen. Scatter plot of Complex-
Gaussian samples and their amplitude histogram are given in
Fig. 2(a) and Fig. 2(b), respectively.

Augmenting the PRP readings for all time-frequency bins,
φm = vect,k (φm(t, k)), applying the W-disjoint property
above and the assumption that the perturbations of the PRPs
are independent, the p.d.f. of the observation set for each node
m can be stated as [24]:

f(Φm = φm;ψ) =
∏
t,k

∑
p∈P

ψpN c
(
φm(t, k); φ̃km(p), σ2

)
,

(10)

where we define the set of all probabilities of all possible grid
positions in a vectorial notation:

ψ = vecp (ψp) . (11)

Note, that in [9], a separate vector of position probabilities
is defined per speaker, and therefore should exhibit only one
significant peak. Here, ψ should be understood as an aggre-
gation of the probabilities over all sources, and hence might
have several peaks, corresponding to the number of active
sources in the measurement set. Besides model simplification,
aggregating the probabilities provides an automatic mechanism
for determining the number of concurrently active sources
and to circumvent the requirement for setting this number in
advance.

Sound localization from a single pair of microphones
is widely covered in the binaural hearing literature. Some
of these contributions assume the availability of a training
set [37],[38]. Partial localization (azimuth and elevation angle)
is dealt in [39]. Another approach [40] assumes some a
priori knowledge of the surroundings and a single dynamic
pair of microphones. The dynamics of the sensors enables
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the localization of the source. In this work we consider
the actual location of multiple sources; i.e., information that
cannot be reliably inferred from a single microphone-pair,
without limiting assumptions. We therefore concatenate all
microphone-pair readings (φ = vecm (φm)) to describe the
probabilistic model of the source locations:

f(Φ = φ;ψ) =
∏
m

f(Φm = φm;ψ) =∏
m,t,k

∑
p∈P

ψpN c
(
φm(t, k); φ̃km(p), σ2

)
, (12)

where we assume that all microphone-pair readings are in-
dependent. This assumption can be partially justified by the
different reflection patterns the signal undergoes before be-
ing captured by the microphone-pair, and more importantly,
enables the derivation of the distributed algorithms proposed
in this contribution. Note that the weights of the complex-
Gaussians, namely ψp, are common to all nodes, since they
relate to the probability of obtaining a certain acoustic direct
path from a specific location in the room, which is a global
common parameter.

In the same way as described in [24], the maximum
likelihood estimator (MLE) of the speakers’ location (global
parameter) can be obtained by maximizing the expression from
equation (12) w.r.t. to ψ (note that σ2 and φ̃km(p) are a priori
known):

ψ̂ = argmax
ψ

[log f(Φ = φ;ψ)

s.t.
∑
p∈P

ψp = 1; 0 < ψp < 1; ]. (13)

An example of a typical estimator of ψ as a function of
all possible room positions is depicted in Fig. 3 for a two-
dimensional case2 with a resolution of 10 × 10cm. In the
figure, the probability of having a source at each location in
the room is represented by the z-axis with color (and height)
that are proportional to its value (in natural log units). The
final estimation of the number of sources and their locations
can be deduced from this map by applying a proper threshold.

Finally, we discuss the ability of the statistical model to
alleviate the influence of reverberation on the localization
accuracy. Although reverberation is not explicitly modelled,
we claim that the MoG model implicitly takes the rever-
beration effect into account. The nominal PRPs, defined as
the PRP induced on a microphone pair by a source located
on a grid point, models only the direct-path of the sound
propagation. This nominal value merely serves as a centroid of
a complex-Gaussian. The variance of this complex-Gaussians
allows for small deviations of the PRPs from their nominal
value. Moreover, according to the MoG model, each source
has a non-zero probability to be located in any grid point
within the enclosure, thus allowing for large deviations from
its true position due to strong reflections. Combining multiple
PRP reading from several microphone pairs has a tendency

2The methods derived in this work are also applicable to the three-
dimensional case. However, to simplify the exposition we only present results
for the two-dimensional case.
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to emphasize (i.e. increase the probability of) the true source
positions, due to the incoherent nature of the reflections. Based
on these arguments, we anticipate that the algorithms derived
in this paper will be able to cope with low and medium
reverberation levels. For higher level of reverberation levels,
other mechanisms should be considered.

III. THE HIDDEN DATA

A straightforward maximization of the likelihood function
in (12) for localizing concurrent acoustic sources is a cumber-
some task. We therefore propose to maximize the likelihood
by applying the EM procedure. More specifically, we derive
and apply distributed versions of the EM for the problem at
hand. The term DEM was coined by Nowak [23].

This section discusses the definitions of the hidden variables
from the node (local) perspective. The definitions are used in
the derivation of the DEM variants in this work. Global hidden
variables in the context of EM-based speaker localization
were proposed in [9]. Rather than centralized global hidden
variables, we propose to define a local version thereof. As
explained above, contrary to [9] we do not assume any prior
information on the number of sources, and therefore define an
aggregated set of position parameters, rather than defining a
separate set of parameters for each source.

The hidden variable, denoted ym(t, k,p), is defined as
the local mth indicator associating any speaker to a certain
position p ∈ P in time-frequency bin (t, k). The expectation
of an indicator is readily given by:

E {ym(t, k,p)} = ψp. (14)

A vectorial version of the model proposed in [41] can be
defined for the 2-D (or 3-D) positioning problem. Rather than
the single-node local indicator ym(t, k,p), a global vector of
all local indicators is used. Let y(t, k,p) = vecm (ym(t, k,p))
be a set of all local indicators associated with a certain
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time-frequency bin. The local components of this vector
are assumed independent identically distributed (i.i.d.). This
assumption can be justified by the different reflection patterns
of the sound waves, as measured in the different nodes. The
expectation of this vector is therefore:

E {y(t, k,p)} = ψp · 1, (15)

where 1 is a vector of all ones of length M . We can further de-
fine a concatenated vector y(p) = vect,k (y(t, k,p)) to be the
set of all indicators in the problem. Under the independency
assumptions, stated above, in time, frequency and node, the
probability density function of y is given by:

f(Y = y;ψ) =
∏
t,k,m

∑
p∈P

ψpym(t, k,p). (16)

The total number of local indicators in y is M × T × K.
Their support set is p ∈ P , the set of all discrete positions on
the grid. |P| stands for the cardinality of the support set. The
p.d.f. of the observations is given by:

f(Φ = φ|Y = y;ψ) =
∏
m

f(Φm = φm|Ym = ym;ψ)

=
∏
m,t,k

∑
p∈P

ym (t, k,p)N c
(
φm(t, k); φ̃km(p), σ2

)
. (17)

The p.d.f. of the complete data can be deduced from (16)-(17)
and some simplifications utilizing the indicator properties:

f(Φ = φ,Y = y;ψ) = f(Y = y;ψ)f(Φ = φ|Y = y;ψ)

=

 ∏
m,t,k

∑
p∈P

ψpym(t, k,p)


×

 ∏
m,t,k

∑
p∈P

ym(t, k,p)N c
(
φm(t, k); φ̃km(p), σ2

)
=
∏
m,t,k

∑
p∈P

ψpym(t, k,p)N c
(
φm(t, k), φ̃km(p), σ2

)
.

(18)

IV. TREE-BASED DISTRIBUTED
EXPECTATION-MAXIMIZATION

A family of distributed algorithms can be derived using the
p.d.f. in (18). We propose two EM-based algorithms, namely
the BDEM and the RDEM algorithms. They are both applied
in a distributed manner using a network of microphones
organized in a bi-directional tree topology. The algorithms
differ in the way they process the data. While the BDEM
algorithm processes the samples after all of them have been
acquired (as a batch), the RDEM updates the estimation along
the time-axis (online processing).

We will first derive the EM iterations common to both
algorithms and will then present the BDEM and the RDEM
algorithms.

A. EM Iterations

The EM algorithm for the problem at hand can now be
derived. Let, (`) be the iteration index. From (18) the E-step
can be stated as:

Q
(
ψ|ψ̂(`−1))

,

E
{

log (f(Φ = φ,Y = y;ψ)) |φ; ψ̂
(`−1)}

=∑
m,t,k

log
(∑
p∈P

E
{
ym(t, k,p)|φm(t, k); ψ̂

(`−1)}
ψpN c(φm(t, k); φ̃km(p), σ2)

)
=∑

m,t,k,p∈P

E
{
ym(t, k,p)|φm(t, k); ψ̂

(`−1)}
·
[
logψp + logN c(φm(t, k); φ̃km(p), σ2)

]
, (19)

where we have used the indicator property allowing to ex-
change the log and

∑
operators. In addition, the expression

E
{
ym(t, k,p)|φm(t, k); ψ̂

(`−1)}
is a node specific entity that

depends solely on a single observed random variable, due to
the independency in the time, frequency and node domains.
This node specific expectation is given by [24]:

υ(`)m (t, k,p) , E
{
ym(t, k,p)|φm(t, k); ψ̂

(`−1)}
=

ψ̂
(`−1)
p N c

(
φm(t, k); φ̃km(p), σ2

)
∑

p̃∈P ψ̂
(`−1)
p̃ N c

(
φm(t, k); φ̃km(p̃), σ2

) . (20)

Applying a constrained maximization to (19), the required
position probabilities are obtained:

ψ̂(`)
p =

∑
m,t,k υ

(`)
m (t, k,p)

M · T ·K . (21)

Note, that in the proposed algorithm, the variances of the
complex-Gaussians are assumed to be known and their means
can be calculated in advanced from the known grid positions.
The only parameter set to be estimated in our problem is
therefore ψp.

The EM algorithm iterates between the E-step in (20) and
the M-step in (21) until convergence.

B. Tree-Based Batch Distributed EM Algorithm

The EM iterations (20)-(21) can be centrally applied. A
similar procedure, for a slightly different signal model, can
be found in [9]. In this work we are aiming at distributed
versions of the EM iterations above. The algorithms derived
in the sequel are based on bi-directional tree topology, as
exemplified in Fig. 4. Node ‘0’ is designated as the root of the
tree and all other nodes as its leaves. Tree topologies are less
sensitive to communication link failures than e.g. directed-ring
topologies [30]. Failure handling is beyond the scope of this
contribution.

The key point in developing the distributed versions of
the EM algorithm is the availability of local estimates of the
hidden variable in each node, as evident from (20).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASLP.2015.2444654

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. XX, NO. Y, MONTH 2015 6

0

1 2

3 4 5

6 7 8

Root

Fig. 4
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DEM ALGORITHMS. THE EDGES REPRESENT TWO-WAY COMMUNICATION

LINKS. NODE ‘0’ IS DESIGNATED THE ROOT OF THE TREE.

Define the average local estimates:

µ(`)(t, k,p) ,
1

M

∑
m

υ(`)m (t, k,p). (22)

that can be interpreted as a global estimate of the local hid-
den variables. This global entity reduces the communication
volume between the nodes.

In the fusion stage of the proposed BDEM algorithm, these
local estimates are aggregated from the leaves towards the
root of the tree. The average µ(`)(t, k,p), available only at
the root, constitutes the E-step of the algorithm, yielding the
most recent estimate of the hidden variables ym(t, k,p). The
root is then ready to apply the M-step, yielding the current
parameter estimate:

ψ̂(`)
p =

∑
t,k µ

(`)(t, k,p)

T ·K . (23)

This estimate is subsequently diffused to all the leaves of the
network. Note, that only the root applies the M-step, while
the leaves are only responsible for partial update of the E-
step and for bi-directional data transmission. All leaves can
simultaneously update their contribution to the E-step, based
on the current parameter estimate.

To further reduce the communication volume, each node
(leaf) can average all time-frequency bins before transmission
to the next node:

ῡ(`)m (p) ,

∑
t,k υ

(`)
m (t, k,p)

TK
. (24)

Algorithm 1: Acoustic source localization with the BDEM
algorithm.

Acquire z1m(t, k) and z2m(t, k); ∀m.
Calculate φm(t, k); ∀m using (2).
set φ̃km(p) using (6).
initialize ψ̂(0)

p .
for ` = 1 to L do

E-step
∀m = 1 : M calculate simultaneously and locally
ῡ
(`)
m (p) using (24).

M-step
Fuse local results from the leaves back to the root
and estimate the parameters, ψ̂(`)

p using (25).
Diffuse the result from the root of the bi-directional
tree to all leaves.

end
By applying a threshold to ψ̂(L)

p , the final estimation of
the number of sources S, and their respective locations
ps; s = 1, . . . , S can be obtained.

The M-step, applied in the root, then simplifies to:

ψ̂(`)
p = µ̄(`)(p) ,

∑
m ῡ

(`)
m (p)

M
. (25)

The algorithm iterates until convergence or until a number
of pre-defined iterations has been reached. Algorithm 1 sum-
marizes the proposed BDEM algorithm.

C. Tree-based Recursive Distributed EM Algorithm

A recursive version of the BDEM, denoted RDEM, is
derived below. Although this paper only addresses static sce-
narios, using a recursive online algorithm can still be beneficial
in several aspects, namely reducing latency and computational
load. As demonstrated in Section VI, the RDEM also exhibits
improved performance.

Recursive EM versions have been derived in [21] and [22].
In this paper we adopt the TREM version [22]. The basic
adaptation scheme for the parameter of interest, ψ is given
by:

ψ̂
(t)

R = ψ̂
(t−1)
R + (26)

γtI
−1
yt,φt;ψ̂

(t−1)
R

∇ψ log f(Φt = φt;ψ)|
ψ̂

(t−1)
R

,

where subscript t in the notation vt stands for all components
of a certain vector, v of the current time frame. The parameter
γt is often denoted the smoothing parameter of the recursion.
Its value is chosen in the range (0, 1) and it has a major
influence on the performance of the algorithm. Choosing too
low value will slow down the converge rate of the algorithms.
Overly large value will result in noisy position estimate.

The Fisher information matrix (FIM) is defined as:

I
yt,φt;ψ̂

(t−1)
R

, (27)

− E
{
∇2
ψ log f(Y t = yt,Φt = φt;ψ)|

ψ̂
(t−1)
R

}
.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASLP.2015.2444654

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. XX, NO. Y, MONTH 2015 7

We stress that the expectation operator, E{·} is a conditional
expectation using the current parameter estimate ψ̂

(t)

R . Since
the set of parameters ψp should be interpreted as a p.d.f., it
satisfies the constraints from equation (9).

We therefore use the constrained version of TREM proposed
in [9]:

ψ̂
(t)

R = ψ̂
(t−1)
R + (28)

γtI
−1
yt,φt;ψ̂

(t−1)
R

∇ψ log f(Φt = φt;ψ)|
ψ̂

(t−1)
R

− γt
I−1
yt,φt;ψ̂

(t−1)
R

a

aT I−1
yt,φt;ψ̂

(t−1)
R

a
[aT ψ̂

(t−1)
R +

aT I−1
yt,φt;ψ̂

(t−1)
R

∇ψ log f(Φt = φt;ψ)|
ψ̂

(t−1)
R

− b],

where in this case, due to the constraints in (9) we have:

a = 1T , b = 1. (29)

To calculate the FIM, the expectation of the second deriva-
tive of the log-likelihood is required. The joint p.d.f. of the
instantaneous measurements and the hidden variables (com-
pare to (18)) is given by:

f(Y t = yt,Φt = φt;ψ) =
∏
m,k

∑
p∈P

ψpym(t, k,p) (30)

×NC
(
φm(t, k), φ̃km(p), σ2

)
.

Applying the log operation and the indicator properties yields:

logf(Y t = yt,Φt = φt;ψ) =
∑

m,k,p∈P

ym(t, k,p)× (31)(
log(ψp) + log

(
NC

(
φm(t, k), φ̃km(p), σ2

)))
.

Evaluating the second derivative of (31) at the parameter
estimate at the previous time instant (t − 1) and using def-
inition (11) yield:

− ∂2

∂ψ2
p

log f(Y t = yt,Φt = φt;ψ)|
ψ̂

(t−1)
R

(32)

=

∑
k,m ym(t, k,p)(
ψ̂
(t−1)
p,R

)2 .

Taking the expectation and utilizing the local indicator prop-
erty (15) result in:

E

{
− ∂2

∂ψ2
p

log f(Y t = yt,Φt = φt;ψ)|
ψ̂

(t−1)
R

}
=
K ·M · ψ̂(t−1)

p,R(
ψ̂
(t−1)
p,R

)2 =
K ·M
ψ̂
(t−1)
p,R

. (33)

The p.d.f. of the current observation is given by (compare
to (10) and (12)):

f(Φt = φt;ψ) = (34)∏
m,k

∑
p∈P

ψpN c
(
φm(t, k); φ̃km(p), σ2

)
.

Taking the logarithm of (34) and calculating the derivative
yield:

∂

∂ψp
log f(Φt = φt;ψ) = (35)

∑
m,k

NC
(
φm(t, k), φ̃km(p), σ2

)
∑

p̃∈P ψp̃NC
(
φm(t, k), φ̃km(p̃), σ2

) .
Evaluating (35) at the parameter estimate at the previous time
and expressing the result in terms of local terms yield:

∂

∂ψp
log f(Φt = φt;ψ)|

ψ̂
(t−1)
R

= (36)

∑
m,k

υ
(t)
m (k,p)

ψ̂
(t−1)
p,R

,

where υ
(t)
m (k,p), the local hidden variables estimates, are

calculated using the estimated parameters at time instant
(t− 1):

υ(t)m (k,p) , (37)

ψ̂
(t−1)
p,R N c

(
φm(t, k); φ̃km(p), σ2

)
∑

p̃∈P ψ̂
(t−1)
p̃,R N c

(
φm(t, k); φ̃km(p̃), σ2

) .
Define the frequency average of the estimated local hidden
variables as:

ῡ(t)m (p) ,
1

K

∑
k

υ(t)m (k,p). (38)

Averaging over all frequencies at each node enables a signif-
icant reduction of the communication BW.

Now, multiplying the inverse of the FIM (33) and the log-
likelihood gradient (36) we can define the current parameter
estimate (before recursion):

ψ̂(t)
p ,

(
E

{
− ∂2

∂ψ2
p

log f(Y t = yt,Φt = φt;ψ)|
ψ̂

(t−1)
p,R

})−1
× ∂

∂ψp
log f(φt;ψ)|

ψ̂
(t−1)
p,R

=
1

M

∑
m

ῡ(t)m (p) , µ̄(t)(p).

(39)

Interestingly, this current estimates identifies with the
frequency-averaged global estimate of the hidden variables as
defined in (25).

Using (29) and (39) in (28) the recursive distributed esti-
mation procedure simplifies to:

ψ̂
(t)

R = ψ̂
(t−1)
R + γt

(
ψ̂

(t) − ψ̂(t−1)
R

)
. (40)

This simple recursive procedure is only applied at the root.
The parameters of the algorithm ψ̂

(t)

R are uniformly ini-
tialized. Based on the recent parameter estimate (using the
initialization at t = 0) a local E-step is executed at every node
of the bi-directional tree in the current time frame, yielding
ῡ
(t)
m (p).
This operation may, at the first glance, appear identical to

the E-step of the BDEM algorithm. However, as an off-line
algorithm, the BDEM calculates the E-step for all time frames
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Algorithm 2: Acoustic source localization with the RDEM
algorithm.

set φ̃km(p) using (6).

initialize ψ̂
(0)

R .
for t = 1 to T do

Obtain z1m(t, k) and z2m(t, k); ∀m.
Calculate φm(t, k); ∀m using (2).
Calculate simultaneously and locally ῡ(t)m (p)
using (38) ∀m = 1, . . . ,M .
Use the bi-directional tree to aggregate local results
from leaves (fusion).

Calculate at the root: ψ̂
(t)

R using (40).

Transmit ψ̂
(t)

R from the root to all nodes for the next
time frame (diffusion).

end
Find S, the number of sources, and their respective
locations ps; s = 1, . . . , S by applying a threshold to
ψ̂

(T )

R , which is the final result of the algorithm.

together. Its recursive version, the RDEM, processes each time
frame separately immediately after being acquired.

The local hidden variables are averaged along the fre-
quency axis locally and ῡ(t)m (p) is aggregated through the bi-
directional tree towards the root. The results are used by the
root for the calculation of the current estimate (39) and the
recursion equation (40). The root then transmits (diffuses) the
updated parameters to all nodes through the tree before the
next time frame is processed. This process is summarized in
Algorithm 2.

The root of the bi-directional tree has two roles in this
process. Its first role is to broadcast the latest global parameter
estimation, ψ̂

(t)

R to all nodes efficiently. The second role of the
root (in the opposite direction) is to aggregate local results that
will enable the calculation of the next recursion step.

In the following sections we evaluate the BDEM and the
RDEM algorithms in terms of implementation and perfor-
mance.

V. IMPLEMENTATION ANALYSIS

This section deals with various implementation issues con-
cerning the DEM algorithms. The major factors that influence
the efficiency of the implementation are: L the number of
iterations, M the number of nodes, T the number of time
frames, K the number of frequency bins and |P | the cardi-
nality of the set of grid points. Here, we selected a regular
grid of possible positions with a desired resolution, but other
schemes are applicable as well. The grid and its resolution
have an influence on the computational complexity.

A. Computational Complexity

The computational complexity is calculated by counting
the number of basic mathematical operations. Multiplications,
divisions, additions and subtractions are equally weighted.

Before calculating the complexity of each algorithm, a few
general statements should be made. The following three steps
are applied in the inner loops of the DEM algorithms: the M-
step and the E-step. For the latter step, we identify an operation
common to all algorithms. The complexity of the E-step,
involving the calculation of the hidden variables υm (t, k,p),
is O(|P |) per time-frequency bin and per node. The other
operations, which are specific to the various algorithms, are
listed below.

1) BDEM Complexity: Define LBDEM the number of it-
erations for the BDEM algorithm. At each iteration the M-
step requires O(M · |P |). In addition, at each iteration per
time-frequency bin and per node the E-step requires O(|P |)
operations. Hence, the total number of operations is given by:

CMPBDEM = O (LBDEM · (M · |P |+ T ·K ·M · |P |)) (41)
= O(LBDEM ·M · T ·K · |P |).

2) RDEM Complexity: The RDEM runs T time frames and
requires no iterations. At each time frame the M-step requires
O(M · |P |) operations. In addition, at each time frame per
node the E-step requires O(K · |P |) operations. Hence, the
total number of operations is given by:

CMPRDEM = O (T · (M · |P |+M ·K · |P |)) = (42)
O(T ·M ·K · |P |) < CMPBDEM.

B. Latency

In online systems latency is a critical issue. There are a few
time constants that need to be defined to analyze the latency
of the proposed algorithms.

The first constant, TB is the block length (in seconds)
required for reliable localization. The BDEM algorithm some-
times need a batch of a few seconds to estimate the locations.
The second constant, TGlobal is the latency caused by the global
calculations applied by the algorithm. The third constant is
TLocal, the latency resulting from the local calculations applied.

For RDEM we denote global and local latencies as TRGlobal,
which is smaller than TGlobal, and TRLocal, which is usually
smaller than TLocal, since only the current time frame is
processed.

1) BDEM Latency: The BDEM latency is given by:

LTCBDEM = O (TB + LBDEM · (TGlobal + TLocal)) . (43)

2) RDEM Latency: One of the major reasons for using the
RDEM is its reduced latency. The RDEM latency is smaller,
since it does not require sample aggregation and since it
applies no iterations. It is given by:

LTCRDEM = O(TRGlobal + TRLocal) < LTCBDEM. (44)

C. Communication Bandwidth

The communication BW is another major issue, especially
when BW or power are constrained.

1) BDEM Communication BW: The communication BW
for the BDEM algorithm is small due to averaging along time
and frequency. It is given by:

BWBDEM = O(LBDEM ·M · |P |). (45)
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2) RDEM Communication BW: The communication BW
for the RDEM algorithm is small, since no iterations are
applied and all frequencies are aggregated in the node before
transmission:

BWRDEM = O(M · T · |P |). (46)

D. Memory Requirements

The BDEM has no memory requirements:

MEMBDEM = 0. (47)

The RDEM only requires the most recent estimation of the
parameters:

MEMRDEM = O(|P |). (48)

E. Summary

Table I summarizes the computational complexity, latency,
communication BW and memory requirements of the proposed
algorithms.

When comparing the RDEM to the BDEM, significant
improvements can be observed. The RDEM requires lower
computational complexity and has lower latency. They both
occupy a narrow BW. The RDEM memory requirements are
small, but larger than those of the BDEM (which does not
impose any storage requirements).

VI. EXPERIMENTAL STUDY

This section reports an experimental study of the two pro-
posed DEM localization algorithms. As a reference algorithm
we used a modified version of the SRP-PHAT [42].

In order to evaluate performance, we use both simulation
and real-life recordings of concurrent sources. For simplicity,
we limited the localization problem to the two-dimensional
case. It should be noted that the algorithms can be applied to
the three-dimensional case as well.

A. Practical Considerations

There are a few practical considerations to be addressed
regarding the proposed algorithms.

1) Sensor Positions: As in most of the localization ap-
proaches, we also assume perfect knowledge of the sensors’
positions in the room. As mentioned above, we assume a 2-D
set-up purely for simplicity reasons. Therefore, the elevation
value is ignored. However, the algorithms tested can be easily
applied to 3-D cases as well. In the general case a 3-D location
can be estimated.

2) Node Synchronization: We assume perfect synchroniza-
tion between the nodes. In practice, it is most likely to have
synchronization since cell phones and other equipment are
synchronized through the network. In cases where there are
clock differences, synchronization methods such as [43] can
be adapted.

3) Microphone Inter-Distance in each Node: We used a mi-
crophone inter-distance of 50cm, which is a good compromise
between resolution and ambiguity.
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(a) Room setup for the simulation.
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(b) Room setup for the recording analysis.

Fig. 5
ROOM SETUPS FOR THE EXPERIMENTAL SECTION. MICROPHONE PAIRS

ARE MARKED BY PAIRS OF CIRCLES AND SOURCES ARE MARKED BY ∗.

4) Calculation Precision: For all calculations we used
natural log operations, since they convert multiplications and
divisions into additions and subtractions, while maintaining
high precision. In other words, the probability ψ̂(`)

p is replaced
by log

(
ψ̂
(`)
p

)
. In a similar way, log

(
υ
(`)
m (t, k,p)

)
is used

rather than its original counterpart.
5) Number of iterations for BDEM: We used 20 iterations

for the BDEM algorithm. If resources are limited, the number
of iterations can be reduced to around 10 iterations.

B. Simulation Results

To evaluate the localization performance of the algorithms,
we simulated the following scenario. Twelve pairs of om-
nidirectional microphones were located around a room. The
dimensions of the simulated room were 6×6×4m, with a low
reverberation level, T60 = 200msec. Two sources randomly lo-
cated in the room, were simulated using short speech files and
an efficient implementation [44] of the image method [45]. An
example of the speaker-microphone constellation is depicted
in Fig. 5(a). In the simulations we have used the following
values of the parameters. The sampling rate is 16KHz. The
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Criteria BDEM RDEM

Computation O(LBDEM ·M · T ·K · |P |) O(M · T ·K · |P |)
Latency O(TB) +O(LBDEM(TGlobal + TLocal)) O(TRGlobal) +O(TRLocal)
BW O(LBDEM ·M · |P |) O(T ·M · |P |)
Memory 0 O(|P |)

TABLE I
IMPLEMENTATION FEATURE TABLE. BDEM AND RDEM ARE COMPARED WITH RESPECT TO COMPUTATION, DELAY, COMMUNICATION BW AND

MEMORY.

number of samples per frame is 1024 (64mSec) with 75%
overlap. The number of spectrogram windows aggregated for
localization is 245 frames, a bit less than 4 seconds. Note, that
this amount of data is usually available in static localization
tasks. The threshold applied to the SRP-PHAT maps is 0.0016.
For the BDEM and RDEM we applied to the probability maps,
a threshold which is the maximum between a fixed threshold
(0.0014) and the maximal value of the map multiplied by a
factor (0.55).

To compare the performance of the algorithms we followed
the procedure described in [30]. We executed 100 Monte-
Carlo trials and calculated three statistical measures: 1) The
miss detection (MD) rate, defined as the percent of sources
that were miss-detected out of the total number of sources; 2)
The false alarm (FA) rate, defined as the percent of falsely-
detected sources normalized by the total number of sources;
and 3) The mean square error (MSE), defined as the accuracy
of localization for all successfully detected sources. Note that
the accuracy of the location estimation was limited by the
grid resolution which was 10 × 10cm. Table II summarizes
the measures for all algorithms. The reference algorithm
SRP-PHAT [42] exhibits higher MD rate and FA rates than
the proposed algorithms. The MSE of all algorithms was low
with respect to the grid resolution.

Algorithm MD[%] FA[%] MSE[cm]

SRP-PHAT 7.5 11.5 4
BDEM 6.5 9.0 4
RDEM 6.5 8.5 4

TABLE II
LOCALIZATION STATISTICS FOR 100 MONTE-CARLO TRIALS WITH TWO

RANDOMLY LOCATED ACOUSTIC SOURCES.

C. Analysis of Actual Recordings

The algorithms were also tested using real recordings of two
simultaneous sources and nine synchronized microphone pairs.
Real-life recordings are important to validate localization
algorithms, since some physical phenomena encountered in
real-life scenarios (e.g. sources’ volume, directivity of the
emitted speech and the speaker orientation) cannot always be

Fig. 6
EXPERIMENTAL SETUP IN THE SPEECH AND ACOUSTIC LAB OF THE

ENGINEERING FACULTY AT BAR-ILAN UNIVERSITY. TWO SOURCES

61.5CM FROM EACH OTHER AND T60 = 150MSEC.

accurately simulated. For example, the spatial volume of the
sources is complicated to simulate.

The recordings were carried out in the speech and acoustic
lab of Bar-Ilan University. This is a 6×6×2.4m room that has
a reverberation time controlled by 60 interchangeable panels
covering the room facets.

To simulate real human sources, we used a mouth sim-
ulator (B&K, type 4227) and a head and torso simulator
(HATS) mannequin (B&K, type 4128C-002) to emulate head
and torso shadowing effects. The measurement equipment
also included a RME Hammerfall DSP Digiface sound-card
and a RME Octamic (for Microphone Pre-Amplification and
digitization (A/D)). AKG type CK-32 omnidirectional micro-
phones were used. All measurements were carried out with
a sampling frequency of 48KHz and a resolution of 24-bits.
The multi-microphone signals were acquired using Matlab c©.
An example of the room layout is depicted in Fig. 5(b).
Two different reverberation levels were tested by changing
the panel configuration; namely T60 = 150msec (low) and
T60 = 450msec (medium). For reverberation levels higher than
T60 = 450msec, the localization results were not accurate
enough. A picture of the room setup, with the two sources
facing each other 61.5cm apart and a low reverberation level,
is depicted in Fig. 6. In the following figures we depict
the results of the various algorithms. In all figures, only
the area encircled by the microphones is shown. Figure 7
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depicts the localization probability maps (ψ̂p) of the proposed
algorithms and the output of the SRP-PHAT algorithm for
the low reverberation level and with a source inter-distance
of 61.5cm. The SRP-PHAT demonstrates poor resolution and
exhibits a wide peak resulting in undistinguishable sources.
The BDEM detected only one source. The RDEM algorithm
detected the two sources.

Figure 8 depicts a two source localization (inter-distance of
71.5cm) for the medium reverberation level. The SRP-PHAT
only detected one of the sources. The BDEM and RDEM
algorithms detected both sources.

VII. CONCLUSION

In this paper we presented a family of DEM algorithms
for multiple concurrent source localizations in reverberant
environments, with an unknown number of sources.

Two novel algorithms that are members of this family were
presented, namely the BDEM and the RDEM algorithms.
They are both implemented over a bi-directional tree-based
topology. They both use the same local hidden variables. We
analyzed their implementation from a distributed computation
point of view, by evaluating computational complexity, latency,
communication BW and memory requirements. We also com-
pared the two algorithms in terms of localization performance
using simulations and real-life recordings. As a reference, we
used a centralized algorithm, namely the SRP-PHAT.

The RDEM outperformed the other algorithms both in terms
of performance and implementation. Moreover, it emerged
as better suited for online applications, since samples are
processed along the time axis (unlike batch processing) and
no iterations are required.
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