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TABLE I
AVERAGE SDR AND SIR MEASURES FOR # = 75� , Ones-A.

SDR SIR

Proposed Baseline Proposed Baseline

R Mixture s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4 s1 s2 s3 s4

20 dB

I-512-3 9.3 10.4 7.9 – 5.5 6.5 4.0 – 14.9 16.0 14.3 – 10.5 12.3 8.4 –
I-4096-3 7.7 7.9 6.2 – 4.7 4.6 3.0 – 13.0 13.7 11.3 – 10.0 9.9 6.6 –
II-512-3 8.4 8.2 9.5 – 4.4 4.5 5.7 – 13.6 13.8 16.1 – 8.6 9.1 12.2 –
II-512-4 7.0 6.6 7.6 9.2 3.8 3.9 4.9 5.8 11.4 11.8 14.2 15.7 7.4 8.7 9.8 11.3

10 dB

I-512-3 7.9 9.1 6.3 – 4.8 6.0 3.1 – 12.8 13.6 12.9 – 9.4 11.5 7.2 –
I-4096-3 6.9 7.1 5.2 – 4.2 4.4 2.5 – 11.4 11.7 9.7 – 9.0 9.2 5.7 –
II-512-3 7.1 6.9 8.2 – 3.8 4.0 5.3 – 11.5 12.2 13.9 – 7.5 8.5 11.3 –
II-512-4 6.1 6.0 6.9 8.2 3.7 3.9 4.6 5.4 10.4 10.6 12.8 13.7 6.8 8.1 8.8 10.7

0 dB

I-512-3 2.4 2.7 0.0 – 1.1 2.3 -1.2 – 4.3 4.4 -0.4 – 3.7 5.9 0.0 –
I-4096-3 2.0 1.9 0.3 – 1.8 2.1 -0.8 – 4.2 3.6 -0.2 – 4.9 5.1 -0.5 –
II-512-3 1.1 1.1 2.7 – 0.0 0.4 1.7 – 2.5 2.1 3.9 – 2.0 3.3 4.2 –
II-512-4 1.8 1.7 3.4 3.8 0.7 1.0 1.7 2.3 4.2 3.6 5.3 5.8 2.7 3.2 3.3 4.6

At R = 0 dB the SIR results are more deteriorated for the
3-source configurations: they do not seem to indicate which
method performs best (in terms of SIR). However, the SDR
scores at 0 dB are all higher for the proposed method than
for the baseline method, except for s2 in mixture I-4096-3
(only 0.2 dB below the baseline though). The improvement is
however more limited than for R = 20 dB and R = 10 dB
(maximum improvement is here 1.3 dB). Finally, at R = 0 dB,
it can be noted that for the 4-source mixture, the proposed
method outperforms the baseline method for all sources, and
for both SDR (improvement ranges from 0.7 dB to 1.7 dB)
and SIR (improvement ranges from 0.4 dB to 2 dB).

For a given source, the performance of ASS is more
adequately described by the separation gain, i.e. the difference
between output score and input score than by the output score
only. Indeed, an input score quantifies how much the target
source is corrupted in the input mixture. A source with low
input score is more difficult to extract than a source with
high input score. We thus display in Table II the input SDR
and input SIR scores of each source.10 Subtracting the scores
in Table I and Table II, we can obtain SDR gains and SIR
gains. We comment the results for R = 0 dB since it is the
most realistic setting (remind that we also are in the Ones-A
blind configuration for filters). For the 3-source mixtures, the
proposed VEM algorithm provides a SDR gain ranging from
3.9 dB to 7.8 dB, and an SIR gain ranging from 4.1 dB to
5.8 dB. As for the 4-source mixture, it is interesting to see
that sources s3 and s4 score higher than s1 and s2 in Table I,
although they move twice as fast as s1 and s2 and are thus
expected to be more difficult to separate. However, they also
have higher input scores, so that the separation gain turns out
to be quite similar across sources.

We now focus on performance behavior w.r.t. the source
velocity, i.e different values of ϑ. Fig. 4 plots the gain of the

10We can see in this table that the length of BRIRs does not affect the
input SIR, i.e. the entries I-512-3 and I-4096-3 are the same up to 2nd decimal
figure), when it slightly degrades the corresponding SDR scores.

Fig. 4. Average SDR gain of the proposed method over the baseline
method, for the 4-source mixture, as a function of # (R = 20 dB, Ones-
A initialization).

proposed method over the baseline method, i.e. the (signed)
difference of the proposed method’s SDR and the SDR of the
baseline. The results shown in Fig. 4 are at R = 20 dB, and
Ones-A strategy (as the latter was shown to be most favorable
for the baseline). For II-512-3, we observe that except for the
3 sources at ϑ = 30◦ and for s2 at ϑ = 90◦, the gain is
monotonically increasing for all three sources, starting from
about 3 dB at ϑ = 15◦ and going up to 3.5–4.5 dB at
ϑ = 90◦. Therefore, the advantage of the proposed method
over the block-wise approach gets larger as the speed of
moving sources increases. This makes sense since the block-
wise baseline method rely on the assumption that filters are
stationary on each block, and this assumption gets mangled as
the source speed increases. In contrast, the proposed method
seems robust to a large range of source velocity. This trend is
also visible on the other plots. For example, for the I-512-3
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mixture, we see that the gain increases with ϑ for s1 and s2,
from about 3 dB at ϑ = 15◦ to about 4 dB at ϑ = 90◦, whereas
the gain for s3 (whose trajectory remains independent of ϑ)
is almost constant at about 4 dB. The decreasing of this latter
curve a bit around ϑ = 45◦ may be due to the trajectories of
s1 and s2 interfering with the trajectory of s3 for ϑ ≥ 45◦.
Additionally, the s3 curve in configuration I-512-3 shows that
the advantage of the proposed method can be also large for
relatively slow sources.

B. Experiments with blind initialization

In this section, we report the second series of experiments,
that were conducted with blind initialization. This series of
experiments consists of two parts: the first part deals with
simulated 3-speaker mixtures, and the second part deals with
a 2-speaker mixture made of real recordings. We first present
the blind initialization method, that is common to all these
new experiments, and then we detail the set-ups and results in
the next subsections.

1) Blind initialization: In these new experiments, the ini-
tialization of the proposed VEM algorithm (and of the baseline
method) relies on the use of a state-of-the art blind source
separation method based on source localization and binary
masking. More specifically, we adapted the sound source
localization method of [49], which is a good representative
of recently proposed probabilistic methods based on mix-
ture models of acoustic feature distribution parameterized by
source position, see e.g. [6], [50], [51], [52]. The method in
[49] relies on a mixture of complex Gaussian distributions
(CGMM) that is used to compare the measured normalized
relative transfer function (NRTF) at a pair of microphones with
the expected NRTF as predicted by a source at a candidate
position and a direct-path propagation model (there is one
CGMM component for each candidate source position on a
predefined grid). Combining the measures obtained at different
microphone pairs into an EM algorithm enables to estimate the
priors of the CGMM components. Then selecting the J first
maxima of the priors amounts to localize the J sources. It
also delivers the associated mixing vectors (corresponding to
the direct path between sources and microphones). We adapted
this method to the use of one pair of microphone, delivering
J source direction estimates (in azimuth) and corresponding
mixing vectors. We further combined it with a binary mask
for source separation, inspired by [53]. For each TF bin, the
masks are obtained by comparing the measured NRTF with
the NRTF corresponding to the J candidate source directions;
the source obtaining the largest posterior value in the CGMM
among the J selected components has its mask set to 1 while
the other sources have their mask set to 0. Then for each
source, the mask is classically applied to the mixture STFT to
obtain an estimate of the corresponding source image STFT.
Importantly, to deal with our time-varying mixing set-up, this
process is applied in a block-wise mode, similarly to what
is done with the baseline method (see Section V-A3). Mixing
vectors estimated on each block are replicated and catenated to
form the initial â:,f` L-sequence. For each source j, the block-
wise estimates of source image STFT vectors obtained by the

Fig. 5. Source trajectories for the experiments with blind initialization:
Simulations (left) and real recordings (right).

binary masking are also concatenated, transformed to absolute
squared values, averaged across channels, and supplied to the
KL-NMF algorithm [17] to provide initial NMF parameter
estimates for the complete sequence of L frames. This blind
source separation method has been shown to be robust to
short blocks, and therefore we can use here more blocks (of
course shorter blocks) than in Section V-A3. This method
was thus applied with 16 blocks (to process 2-second signals,
with 50% overlap, hence one block is 250 ms long). Note
that the baseline method that is plugged onto the initialization
method is still run with P = 4 blocks. Note also that, as in
Section V-A, the same information is used for the initialization
of the proposed VEM and for the initialization of the baseline
method.

2) Simulation set-up: The new simulation set-up is an
underdetermined stereo setup of J = 3 simulated moving
speakers (two male and one female from TIMIT). Since the
blind initialization method relies on a free-field direct-path
propagation model, we replaced the dummy head binaural
recordings of Section V-A with the room impulse response
(RIR) simulator of AudioLabs Erlangen,11 based on the im-
age method [54]. We defined a 2-microphone set-up with
omnidirectional microphones, spaced by d = 50 cm. The
simulated room had the same size as the one in Section V-A1.
In Section V-A1, we had simulated sources trajectoires that
were crossing multiple times, to test the proposed method in
a difficult scenario. However, the binary-mask initialization
method is applied on blocks of time-frames, and it may be
subject to source permutation across blocks.12 To avoid this
problem, we simulated a new setup where the trajectories of
the J = 3 sources are not crossing each other: The 3 speech
sources are all moving in circle of ϑ = 60◦ in 2 s, from
−65◦ to −5◦ for s1, from −30◦ to 30◦ for s2 and from 5◦

to 65◦ for s3, at about 1.5 m of the microphone pair center
(see Fig. 5-left). We simulated two reverberation times, namely
T60 = 680 ms (same as in Section V-A) and T60 = 270 ms (the
corresponding mixtures are denoted respectively as Mix-680
and Mix-270). We also tested the mixtures as is (noiseless case)
and corrupted with additive white Gaussian noise (AWGN) at
SNR= 4 dB. This resulted in 4 configurations. All reported
measures are average results over 10 mixtures using different
speech signals from TIMIT.

3) Real recordings set-up: Real recordings were made in
a 20 m2 reverberant room (T60 ≈ 500 ms), using I = 2

11available at www.audiolabs-erlangen.de/fau/professor/habets/software/rir-
generator.

12Note however that it is not subject to source permutation across frequency
bins since all frequencies are jointly considered in the CGMM model, see [49]
for details.
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TABLE III
AVERAGE MEASURES USING BLIND INITIALIZATION, FOR SIMULATIONS AND REAL RECORDINGS (ALL UNITS ARE DB).

simulated Mix-270 simulated Mix-680 real recordings

SNR ∞ 4 ∞ 4 N/A

Method Src SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR

Input
s1 -2.3 -1.9 +∞ -4.5 -1.9 4.6 -3.5 -2.9 +∞ -5.5 -2.9 4.6 0.0 0.2 +∞
s2 -3.8 -3.0 +∞ -5.7 -3.0 4.6 -2.7 -1.9 +∞ -4.8 -2.0 4.6 0.0 0.2 +∞
s3 -3.1 -2.5 +∞ -5.1 -2.6 4.6 -3.3 -2.7 +∞ -5.3 -2.7 4.6 - - -

Bin-Mask
s1 6.2 10.5 9.5 2.5 7.5 3.4 2.8 5.2 6.1 0.5 2.6 1.7 2.9 7.6 6.3
s2 6.2 10.8 9.4 2.0 6.9 3.4 3.8 6.9 8.2 1.2 4.7 3.1 3.1 6.4 6.6
s3 5.9 9.9 9.2 1.9 6.0 3.0 2.6 3.8 6.8 0.7 2.7 2.7 - - -

Baseline
s1 6.0 11.1 9.7 3.2 7.9 5.3 2.3 4.9 6.4 0.7 2.6 3.4 3.5 6.7 8.3
s2 6.7 11.1 10.0 2.9 7.7 5.0 3.8 7.1 8.5 1.6 4.9 4.4 3.6 6.1 9.1
s3 5.9 9.7 9.5 2.8 6.7 4.8 2.5 4.4 7.1 1.1 2.8 4.2 - - -

Proposed
s1 7.5 13.4 11.5 5.0 10.0 8.9 3.3 6.8 7.8 1.9 4.0 6.3 4.2 7.8 8.3
s2 7.8 13.4 11.7 4.4 9.4 8.5 4.4 8.3 9.6 2.6 5.7 7.4 4.5 7.1 9.2
s3 7.4 11.7 11.3 4.6 7.9 8.5 3.0 4.9 8.2 2.3 3.4 7.3 - - -

omnidirectional microphones in free field, placed in the center
of the room, and spaced by d = 30 cm. For real recordings,
the blind initialization method was shown to be much less
efficient to separate 3 speakers, compared to the simulated
experiments, but still worked very well for 2 speakers. We
thus limited the present experiments with 2 speakers. Two
speakers (one female, one male) were thus asked to pronounce
spontaneous speech while moving on a circle at 1.5 m from
the microphones, of about 45◦, two-way opposite motions,
starting respectively at about 45◦ and −45◦ (see Fig. 5-right).
The trajectory was traveled within 2 s, hence the speaker
movement was pretty fast. The two speakers were recorded
separately, and the signals were added, so that we could
calculate separation scores.

4) Results of simulations: Measures are reported in Ta-
ble III for the input mixed signals, the initial source estimates
after the binary masking, the estimates using the baseline
method and the estimates using the proposed method. In
addition to the SDR and SIR measures, we also report here
signal-to-artifacts ratios (SAR) which measure the quantity of
artefacts introduced on the separated signal by the separation
method. Note that relatively homogeneous input SDR scores
across sources (around −3 dB and −5 dB for the noiseless
and noisy case respectively for both Mix-270 and Mix-680)
indicate that all sources have roughly the same power in the
mix.

Let us start with the most reverberant condition Mix-680.
At SNR = ∞, the average SDR (across sources) attained by
the binary masking method is approximatively 3 dB, hence a
SDR gain of about 6 dB over input signals. The corresponding
average SIR gain is 7.8 dB, and the output average SAR
is about 7 dB.13 For this setting, the baseline method does
not seem able to efficiently exploit the information provided
by the blind initialization: The overall performance is com-
parable to the binary masking (SDR is even very slightly

13It make poor sense to provide SAR gain, since, as source signals are
intact in the mix, the input SAR is =∞ and source separation can only lead
to SAR decrease.

decreased for two sources). Regarding the proposed method,
there is a significant improvement over both the binary mask
initialization and the baseline method. In detail, the proposed
method outperforms the baseline method by 0.5 dB to 1 dB
SDR, by 0.5 dB to 1.9 dB SIR, and by 1.1 dB to 1.4 dB
SAR (averaged across sources). With the addition of noise
(SNR = 4 dB), all performance measures drop significantly,
which was expected. For example, the average SDR for the
binary masking is 2.3 dB lower than for the noiseless condi-
tion. Here, the baseline method slightly improves the binary
masking scores, by 0.3 dB SDR, 0.1 dB SIR, and 1.5 dB
SAR. More importantly, the proposed method outperforms the
baseline method by 1.1 dB SDR, 0.9 dB SIR, and 3 dB SAR.
Note that under noisy conditions, there is more margin for
improvement over the binary masking since the latter provides
worse estimates than in the noiseless case.

For Mix-270, i.e. moderate reverberations, we obtain signif-
icantly higher separation scores for all methods, as expected.
For example, at SNR = ∞, the SDR for the binary masking
(averaged across sources) is about 6 dB, hence a SDR gain of
about 9 dB over input signals. Output SIR and SAR are within
9.2 dB to 10.8 dB (with a SIR gain going up to 13.8 dB).
These scores (the SIR measures in particular) confirm what is
well-known in the literature: Binary-masking techniques show
good separation performance in low-to-moderate reverberant
conditions. They place our block-wise binary masking method
at the level of state-of-the-art methods based on the same
principles (two-microphone source localization and binary
masking), e.g. [6], [50], [51], [52], even though it is applied
on quite short blocks (250 ms of mixture signal). Again, the
baseline method exhibits comparable scores with the binary
masking, here slightly better on the average. In addition,
the proposed method significantly outperforms the baseline
method, by 1.4 dB SDR, 2.2 dB SIR, and 1.8 dB SAR. The
proposed method obtains SIR gains with respect to inputs as
high as 16.4 dB (source s2), which, we believe, is remarkable
in a blind, underdetermined, dynamic setup, be it simulated.
At SNR = 4 dB, we observe the same trends as for Mix-
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680: the baseline method improves more neatly over the
binary masking, and the proposed method, again, significantly
improves over the baseline method (by 1.7 dB SDR, 1.7 dB
SIR, and 3.6 dB SAR).

5) Results of real recordings: The last three columns of
Table III report the performance measures obtained on the
real recordings with two sources. We first notice that even if
we mix two sources instead of three, the gain performance
of the binary masking method is less notable that in our
simulated scenarios. This is evidence that separating (two)
moving sources from real recordings remains quite a challeng-
ing scenario, even for state-of-the-art sound processing tech-
niques. The baseline method shows some SDR improvement
(≈ 0.5 dB) and SAR improvement (> 2 dB) for both sources
over the binary masking. However, the baseline SIR scores
degrade when compared to the binary-masking initialization.
The proposed method exhibits positive gains when compared
both with the binary-masking initialization and with the base-
line method. Indeed, SAR scores of the proposed method are
equivalent to the baseline method and notably better than
the initialization. SDR improves by more than 1 dB when
compared to the initialization, and by 0.7 dB to 0.9 dB when
compared to the baseline method. SIR improves by 0.2 dB to
0.7 dB when compared to the initialization and by 0.7 dB to
1.1 dB when compared to the baseline method. Such results
demonstrate the potential of the proposed approach for real-
world applications and encourage us to pursue this line of
research.

VI. CONCLUSION AND FUTURE WORK

In this paper we addressed the challenging task of separating
audio sources from underdetermined time-varying convolutive
mixtures. We started with the multichannel time-invariant
convolutive LGM-NMF framework of [12], and we intro-
duced time-varying filters modeled by a first-order Markov
model with complex Gaussian observation and transition dis-
tributions. Because the mixture observations do not depend
only on the filters, but also on the sources that are latent
variables as well, a standard direct application of a Kalman
smoother is not possible. We addressed this issue with a
variational approximation, assuming that the filters and the
sources are conditionally independent with respect to the
mixture. This lead to a closed-form variational EM (VEM),
including a variational version of the Kalman smoother, and
finally, separating Wiener filters that are constructed from both
time-varying estimated source parameters and time-varying
estimated mixing filters. Several implementation issues were
discussed to facilitate experimental reproducibility. Finally, an
extensive evaluation campaign demonstrated the experimental
advantage of the proposed approach over a state-of-the-art
baseline method in several speech mixtures under different
initialization strategies.

These results encourage for further research to improve the
proposed model. Firstly, the last series of reported experi-
ments show that the use of realistic blind separation methods
for the initialization of our algorithm in the case of more
sources than microphones has to be more deeply explored

and made more robust to process real recordings. Secondly,
in the present study, the number of sources present in the
mixture was assumed to be known, although the estimation of
this number is a problem on its own. Therefore, developing
algorithms capable of estimating the number of active (i.e.
emitting) sources varying over time remains an open issue,
but is a step closer to realistic applications. We therefore plan
to incorporate into the present model the estimation of the
sources activity, using diarization latent variables. Finally, an
in-depth study exploring the complex relationship between the
physical changes of the recording set-up and the mixing filters
can be of great help. In particular, a better understanding of
how the position of the sources and microphones affect the
filters may enable us to incorporate the rationale of the discrete
DOA-dependent model in [32] to the proposed continuous
latent model, thus using localization cues to help the automatic
separation of sound sources.
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