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Abstract—Conventional speaker localization algorithms, based
merely on the received microphone signals, are often sensitive
to adverse conditions, such as: high reverberation or low sig-
nal to noise ratio (SNR). In some scenarios, e.g. in meeting
rooms or cars, it can be assumed that the source position is
confined to a predefined area, and the acoustic parameters of
the environment are approximately fixed. Such scenarios give
rise to the assumption that the acoustic samples from the region
of interest have a distinct geometrical structure. In this paper,
we show that the high-dimensional acoustic samples indeed lie
on a low-dimensional manifold and can be embedded into a
low-dimensional space. Motivated by this result, we propose
a semi-supervised source localization algorithm based on two-
microphone measurements, which recovers the inverse mapping
between the acoustic samples and their corresponding locations.
The idea is to use an optimization framework based on manifold
regularization, that involves smoothness constraints of possible
solutions with respect to the manifold. The proposed algorithm,
termed Manifold Regularization for Localization (MRL), is
adapted while new unlabelled measurements (from unknown
source locations) are accumulated during runtime. Experimental
results show superior localization performance when compared
with a recently presented algorithm based on a manifold learning
approach and with the generalized cross-correlation (GCC)
algorithm as a baseline. The algorithm achieves 2◦ accuracy in
typical noisy and reverberant environments (reverberation time
between 200-800 ms and SNR between 5-20 dB).

Index Terms—diffusion distance, manifold regularization, re-
producing kernel Hilbert space (RKHS), relative transfer func-
tion (RTF), sound source localization.

I. INTRODUCTION AND MOTIVATION

The problem of source localization has attracted the at-
tention of many researchers during the last decades. Various
applications rely on the recovery of the spatial position of
an emitting source, such as: automated camera steering [1],
speaker separation [2] and beamformer steering for robust
speech recognition [3]. For this reason, considerable amount
of efforts have been devoted to investigate this field and a wide
range of methods have been proposed over the years. Common
to all localization approaches is the utilization of multiple
microphone recordings to infer the spatial information. The
fundamental challenge is to attain robust localization in poor
conditions, i.e., in the presence of high reverberation and
background noises.
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Conventional localization approaches can be roughly di-
vided into two main categories: single- and dual-step ap-
proaches. In the first class of algorithms, the source location
is determined directly from the microphone signals. The most
dominant member of this class is the maximum likelihood
(ML) algorithm. The algorithm is derived by applying the
ML criterion to a chosen statistical model of the received
signals. This optimization often involves maximization of the
output power of a beamformer, steered to all potential source
locations [4], [5], [6]. Among these methods we mention
the well-known steered response power phase transformation
(SRP-PHAT) algorithm [7], [8]. Another type of single-stage
approaches is high resolution spectral estimation methods,
such as the multiple signal classification (MUSIC) algo-
rithm [9], and the estimation of signal parameters via rotational
invariance (ESPRIT) techniques [10].

In the dual-step approaches category, the first stage involves
time difference of arrival (TDOA) estimation from spatially
separated microphone pairs [11]. The classical method for
TDOA estimation is the generalized cross-correlation (GCC)
algorithm introduced in the landmark paper by Knapp and
Carter [12]. The GCC method relies on the assumption of a
reverberant-free model such that the acoustic transfer function
(ATF), which relates the source and each of the microphones,
is a pure delay. However, this assumption does not hold
in the presence of room reverberation, rendering a perfor-
mance deterioration [13]. Consequently, improvements of the
GCC method for the reverberant case were proposed [14],
[15],[16],[17],[18]. Another type of approaches are subspace
methods based on adaptive eigenvalue decomposition [19] and
generalized eigenvalue decomposition [20].

In the second algorithmic stage, the noisy TDOA esti-
mates are combined to carry out the actual localization. Each
TDOA estimate is associated with an infinite set of source
positions, lying on a half of an hyperboloid. The locus of
the speaker can be recovered by intersecting the hyperboloid
surfaces corresponding to the measurements of different pairs
of microphones. However, the computation of a 3-dimensional
hyperboloids intersection is a cumbersome task and tends to
be sensitive to TDOA estimation errors. In far-field regime
the hyperboloid can be approximated by a cone, and linear
intersection estimate can be applied [21]. Another simplifying
approach is to recast the hyperbolic equations into a spherical
form, and apply the nonlinear least squares approach [22].

All the prementioned methods utilize the spatial information
conveyed by the received signals, but do not rely on any prior
information about the enclosure in which the measurements
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are obtained. In some scenarios, e.g. in meeting rooms or
cars, the source position is confined to a predefined area. It
is reasonable to assume that representative samples from the
region of interest can be measured in advance. Examining
the structures and patterns characterizing the representative
samples can be utilized for formulating a data-driven model
which relates the measured signals to their corresponding
source positions. The additional information may help to better
cope with the challenges posed by reverberation and noise.
So far, only few attempts were made to involve training
information for performing source localization.

Deleforge and Horaud in [23], discussed a 2-D sound
localization scheme, in the binaural hearing context. Their
central assumption is that the binaural observations lie on an
intrinsic manifold which is locally linear. Accordingly, they
proposed a probabilistic piecewise affine regression model,
that learns the localization-to-interaural mapping and its in-
verse. In [24], [25], the authors have generalized the algorithm
to deal with multiple sources using variational Expectation
Maximization (EM) framework. Another approach presented
in the field of binaural hearing, is based on a Gaussian Mixture
Model (GMM) which is used to learn the azimuth-dependent
distribution of the binaural feature space [26].

In [27] the task of direction of arrival (DOA) estimation was
formulated as a classification problem and a learning-based
approach was presented. They proposed to extract features
from the GCC vectors and use a multilayer perceptron neural
network to learn the nonlinear mapping from such features to
the DOA.

Talmon et al. [28] introduced a supervised method based
on manifold learning, using diffusion kernels. The main idea
is specifying the fundamental controlling parameters of the
acoustic impulse response (AIR) using a manifold learning
scheme. Assuming that the position of the source is the only
varying degree-of-freedom of the system at hand, this process
is capable of recovering the unknown source locations. The
key point of the algorithm is to use an appropriate diffusion
kernel with a specifically-tailored distance measure, that is
capable of finding the underlying independent parameters,
dominating the system. Talmon et al. [29] have applied this
method to a single microphone system with a white Gaussian
noise (WGN) input.

In [30] we adopted the paradigm of [29] and adapted it to
a more realistic setting where the source is a speech signal
rather than a WGN signal. The power spectral density (PSD)
of the speech signal is non-flat (as well as non-stationary).
Hence, the spectral variations may blur the variations attributed
to the different possible locations of the source. In order to
mitigate this problem, we committed two major changes in
the algorithm presented in [29]: 1) a second microphone was
added and 2) the feature vector, that was originally based on
the correlation function has been replaced by a PSD-based
vector. It should be emphasized that in [29] the feature vector
was associated with the AIR, whereas in [30] the feature vector
relied on the relative transfer function (RTF) which is the
Fourier transform of the relative impulse response.

Though localization algorithms based on the diffusion
framework were shown to perform well, their fundamental

drawback is that they do not provide any guarantee for
optimality. In general the diffusion-based methods are imple-
mented by a dual-stage approach. First, a low-dimensional
embedding of the representative samples is recovered in an
unsupervised manner. Second, the new representation is used
to estimate the unknown locations based on the labelled
samples. The separation into two stages where one is entirely
unsupervised and the other is entirely supervised is not neces-
sarily optimal. Moreover, the unlabelled data are not exploited
for the estimation itself.

The significance of combining both labelled and unlabelled
data, in the source localization context, should be further
emphasized. Classification and regression algorithms which
rely on training data, are very popular in various applications,
such as: text categorization, handwriting recognition, images
classification and speech recognition. Nowadays, there exist a
rich database for each of these tasks, with considerable amount
of examples with true labellings. Thus, these problems are
more usefully solved using fully supervised approaches. On
the contrary, in the localization problem the training should
fit to the specific acoustic environment in which the measure-
ments are obtained, thus, we cannot create a general database
that corresponds to all possible acoustic scenarios. Instead, the
training set should be generated individually for each acoustic
environment. To obtain labelled data, one needs to generate
recordings in a controlled manner and calibrate each of them
precisely. Generating a large amount of labelled data is a cum-
bersome and impractical process. However, unlabelled data is
freely available since it can be collected whenever someone is
speaking. This greatly motivates the use of semi-supervised
approaches, which mostly rely on unlabelled data, for the
source localization problem. Another motivation is related to
the special characteristics of the acoustic environment. As will
be further elaborated in the paper, the unlabelled data can
be utilized for forming a data-driven model of the acoustic
environment that is very useful for performing robust source
localization.

To address the limitations of the previous diffusion-based
approaches, and to better utilize the unlabelled data, we
propose the Manifold Regularization for Localization (MRL)
algorithm based on two- microphone measurements. The
method recovers the inverse mapping between the RTFs and
their corresponding locations. In this approach we assume that
the RTF samples which originally have a high dimensional
representation, pertain to a low dimensional manifold. This
assumption is supported by the fact that any relative impulse
response has a certain structure of a decaying exponential
envelope which consists of different reflections. The gist of the
algorithm is based on the concepts of manifold regularization
on a reproducing kernel Hilbert space (RKHS), introduced by
Belkin et al. [31]. The idea is to extend the standard supervised
estimation framework by adding an extra regularization term
which imposes a smoothness constraint on possible solutions
with respect to a data-driven model. The model is learned
empirically by forming a data adjacency graph over both
labelled and unlabelled training samples. In this approach, the
estimated location relies not only on the labelled samples, but
also on the unlabelled ones. Moreover, in order to efficiently
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utilize unlabelled samples received during runtime, we propose
an adaptive implementation. The MRL algorithm iteratively
updates the system, based on the new information which be-
comes available while accumulating new unlabelled data. We
compare the proposed algorithm, with the Diffusion Distance
Search (DDS) method, which is a diffusion-based algorithm.
The discussion is supported by an experimental study based
on simulated data.

The paper is organized as follows. In Section II, we
formulate the problem in a general noisy and reverberant
environment. We motivate the choice of the RTF for form-
ing a feature vector and describe how it can be estimated
based on the microphone measurements. In Section III, we
discuss the existence of an acoustic manifold and formulate
an optimization problem which relies on a data-driven model
computed based on both labelled and unlabelled data. This
formulation leads to the MRL algorithm which is sequentially
adapted by the unlabelled data accumulated during runtime.
We briefly describe our previous localization method based on
the diffusion framework [30] in Section IV. Accordingly, we
describe the derivation of the DDS algorithm which conducts
a neighbors’ search using the diffusion distance as an affinity
measurement between RTFs. In Section V, we demonstrate
the algorithms’ performance by an extensive simulation study.
A comparison between the MRL and the DDS algorithms is
carried out in Section VI. Section VII concludes the paper.

II. PROBLEM FORMULATION

We consider a standard enclosure, e.g., a conference room
or a car interior, with a moderate reverberation time. A single
source located at p = [px, py, pz]

T generates an unknown
speech signal s(n), which is received by a pair of micro-
phones. The received signals, denoted by x(n) and y(n), are
contaminated by an additive stationary noise, and are given
by:

x(n) = a1(n,p) ∗ s(n) + u1(n) (1)
y(n) = a2(n,p) ∗ s(n) + u2(n) (2)

where n is the time index, ai(n,p), i = {1, 2} are the
corresponding AIRs relating the source at position p and each
of the microphones and ui(n), i = {1, 2} are the noise signals.
Linear convolution is denoted by ∗. Each of the AIRs consists
of the direct path between the source and the microphone,
as well as reflections from the surfaces characterizing the
enclosure (both early reflections and diffuse field components).
Consequently, even in moderate reverberation conditions, the
AIR is typically modelled as a long FIR filter.

The purpose is to localize the speaker based on the current
received microphone signals x(n) and y(n). We assume that
we are also given a set of prerecorded representative samples
from the region of interest. The training set is composed
of N samples of measured signals {x̄i(n), ȳi(n)}Ni=1 from
various positions within the specified region. Only l samples
among the set are labelled, i.e., their originating position
p̄i is known. The rest u = N − l samples are unlabelled,
namely, their corresponding source locations are unknown.
To summarize, the training set is composed of l labelled

examples {x̄i(n), ȳi(n), p̄i}li=1 and u unlabelled examples
{x̄i(n), ȳi(n)}Ni=l+1.

We are interested in a realistic scenario, where the amount
of labelled data is significantly smaller than the amount of
unlabelled data which can be collected online. Our goal is to
build an on-line system which is initially given a small amount
of labelled data, and is gradually adapted as new unlabelled
samples are acquired.

The first step is to define an appropriate feature vector that
faithfully represents the characteristics of the acoustic path
and is invariant to the other factors, i.e., the stationary noise
and the varying speech signals. For this purpose, we use an
equivalent representation of (1) and (2), defined using the
relative impulse response h(n,p), which satisfies a2(n,p) =
h(n,p) ∗ a1(n,p). Following this definition and substituting
(1) into (2), we obtain an equivalent formulation, which
directly relates the measurements in two microphones [32]:

y(n) = h(n,p) ∗ x(n) + v(n)

v(n) = u2(n)− h(n,p) ∗ u1(n) (3)

In this representation, the relative impulse response h(n,p)
represents the system relating the measured signal x(n) as an
input and the measured signal y(n) as an output. For conve-
nience, we use the Fourier transform of the relative impulse
response, which is termed the relative transfer function (RTF),
and satisfies H(k,p) = A2(k,p)/A1(k,p), where A1(k,p)
and A2(k,p) are the ATFs of the respective AIRs, and k
denotes a discrete frequency index. Using the PSD and cross
PSD (CPSD) of the measured signals y(n) and x(n), defined
in (1) and (2), the RTF H(k,p) is obtained by:

H(k,p) =
Syx(k,p)

Sxx(k,p)− Su1u1(k)
=

Sss(k)A2(k,p)A∗1(k,p)

Sss(k)|A1(k,p)|2
=
A2(k,p)

A1(k,p)
k = 0, . . . , D − 1

(4)

where Syx(k,p) is the CPSD between y(n) and x(n),
Sxx(k,p) is the PSD of x(n), Su1u1(k) is the PSD of the noise
in the first microphone u1(n), and Sss(k) is the PSD of the
source s(n). The choice of the value of D should balance the
tradeoff between the correspondence with the relative impulse
response length (large value) and latency considerations (small
value).

Since A1(k,p) and A2(k,p) are unavailable, we estimate
the RTF by:

Ĥ(k,p) ≡ Ŝyx(k,p)

Ŝxx(k,p)
. (5)

Note that this estimator is biased since we neglect the PSD
of the noise Su1u1(k). Alternatively, unbiased estimators can
be used, such as the RTF estimator based on the non-
stationarity of the speech signal [32]. However, we are not
concerned with robust estimation of the RTF since we will
show that the proposed method performs well using the biased
RTF estimator. Accordingly, we define the feature vector
h(p) = [Ĥ(0,p), . . . , Ĥ(D − 1,p)]T as the concatenation of
estimated RTF values in the D frequency bins (corresponding
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to the first half of the Fourier transform due to symmetry for
real-valued functions). In practice, we discard low and high
frequencies in which the ratio in (5) is meaningless due to
weak speech components. Since speech signals are mainly
concentrated in 0.2-2.5kHz we use only the estimated RTF
values in this frequency band. For the sake of clarity, we omit
the dependency on the position, and denote the RTF feature
vector by h.

III. MANIFOLD REGULARIZATION FOR LOCALIZATION

Our goal is to recover the target function which transforms
each RTF to its corresponding location, based on the training
set comprised of both labelled and unlabelled samples. Finding
such an inverse mapping is non-trivial due to the complex
nonlinear relation between the high-dimensional RTFs and
the originating locations. To mitigate this problem we adopt
the concepts of manifold regularization, introduced by Belkin
et al. [33], [31], and present it in the light of the acoustic
environment and, in particular, for the source localization
problem at hand. It is important to note that, originally, the
concepts of manifold regularization were implemented for
classification, whereas, here, it is applied to the problem of
source localization which is a regression problem.

Two guiding principles are in the core of the proposed
method, that will be termed Manifold Regularization for Lo-
calization (MRL). First, instead of using complex variational
calculus for estimating the target function, we assume that the
function resides in a reproducing kernel Hilbert space (RKHS).
Due to the special characteristics of the functions belonging
to the RKHS, the problem can be formulated simply as a
system of linear equations. Second, we incorporate geomet-
rical considerations, i.e., we use the information implied by
the intrinsic patterns observed in the set of RTFs to build a
data-driven model. Then, the solution is constrained to behave
smoothly with respect to this data-driven model, representing
the intrinsic structure of the RTFs.

A. The Acoustic Manifold

As mentioned in Section II, the RTFs have a high-
dimensional representation in CD that corresponds to the vast
amount of reflections from the different surfaces characterizing
the enclosure. However, the coefficients of a typical relative
impulse response are confined to an exponentially decaying
pattern. Furthermore, RTFs drawn from a certain region of
interest in the enclosure have an even more specific structure
and thus are not spread uniformly in the entire space of
CD. Instead, they are confined to a compact manifold M
of dimension d, which is much smaller compared to the
dimension of the ambient space, i.e. d� D.

This assumption is further justified by the fact that the RTFs
are influenced by only a small set of parameters related to
the physical characteristics of the environment, such as: the
enclosure dimensions and shape, the surfaces’ materials and
the positions of the microphones and the source. Moreover, we
focus on a static configuration, in which the properties of the
enclosure and the position of the microphones remain fixed.
In such an acoustic environment, the only varying degree of

freedom is the source location. Accordingly, we assume that
the RTFs can be intrinsically embedded in a low-dimensional
manifold which is governed by the position of the source. The
existence of such an acoustic manifold was discussed in detail
in [34], and was demonstrated with respect to the DOA of
the source. The main results will be briefly described in the
experimental part, in Section V-B.

Roughly, we consider a manifold of reduced dimensions
which may have a complex nonlinear structure. However, in
small neighborhoods the manifold is locally linear, meaning
that in the vicinity of each point it is flat and coincides with
the tangent plane to the manifold at that point. Here, we
assume that a small movement in the physical position has
a little effect on the corresponding RTF, yet large movements
give rise to very different RTFs. The same principle ensures
the ability of acoustic echo cancellation (AEC) methods [35]
to adaptively identify and track acoustic systems. Hence, the
Euclidean distance can faithfully measure affinities between
points that reside close to each other on the manifold. For
larger scales, the Euclidean distance is meaningless, and we
should rather use the geodesic distance on the manifold.
However, the geodesic distance can be evaluated only when
the structure of the manifold is known. In order to respect the
manifold structure we will only examine local connections
between points and disregard larger distances.

B. Background of Reproducing Kernel Hilbert Spaces

Our goal is to find the inverse-mapping function that re-
ceives an RTF sample and returns the corresponding source
location. In general, estimating a function that minimizes a
cost function, is a cumbersome task that requires complex
mathematical tools, such as variational calculus. One simpli-
fying approach is to assume that the target function belongs
to a certain class of functions with a specific structure. For
example, it can be assumed that the target function belongs
to a certain space of functions, spanned by an orthogonal
basis. Hence, the target function can be represented by a
linear combination of the basis functions, where the weights
are determined according to the projections of the function
on each of the basis functions. In our case we assume that
the target function belongs to a reproducing kernel Hilbert
space (RKHS) associated with a unique kernel function that
evaluates each function in the space by an inner product.
Rather than computing the basis functions spanning the space,
we use an analogue representation with linear combinations
of the kernel function. According to this representation, the
problem can be converted to a simple linear estimation of a
finite set of parameters.

We will first represent the kernel function and its properties,
and then define the RKHS and discuss its representation by the
kernel function that will be used for deriving the optimization
problem in Section III-C. In Appendix A, we show that the
eigenfunctions associated with the kernel form an orthogonal
basis for the RKHS, and discuss an analogue representation
in terms of these basis functions.

As implied by its name, an RKHS is associated with a kernel
function k : M×M → R that measures a pairwise affinity
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between RTFs. The kernel function must satisfy the following
two conditions:

1) Symmetry: k(hi,hj) = k(hj ,hi) ∀hi,hj ∈M.
2) Positive semi-definite: the n× n matrix K with Kij =

k(hi,hj) is positive semi-definite, for any arbitrary
finite set of points {hi}ni=1 ∈M.

Another essential requirement from the kernel is that it
defines a notion of locality, determined with accordance to
a scaling factor εk: for ‖hi − hj‖ � εk, k(hi,hj)→ 1, and
for ‖hi − hj‖ � εk, k(hi,hj)→ 0. A common choice is to
use a Gaussian kernel with variance ε2

k:

k(hi,hj) = exp

{
−‖hi − hj‖2

ε2
k

}
. (6)

Clearly, the Gaussian kernel is a symmetric positive semi-
definite function, and satisfies the locality property. In general,
other radial basis functions have this locality property and thus
can be used instead of the Gaussian function.

The locality property is of major importance in our case,
since the kernel receives RTFs, sampled from the manifold
M. As discussed above, the manifold is in general nonlinear
and is assumed to be locally linear over small patches. Due
to its property of locality, the kernel function constitutes an
affinity measure that respects the manifold structure.

An RKHS, denoted as Hk, is a Hilbert space of functions,
mapping each h ∈M to R, which is associated with a kernel
k. We skip the formal definition of an RKHS (for details
see [36], [37]). Instead, we state the two main properties of
an RKHS:

• for all h ∈M, kh(·) ∈ Hk
• The reproducing property: for all f ∈ Hk and h ∈M,
〈f(·), kh(·)〉 = f(h)

where for each h ∈ M we define the real valued function
kh(·) ≡ k(h, ·). The first property simply states that the RKHS
consists of all functions defined by the kernel k at some point
on the manifold. The second property implies that the kernel
k has a special property that it evaluates all the functions in
the space by an inner product. For example, in L2 the delta
function has the reproducing property since it evaluates all
the functions in L2: 〈δ(y, ·), f(·)〉L2

= f(y). Nevertheless,
this does not define an RKHS, since the delta function does
not belong to L2. However, the space of bandlimited functions
in the range −a < ω < a, where ω is the radial frequency,
is an RKHS and the reproducing kernel is the sinc function:
kx(y) = sin(a(y − x))/(π(y − x)).

We have seen that an RKHS is associated with a unique
reproducing kernel function. In the opposite direction, known
as the Moore-Aronszajn theorem [36], every symmetric, posi-
tive definite kernel k defines a unique RKHS Hk that is given
by the completion (an expansion that includes the limits of all
Cauchy sequences) of the space of functions spanned by the
set {khi

(·)}:

{f |f(·) =
∑
i

cikhi
(·); i ∈ N, ci ∈ R,hi ∈M} (7)

with respect to the following inner product:

〈f(·), g(·)〉 =

〈∑
i

cikhi(·),
∑
j

djkhj (·)

〉
(8)

=
∑
i,j

cidjk(hi,hj).

It can be easily verified that the two mentioned properties
of an RKHS are satisfied by this definition. Obviously, the
reproducing kernel belongs to the space, and the reproducing
property holds, since:

〈f(·), kh(·)〉 =

〈∑
i

cikhi
(·), kh(·)

〉
(9)

=
∑
i

cik(hi,h) = f(h).

An equivalent definition of an RKHS, based on Mercer’s
theorem [38], is discussed in Appendix A. According to this
view point, any function f ∈ Hk can be represented by an
orthogonal basis of functions {ψi(·)} related to the kernel k:

Hk = {f |f(·) =
∑
i

αiψi(·) and ||f ||Hk
<∞}. (10)

where ‖ ·‖2Hk
is the RKHS norm that corresponds to the inner

product defined in (9). To circumvent the computation of the
basis functions, we use the representation of (7), in terms of
the kernel function.

C. Optimization and Manifold Regularization

In this section we present the optimization over the target
function assuming that it belongs to an RKHS Hk with a
reproducing kernel k. Formally, we search for a function
fc : CD → R c ∈ {x, y, z} which is the inverse mapping be-
tween an RTF and its corresponding position, i.e. fc(h) = pc.
In this paper we focus on estimating one position coordinate,
thus, we omit the coordinate subscript. However, the analysis,
the results and the algorithm described here can be naturally
extended to estimating several coordinates.

The search will be formulated by the following optimization
problem:

f∗ = argmin
f∈Hk

1

l

l∑
i=1

V (f(h̄i), p̄i) + γk‖f‖2Hk
+ γM‖f‖2M

(11)
where ‖ · ‖2Hk

is the RKHS norm, ‖ · ‖2M is the intrinsic norm
defined with respect to the manifoldM, and γk, γM are scalar
parameters. The RKHS norm is the general norm defined
in Hk, while the intrinsic norm expresses the behaviour of
the function with respect to the geometrical structure of the
manifold.

The optimization problem consists of three components. The
first term is an empirical cost function defined over the labelled
samples {h̄i}li=1. The function V evaluates the extent of
correspondence between the evaluations of the target function
f(h̄i) and the true labels p̄i. In our case, we set the cost
function to be the squared loss function (p̄i − f(h̄i))

2. Note
that while the L2 norm is not suitable for comparing between
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RTFs [34], it is a reasonable choice for evaluating localization
quality.

The two last terms in (11) are regularization conditions.
Roughly, their role is to prevent the solution from overfitting
to the labelled examples. The second term is the Tikhonov
regularization which penalizes the RKHS norm of the function
to impose smoothness condition in Hk. The additional regular-
ization term, defined by the last term in (11), was introduced
by Belkin et al. [31]. This is an intrinsic regularization that
represents a smoothness penalty of the function with respect
to the manifold M.

One natural choice for the intrinsic norm is to measure the
gradient of the function along the manifold, i.e., to measure
the variability of the function with respect to small movements
on the manifold. Since the manifold structure is unknown, this
term should be approximated on the basis of both labelled and
unlabelled samples. The training set {h̄}Ni=1, which includes
different realizations of possible acoustic paths, can be viewed
as a discrete sampling of the manifold M. The manifold can
be empirically represented by a graph in which the training
samples are the graph nodes, and the weights of the edges are
defined according to an N ×N adjacency matrix W between
the samples:

Wij =

{
exp

{
−‖h̄i−h̄j‖2

ε2w

}
if h̄j ∈ Ni or h̄i ∈ Nj

0 otherwise
(12)

where Nj is a set consisting of the n nearest-neighbors of
h̄j among {h̄i}Ni=1, and εw is a scaling factor. The set Nj
of nearest neighbors is determined according to the regular
Euclidean distance between RTFs which is reliable for small
scales, and meaningless only for large distances.

The adjacency matrix W is used to form the graph Lapla-
cian L, by L = D −W, where D is a diagonal matrix with
Dii =

∑N
j=1Wij . It can be shown, under certain conditions,

that the graph Laplacian L converges to a differential operator
on the manifold M, as was discussed in detail in [39], [40],
[41]. Hence, the gradient of the function along the manifold
can be approximated using the graph Laplacian. Accordingly,
an intrinsic measure of data-dependent smoothness is given
by: ‖f‖2M = fTLf , where f =

[
f(h̄1), ..., f(h̄N )

]
. Thus, the

optimization problem (11) can be recast as:

f∗ = argmin
f∈HK

1

l

l∑
i=1

(p̄i − f(h̄i))
2 + γk‖f‖2HK

+ γM fTLf .

(13)
Further insight can be obtained by the expansion of the

intrinsic regularization:

fTLf =
N∑

i,j=1

f(h̄i)Lijf(h̄j)

=
N∑
i=1

 N∑
j=1

Wij −Wii

 f2(h̄i)−
N∑

i,j=1
i6=j

Wijf(h̄i)f(h̄j)

=
N∑

i,j=1

Wijf
2(h̄i)−

N∑
i,j=1

Wijf(h̄i)f(h̄j)

=
1

2

N∑
i,j=1

Wij

(
f(h̄i)− f(h̄j)

)2
(14)

Intuitively, in (14), large Wij , corresponding to strong simi-
larity between h̄i and h̄j , implies a tendency of f(h̄i) and
f(h̄j) to be close to each other. For this reason, a truncated
kernel was chosen in (12), since it is reasonable to penalize
the function only when the corresponding RTFs reside in the
same local neighborhood.

Note that (13) is a semi-supervised formulation, since it
involves both labelled and unlabelled samples. While the first
term is merely based on the labelled samples, the last two
terms are based on both labelled and unlabelled data. The
two regularization parameters γk and γM balance between
maximizing the correspondence to the labelled data, and main-
taining low complexity of possible solutions. In some respects,
both regularization terms try to relate the target function to
the manifold M by the two different kernels defined in (6)
and (12). Involving two kernels associated with different scales
represents two different measurements of smoothness with
respect to the manifold. Since the real structure of the manifold
is unknown, the combination of both kernels is essential for
obtaining a more accurate modelling of the manifold.

The Representer theorem [42] states that the minimizer f∗

of (13) is a linear combination of the kernel functions only
in the set of labelled and unlabelled points {h̄i}Ni=1, i.e., it is
given by:

f∗(h) =

N∑
i=1

aik(h̄i,h) (15)

where {ai} are the interpolation weights. In Appendix B we
provide the proof of the theorem [31], which is derived by
a simple orthogonality argument, and relies on the specific
structure of the functions in Hk implied by (7), together
with the reproducing property that uniquely characterizes the
RKHS. The Representer theorem dramatically simplifies the
regularized optimization problem of (13) so it can be formu-
lated as a linear optimization over a finite set of parameters
{ai}.

D. Derivation of the Localization Algorithm

In the previous section we formulated an optimization
problem with manifold regularization for recovering the target
function f in (13). Based on the Representer theorem stated
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in (15), the optimization boils down to estimating the interpo-
lation weights {ai}. Substituting (15) in (13) yields a second-
order polynomial objective function of a = [a1, ..., aN ]

T :

a∗ = argmin
a∈RN

1

l
(q− JKa)

T
(q− JKa)

+ γka
TKa + γMaTKLKa (16)

where K is the N × N Gram matrix of k defined by
Kij = k(h̄i, h̄j); J is a N × N diagonal matrix: J =
diag(1, ..., 1, 0, ..., 0) with l ones and u zeros on its diagonal
(functions as an indicator for the labelled samples in the set);
and q = [p̄1, ..., p̄l, 0, ..., 0]T is a label vector comprising the
l known positions of the labelled samples with qi = 0, for all
i > l. Differentiating with respect to a and comparing to zero,
yields:

1

l
(−JK)

T
(q− JKa) + (γkK + γMKLK) a = 0 (17)

By rearranging (17), we obtain the following linear system:

[JK + lγkIN + lγMLK] a = q. (18)

where IN is the N × N identity matrix. Accordingly, the
interpolation weights a are given by:

a∗ = [JK + lγkIN + lγMLK]
−1

q. (19)

Thus far, the computations were carried out offline based
only on the training set, composed of both labelled and
unlabelled samples. The input to the algorithm is a new pair of
measurements {x(n), y(n)}, generated by an unknown source
from an unknown location on the manifold. The corresponding
feature vector h is estimated according to (5). The kernel
between the new sample h and each of the training samples
{h̄i}Ni=1, is evaluated. The position of the new measurement is
estimated according to (15) by a weighted sum of these kernel
evaluations multiplied by the weights given by (19):

p̂ = f(h) =

N∑
i=1

a∗i k(h̄i,h) (20)

E. Adaptive Manifold Regularization for Localization

In this section we summarize the algorithm and formulate
it in a dual-stage structure. The algorithm is composed of
two main parts: system adaptation and localization. In the
adaptation stage, the interpolation weights a∗ are computed
according to (19) based on the labelled and unlabelled sam-
ples, which were collected up to this point in time. In the
localization stage, we receive a new pair of measurements
{x(n), y(n)} of an unknown source from an unknown loca-
tion, and estimate the corresponding position based on the
weights computed in the previous stage.

We take advantage of the fact that the optimization is
derived in a semi-supervised manner, and propose an adaptive
version. At first, the system is initialized with a small amount
of labelled and unlabelled data, and the corresponding weights
are computed. When new test samples become available, their
corresponding positions are estimated based on the computed
weights. After acquiring q unlabelled samples (that are known

to lie on the manifold), they are added to the existing set
of unlabelled samples, i.e. u ← u + q. Then, the weights
are recomputed for the new extended set, i.e. the system is
adapted and the total number of weights increases by q. We
continue to adapt the system whenever q additional unlabelled
samples are accumulated, until we acquire a sufficient amount
of unlabelled samples such that there is no additional benefit in
recomputing the weights. Note that the adaptation process can
potentially adjust to changes in the environmental conditions
if also the labelled samples can be updated. However, this
attribute was not examined in the current paper that focuses
on static configurations. Examining dynamic scenarios with
changing environmental conditions is left for future work.

The proposed MRL algorithm is summarized in Algorithm 1
and is illustrated in a flow diagram in Fig. 1. The flow
diagram emphasizes the duality between the two parts of the
algorithm and the interaction between them. In the downward
direction, the model of the system derived in the adaptation
part is utilized for localization. In the upward direction, the
new unlabelled samples acquired in the localization stage, are
propagated and utilized for system adaptation, in addition to
the existing unlabelled samples. Moreover, note that the two
rightmost (blue) blocks are semi-supervised whereas the rest
of the blocks are unsupervised.

It should be emphasized that we do not present an update
mechanism, but instead the weights are computed from scratch
in each adaptation iteration. The development of a recursive
version of the algorithm is left for future work.

The number q of new unlabelled samples that should be
accumulated before the system is adapted, is chosen empir-
ically to obtain satisfactory performance. Note that when a
too small value is chosen, the computational complexity is
increased, without gaining a significant performance improve-
ment. Furthermore, adding only a small amount of unlabelled
information does not change the weights significantly, yet it
gradually affects the complexity of the solution.

IV. REVIEW OF LOCALIZATION BASED ON DIFFUSION
MAPPING

In this section we briefly review a method for semi-
supervised localization that was presented in [30]. This
method, that will be termed DDS, is a dual-stage approach
based on the concepts of diffusion maps [43], [44]. In the first
stage we recover the mapping between the original space CD
and the embedded space Rd which is governed by the con-
trolling parameter, i.e. the position of the source. The second
step is performing the localization by searching the neighbors
of the new point among the training set in the new recovered
space. Note that both the MRL and DDS algorithms rely on the
information implied by the manifold M. Nevertheless, there
are several fundamental aspects that distinguish between the
two, as will be elaborated in Section VI.

A. Parametrization of the Manifold

In the previous section we introduced a discrete repre-
sentation of the manifold by a graph in which the training
samples are the graph nodes, and the weights of the edges
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Fig. 1: Flow diagram of the proposed MRL algorithm. The algorithm consists of two parts: system adaptation and
localization. In the adaptation part, both labelled and unlabelled samples are utilized to build a data-driven model for the

RTFs and relate it to the position of the source. In the localization part, the position of a new pair of measurements is
estimated based on the model learnt in the adaptation stage. The newly acquired unlabelled samples in the localization stage,

are propagated and utilized for system adaptation.

Algorithm 1: Manifold Regularization for Localization
Parameters: εk, εw, n, γk, γM
System Adaptation:
Input : N = l + u training points: l labelled samples
{x̄i(n), ȳi(n), p̄i}li=1 and u unlabelled samples
{x̄i(n), ȳi(n)}Ni=l+1

Output: Interpolation weights a∗

1) For each point estimate the corresponding RTF h̄i
according to (5).

2) Construct the reproducing kernel matrix K and the
adjacency matrix W, according to (6) and (12)
respectively, based on

{
h̄i
}N
i=1

.
3) Compute the expansion weights a∗ according to (19).

Localization:
Input : A new pair of measurements {x(n), y(n)}
produced by an unknown source from an unknown
location
Output: Estimated position p̂

1) Estimate the corresponding RTF h according to (5).
2) Compute the affinity between h and each of{

h̄i
}N
i=1

, using the reproducing kernel.
3) Estimate the new point location using the estimated

interpolation weights: p̂ = f(h) =
∑N
i=1 a

∗
i k(h̄i,h) .

After acquiring q new samples, return to System
Adaptation and add the new unlabelled samples,
u← u+ q.

are defined according to the adjacency matrix W of (12).
The adjacency graph is normalized to obtain the transition
matrix P = D−1W, which defines a Markov process on the
graph. Accordingly, p(hi,hj) ≡ Pij represents the probability
of transition in a single Markov step from node hi to node
hj .

A nonlinear mapping of the samples into a new embedded
space is obtained by a spectral decomposition of the transition
matrix P. The embedding is based on a parametrization of the
manifold M, which forms an intrinsic representation of the
data. We apply a singular value decomposition to the transition
matrix P, and obtain a set of the N principal right-singular
vectors {ϕj}N−1

j=0 , and N singular values {λj}N−1
j=0 . The d

principal right-singular vectors that correspond to the d largest
singular values, form the diffusion mapping of the samples into
an Euclidean space Rd, defined by:

Φd : hi 7→
[
λ1ϕ

(i)
1 , . . . , λdϕ

(i)
d

]T
. (21)

where ϕ(i)
k denotes the ith entry of the vector ϕk. Usually, ϕ0

is ignored since it is equal to a column vector of ones.
In the localization stage, the embedding should be extended,

given a new RTF sample h, corresponding to a new pair of
measurements {x(n), y(n)} produced by an unknown source
from unknown location. Further spectral decomposition is
unnecessary according to Nyström extension [45]. The new
spectral coordinates are obtained by:

ϕ∗j =
1

λj
bTϕj j ∈ {1, . . . , d} (22)

where b is an affinity vector between the training set and the
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new test point:

bi = exp

{
−‖h̄i − h‖2)

ε2
w

}
. (23)

B. Nearest Neighbor Search on the Manifold

In Section III-A we described the structure of the acoustic
manifold M of the RTFs. We stated that in order to properly
measure affinities between RTFs, we should use the geodesic
distance, which is the shortest path on the manifold. An
approximation of the geodesic distance is given by diffusion
distance, defined as:

D2
Diff(hi,hj) = ‖p (hi, ·)− p (hj , ·) ‖2φ0

=
N∑
r=1

(p (hi,hr)− p (hj ,hr))
2
/φ

(r)
0

where φ0 is the most dominant left-singular vector of P.
The diffusion distance incorporates information of the entire

set to determine the connectivity between pairs of samples on
the graph. Pairs of points that are closely related to the same
subset of points in the graph, are considered close to each other
and vice versa. It can be shown that the diffusion distance is
equal to the Euclidean distance in the diffusion maps space
when using all N eigenvectors. This equivalence emphasizes
the virtue of the diffusion mapping as it indicates that the
mapping preserves the affinity between points with respect to
the manifold. The diffusion distance can be well approximated
by only the first d principal eigenvectors [43], i.e.,

DDiff(hi,hj) ∼= ‖Φd(hi)−Φd(hj)‖. (24)

Equipped with the ability to measure distances along the
manifold using the diffusion distance, we are able to properly
quantify the affinities between RTF samples. Samples which
reside next to each other on the manifold, are assumed
to be physically adjacent, i.e., they are likely to represent
sources from close positions. Thus, the position of a new
sample can be estimated by searching for its neighbors on the
manifold. Accordingly, the estimate will be formulated as a
weighted sum of the positions of the labelled samples, where
the weights are proportional to the corresponding diffusion
distance between the new sample and each of the labelled
samples:

p̂ =
∑
i∈Ni

γ
(
h̄i
)
p̄i (25)

where the weights γ
(
h̄i
)

are given by:

γ
(
h̄i
)

=
exp

{
−D2

Diff

(
h, h̄i

)
/ε2
γ

}∑
j∈Ni

exp
{
−D2

Diff

(
h, h̄j

)
/ε2
γ

} . (26)

where εγ is a scaling factor. The DDS procedure is sum-
marized in Algorithm 2. Here, n1 represents the number of
neighbors in (12), and n2 represents the number of neighbors
in (25).

Note that both labelled and unlabelled samples participate
in the first stage, for the construction of the graph Laplacian.
However, in the localization stage only the labelled samples
are utilized because we rely on the labellings. Though both

the MRL and the DDS algorithms have evident similarities,
we show in the experimental part that the later is inferior due
to its different utilization of unlabelled data.

Algorithm 2: DDS
Parameters: εw, εγ , n1, n2, d
Diffusion Mapping:
Input : N = l + u training points: l labelled samples
{x̄i(n), ȳi(n), p̄i}li=1 and u unlabelled samples
{x̄i(n), ȳi(n)}Ni=l+1

Output: Embedding Φd(·)
1) For each point estimate the corresponding RTF h̄i

according to (5).
2) Construct the graph W based on

{
h̄i
}N
i=1

, and form
the transition matrix P.

3) Employ singular value decomposition of P and
obtain the singular-values {λj} and the right-singular
vectors {ϕj}.

4) Construct the map Φd according to (21) to obtain an
embedding that represents the intrinsic structure of
the manifold M.

Localization:
Input : A new pair of measurements {x(n), y(n)}
produced by an unknown source from an unknown
location
Output: Estimated position p̂

1) Estimate the corresponding RTF h according to (5).
2) Apply Nyström extension according to (22) to obtain

the spectral coordinates of h.
3) Compute the approximated diffusion distance

between Φd(h) and each of the labelled samples
{Φd(h̄i)}Ni=1, according to (24).

4) Estimate the new point location by (25) as a linear
combination of the positions of the labelled samples
according to distances in the diffusion mapped space.

V. EXPERIMENTAL RESULTS

A. Setup

We describe the simulated setup used for conducting the
experimental study. We simulated a 6×6.2×3 m room, using
an efficient implementation [46], of the image method [47].
In the room there are two microphones located at (3, 3, 1) m
and (3.2, 3, 1) m, respectively. The source is known to be
positioned at 2 m distance with respect to the first microphone,
on the same height. The goal is to recover the azimuth angle of
the source. The initial analysis and examination of algorithms
is carried out assuming that the azimuth angle of the source is
ranging between 10◦ ÷ 60◦. Then, the algorithm performance
is further demonstrated on a wider range of azimuth angles
between 0◦ ÷ 180◦. Fig. 2 illustrates the simulation setup.

For each location, we simulate a unique 3 s speech signal,
sampled at 16 kHz. The clean speech is convolved with the
corresponding AIR and is contaminated by a WGN. This
forms the measured signals in the two microphones. For each
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Fig. 2: An illustration of the room setup. The purple arc marks
the region where the source is assumed to be positioned. The
red dots define the grid of the labelled examples.

source location, the CPSD and the PSD are estimated with
Welch’s method with 0.128 s windows and 75% overlap and
are utilized for estimating the RTF in (5) for 2048 frequency
bins. The RTF vector consists of D = 286 frequency bins
corresponding to 0.2 − 2.5kHz, in which most of the speech
components are concentrated.

B. Analysis of the Manifold

In this section we review the main results presented in [34].
We investigate the acoustic manifold of the RTFs and examine
the proper distance between them that maintains physical adja-
cency. The analysis is carried out using a set of N = 400 RTF
samples, corresponding to 400 positions distributed uniformly
in the specified range, between 10◦÷60◦ at 2m distance from
the first microphone. Two alternative distance measures for
quantifying the affinity between different RTFs, are addressed.
We start with the Euclidean distance defined by:

DEuc(hi,hj) = ‖hi − hj‖. (27)

The Euclidean distance is compared with the diffusion distance
presented in Section IV-B.

Fig. 3(a) depicts the Euclidean distance and the diffusion
distance between each of the RTFs and a reference RTF cor-
responding to 10◦, as a function of the angle. We used a mod-
erate reverberation time of 300 ms and WGN of 20 dB SNR.
We observe that the monotonic behaviour of the Euclidean
distance with respect to the angle is confined to approximately
3.2◦ range. Consequently, we conclude that the Euclidean
distance is meaningful only for small arcs. Thus, in general
the Euclidean distance is not a good distance measure between
RTFs. However, it can be properly utilized when inserted into
a Gaussian kernel in either the manifold regularization frame-
work or the diffusion framework. According to its scaling
parameter, the Gaussian kernel preserves small distances and
suppresses large distances which are meaningless. The kernel
scale should be adjusted to the distance at which monotonicity

is maintained by the Euclidean distance, in order to preserve
locality.

(a)

(b)

Fig. 3: (a) The Euclidean distance and the diffusion distance
between each of the RTFs and the RTF corresponding to 10◦,
as a function of the angle. The dashed line shows the boundary
angle until which monotonicity is preserved for the Euclidean
distance. (b) Single-element diffusion mapping Φ1(·).

For the diffusion distance, only the first element in the
mapping (d = 1) was considered. This choice will be justified
in the sequel. We can see that for almost the entire range,
the diffusion distance remains monotonic with respect to the
angle, indicating that it is an appropriate metric in terms of the
source DOA. Further insight into the mapping itself, is gained
by plotting the single-element mapping Φ1(·), as depicted in
Fig. 3(b). We observe that the mapping corresponds well with
the angle up to a monotonic distortion. Thus, the diffusion
mapping successfully reveals the latent variable, namely, the
position of the source. The almost perfect matching between
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the first element of the mapping and the corresponding angle,
justifies the use of d = 1 for estimating the diffusion distance.

To summarize, the presented results strengthen the claim
on the existence of a nonlinear acoustic manifold. In small
neighborhoods around each point, the manifold is approxi-
mately flat, meaning that it resembles an Euclidean (linear)
space. For larger scales the affinity between RTFs should be
determined according to the geodesic distance on the mani-
fold. The diffusion framework successfully reveals the latent
variable controlling the acoustic manifold, and the diffusion
distance properly reflects the distances on the manifold. These
results motivate the involvement of manifold aspects in the
localization process, as introduced by either the MRL or the
DDS algorithms.

C. Localization Results

In this section we examine the ability of both DDS and
MRL to recover the DOA of the source. The training set
consists N = 400 representative samples distributed uniformly
between 10◦÷60◦. Among the training set, only l = 6 samples
were labelled, creating a grid with approximately 10◦ distance
between adjacent labelled samples, as depicted in Fig. 2. The
performance is examined on a set of T = 120 additional
samples produced by unknown sources from unknown loca-
tions, confined to the defined range between 10◦ ÷ 60◦. The
performance is measured according to the root mean square
error (RMSE), defined by:

RMSE =

√√√√ 1

T

T∑
i=1

‖pi − p̂i‖2 (28)

where p stands for the azimuth angle of the source. To prevent
the results from being dependent on a specific reflection
pattern of a certain room section, we repeated the simulation
with rotations of the constellation described above. The rota-
tion angle was generated uniformly between 0◦ ÷ 360◦. The
positions of the second microphone, the training points and
the test points were rotated by this angle, with respect to the
first microphone. The RMSE was averaged over 50 rotations
of the constellation.

The values of the parameters for the MRL and DDS
algorithms are given in Table I, where “med” stands for the
median of the distances between all the training samples.
In general, we chose the variances of all the Gaussians to
be proportional to the median distance “med”, that roughly
expresses the limit for which the distances are monotonic
with respect to the angle, as discussed in Section V-B. The
exact proportion was determined by an exhaustive search, and
a similar search was conducted for determining the values of
all the other parameters as well.

The results of the MRL and the DDS algorithms are com-
pared with that obtained by the classical GCC algorithm [12]
for both noisy and reverberant conditions. The GCC algorithm
is based on finding the maximum of the generalized cross-
correlation function, defined as:

R̂gyx(τ) =
1

2π

∫ ∞
−∞

Ψg(ω)Ŝyx(ω)ejωτdτ (29)

MRL εk εw n γk γM

1.73 · med 0.316 · med 12 1e−7 1e−3

DDS εw d n1 n2 εγ

0.316 · med 3 400 3 1e−4

TABLE I: parameters values for the MRL and DDS algorithms

where τ is a time-lag and Ψg(ω) is a weight function. We used
the GCC-phase transformation (GCC-PHAT) variant, which
is associated with the weight function Ψg(ω) = 1/|Ŝyx(ω)|,
since it is considered more robust to reverberation. The CPSD
between the two measurements was estimated using the same
parameters as defined in Section V-A.

For comparing between the three algorithms we used differ-
ent levels of diffuse noise with speech-like PSD. A spherically
diffused noise field was generated according to [48], using the
simulator provided in [49]. In the first scenario we examine
the algorithms’ performance for different reverberation times
with fixed SNR of 5 dB and 20 dB. In the second scenario the
reverberation time is set to 300 ms and 600 ms, and different
noise levels are examined. In all scenarios the training set is
generated with a fixed SNR level of 10 dB and with the same
reverberation time as that used in the test phase. The RMSE of
the three algorithms in both scenarios, are shown in Fig. 4(a)
and (b), respectively.

It can be seen in Fig. 4(a) that the GCC-PHAT performs well
for low reverberation. However, its performance deteriorates
gradually as reverberation increases, and becomes inferior
compared with the performance of both the DDS and the
MRL algorithms. In high reverberation, the GCC-PHAT is
incapable of distinguishing between the direct arrival and the
reflections. A misidentification of the direct path, results in
a large estimation error. The proposed algorithms are more
robust to reverberation, since the variations in the entire RTFs
are taken in account. In addition, the GCC is significantly
affected by the amount of noise, whereas the semi-supervised
approaches are almost invariant regarding the noise level.

Similar behaviour is observed in Fig. 4(b) in which different
noise levels are examined. Here too, the GCC-PHAT method
behaves well in high and moderate SNR conditions, and
its performance degrades as noise level increases. When the
measurements are contaminated by a significant amount of
noise, the correlation between the two measurements is also
very noisy, and the GCC-PHAT cannot correctly identify
the peak corresponding to the direct path. On the contrary,
the semi-supervised algorithms are much more robust with
respect to the background noise, and most of the time obtain
lower error. These type of algorithms can compensate for the
information loss caused by the poor conditions, by capitalizing
on the prior information inferred from the training samples.

We also observe that most of the time the MRL approach
exhibits better results compared with the DDS method. The
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(a)

(b)

Fig. 4: The RMSE of GCC-PHAT, DDS and MRL (a) as a
function of the reverberation time (SNR=5, 20 dB), and (b) as
a function of SNR (T60 = 300, 600 ms)

reason for the visible gap between the RMSEs of the two al-
gorithms is related to the different ways they utilize unlabelled
data, and will be further elaborated in Section VI. In addition,
in Fig. 4(b) we observe that the minimum error for the MRL
method, is obtained for an SNR of 10 dB, when the noise
level in the test samples matches exactly the noise level used
for training. However, in general the algorithm performs well
even when the test and the training do not meet exactly the
same noise conditions.

Another aspect to be investigated is the algorithm sensitivity
to changes in the environmental conditions between the train-
ing and the test stages. In Fig. 5, we see the RMSE of the MRL
algorithm for different reverberation times, when trained with
a fixed reverberation time of 500 ms. For comparison, we also

present the error obtained for each reverberation time when the
test samples are measured at the same reverberation level as in
the training (as was done in the previous simulations). It can
be observed that for small differences in the reverberation time
of around 100ms, the increase in the error is quite small (less
then 0.5◦). However, as the difference in the reverberation
time between the training and the test increases, the error
deviates significantly from that obtained ideally when the
same reverberation time is used for both the training and the
test. From the manifold perspective, slight variations in the
reverberation time have a mild effect on the manifold structure,
while significant variations correspond to large differences in
the geometry of the associated manifolds.

Fig. 5: The RMSE of the MRL algorithm when trained with
T60 = 500 ms, and when trained with the same T60 as in the
test stage (SNR=10 dB for both the training and the test).

Finally, we examine the iterative process of the MRL
algorithm through the following sequential simulation. We
used reverberation time of 300 ms and diffuse noise with 20 dB
SNR. This time we examined a wider range of angles between
0◦÷180◦. The initial adaptation was based on only 19 labelled
samples, creating a grid of 10◦ distance between adjacent
labelled samples, as depicted in Fig. 2. We conducted 10 cycles
of the sequential algorithm, each comprised of both stages of
system adaptation and localization. In the localization stage,
we estimated the angles of 80 new samples from unknown
locations. The total RMSE of the entire set was computed. In
the following iteration, these 80 new samples were treated as
additional unlabelled data, utilized for system adaptation. The
results are summarized in Fig. 6.

In this figure we observe that the RMSE decreases as a
function of the number of iterations, indicating that the unla-
belled data has an important role in reducing the estimation
error. However, after a considerable amount of unlabelled data
is accumulated, the process stabilizes on a certain error, and
additional samples are redundant.
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Fig. 6: The RMSE of an iterative simulation of MRL for angles
in the range 0◦ ÷ 180◦, where 80 unlabelled points are added
in each iteration. T60 = 300 ms and SNR=20 dB

VI. DISCUSSION

In the previous section we demonstrated the robustness of
the MRL and the DDS algorithms to noisy and reverberant
conditions. We have also seen that the performance of the
DDS method is inferior with respect to that of the MRL
algorithm. In this section we discuss the interfacing points
of both algorithms, on the one hand, and highlight the major
differences between them, on the other hand.

To investigate the role of the unlabelled data in the MRL
method, we inspect the expansion weights a∗ derived by the
algorithm when using the kernel in (6) normalized by the sum
of its rows. In Fig. 7, the N entries of the vector a∗ in (15),
are depicted with respect to the associated angle. The red x-
marks correspond to the weights {ai}li=1 of l = 19 labelled
examples while the blue line corresponds to the weights
{ai}ui=l+1 of u = 441 unlabelled examples. We observe a
monotonic, almost linear, behaviour of the coefficients with
respect to the angle. The obtained behaviour of the MRL
coefficients, resembles the monotonic relation between the
single-element diffusion mapping Φ1(·) and the corresponding
angle, depicted in Fig. 3(b). The correspondence between the
two algorithms, suggests that they share similar aspects which
lead to a parametrization of the manifold and recovery of the
DOA of the source.

However, we have seen that the MRL is a better localizer
compared with the DDS. The difference between the two, is
attributed to their different utilization of the unlabelled data.
In the DDS algorithm, the unlabelled data are used only in
the learning phase, and the estimation merely comprises the
positions of the labelled samples. In contrast, in MRL the
unlabelled data do not only take part in the recovery of the
manifold, but also participate in the estimation itself, involving
both labelled and unlabelled data (15). Another advantage of
MRL over DDS is that it is sequentially updated, hence, it is
more suitable for on-line implementations.

Fig. 7: The estimated expansion weights a∗ with respect to
the corresponding angle. The blue line corresponds to the
weights of u = 441 unlabelled examples, while the red x-
marks correspond to the weights of l = 19 labelled examples.

VII. CONCLUSIONS

A novel approach for semi-supervised localization, based on
state-of-the-art manifold learning techniques, was presented. A
set of representative samples in a defined room section is uti-
lized for learning the acoustic manifold of the RTFs and build-
ing a data-driven model. Equipped with this knowledge, we
find the function relating the samples and the corresponding
positions by solving an optimization problem in an RKHS. The
optimization is based on manifold regularization and involves
smoothness constraints of possible solutions with respect to the
manifold. According to the representer theorem the solution is
given as an expansion in terms of a kernel function sampled at
the training points. The implementation of the proposed algo-
rithm is formulated in an adaptive manner. The initialization is
conducted with only few labelled samples, and then the system
is gradually adapted as new unlabelled samples are received.
Simulation results confirm the algorithm robustness in noisy
and reverberant environments. It is important to note that the
results of the algorithm were only demonstrated in a simulated
room setup, while the performance on real recordings as well
as the examination of other complex environments, are left for
future work.

Integrating between traditional signal processing techniques
and novel machine learning tools may be the key for better
addressing adverse conditions, such as high noise levels and
reverberations, that are the main causes for performance degra-
dation of classical localization approaches. The current results
indicate that the manifold perspective exhibits an interesting
insight into the general structure of the acoustic responses and
offers better solutions for common signal processing problems.
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APPENDIX A

We define the integral operator on functions, associated with
the kernel k, by the following integral transform:

[Tkf ] =

∫
k(t, s)f(s)ds = g(t). (30)

The eigenfunctions {ψi(·)} and eigenvalues {λi} of the inte-
gral operator satisfy:

[Tkψi] =

∫
k(t, s)ψi(s)ds = λiψi(t). (31)

According to Mercer’s theorem [38], the kernel k can be
expanded by:

k(t, s) =
∑
i

λiψi(t)ψi(s) (32)

where the convergence is absolute and uniform. The eigen-
functions {ψi(·)} form an orthogonal set and the RKHS can
be defined as the space of functions spanned by this set:

Hk = {f |f(·) =
∑
i

αiψi(·) and ||f ||Hk
<∞} (33)

where the RKHS norm is defined by the inner product:

〈f, g〉 =

〈∑
i

αiψi(·),
∑
j

βjψi(·)

〉
=
∑
i

αiβi
λj

. (34)

The reproducing property holds in this representation, since:

〈f(·), kh(·)〉 =

〈∑
i

αiψi(·),
∑
j

λjψj(h)ψj(·)

〉

=
∑
i

∑
j

αiλjψj(h) 〈ψi(·), ψj(·)〉
(33)
=
∑
i

αiψj(h) = f(h)

(35)

APPENDIX B

Theorem 1. The minimizer of the optimization problem (13)
has an expansion in terms of labelled and unlabelled exam-
ples:

f∗(h) =
N∑
i=1

aik(h̄i,h) (36)

Proof: Any function f ∈ Hk can be uniquely decom-
posed into two components, where one is lying in the linear
subspace spanned by the kernel functions in the training
examples f‖ = span

{
k(h̄i, ·), i = 1, . . . , N

}
and the other

is lying in the orthogonal complement f⊥:

f = f‖ + f⊥ =
N∑
i=1

aik(h̄i,h) + f⊥ (37)

where 〈f⊥, k(h̄j , ·)〉 = 0 for all 1 ≤ j ≤ N .
The above orthogonal decomposition and the reproducing

property together, show that the evaluation of f on any training

point h̄j , 1 ≤ j ≤ N is independent of the orthogonal
component f⊥:

f(hj) =
〈
f(·), k(h̄j , ·)

〉
(38)

=

〈
N∑
i=1

aik(h̄i, ·) + f⊥(·), k(h̄j , ·)

〉

=

〈
N∑
i=1

aik(h̄i, ·), k(h̄j , ·)

〉
=

N∑
i=1

aik(h̄i, h̄j)

Consequently, the value of the empirical terms involving the
loss function and the intrinsic norm in the optimization prob-
lem (the first and the third terms, respectively), are independent
of f⊥. For the second term (the norm of f in Hk), since f⊥
is orthogonal to

∑N
i=1 aik(hi, ·) and only increases the norm

of f in Hk, we have

‖f‖2Hk
=
∥∥∥ N∑
i=1

aik(h̄i,h) + f⊥(·)
∥∥∥2

Hk

(39)

=
∥∥∥ N∑
i=1

aik(h̄i,h)
∥∥∥2

Hk

+
∥∥∥f⊥(·)

∥∥∥2

Hk

≥
∥∥∥ N∑
i=1

aik(h̄i,h)
∥∥∥2

Hk

Therefore setting f⊥ = 0 does not affect the first and the third
terms of (13), while it strictly decreases the second term. It
follows that any minimizer f∗ of (13) must have f⊥ = 0, and
therefore can be represented as: f∗(h) =

∑N
i=1 aik(h̄i,h).
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source localization for multiple directional microphones,” in IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), vol. 1, 2007, pp. I–125.

[7] M. Omologo and P. Svaizer, “Use of the crosspower-spectrum phase
in acoustic event location,” IEEE Transactions on Speech and Audio
Processing, vol. 5, no. 3, pp. 288–292, 1997.

[8] J. H. DiBiase, H. F. Silverman, and M. S. Brandstein, “Robust localiza-
tion in reverberant rooms,” in Microphone Arrays. Springer, 2001, pp.
157–180.

[9] R. O. Schmidt, “Multiple emitter location and signal parameter estima-
tion,” IEEE Transactions on Antennas and Propagation, vol. 34, no. 3,
pp. 276–280, 1986.

[10] R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via ro-
tational invariance techniques,” IEEE Transactions on Acoustics, Speech
and Signal Processing, vol. 37, no. 7, pp. 984–995, 1989.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TASLP.2016.2555085

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 15

[11] J. Chen, J. Benesty, and Y. Huang, “Time delay estimation in room
acoustic environments: an overview,” EURASIP J. Appl. Signal Process.,
vol. 2006, pp. 170–170, Jan. 2006.

[12] C. Knapp and G. Carter, “The generalized correlation method for
estimation of time delay,” IEEE Transactions on Acoustic, Speech and
Signal Processing, vol. 24, no. 4, pp. 320–327, Aug. 1976.

[13] B. Champagne, S. Bédard, and A. Stéphenne, “Performance of time-
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