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Abstract—In speech communication systems the microphone
signals are degraded by reverberation and ambient noise. The
reverberant speech can be separated into two components,
namely, an early speech component that consists of the di-
rect path and some early reflections, and a late reverberant
component that consists of all late reflections. In this paper, a
novel algorithm to simultaneously suppress early reflections, late
reverberation and ambient noise is presented. The expectation-
maximization (EM) algorithm is used to estimate the signals and
spatial parameters of the early speech component and the late
reverberation components. As a result, a spatially filtered version
of the early speech component is estimated in the E-step. The
power spectral density (PSD) of the anechoic speech, the relative
early transfer functions (RETFs) and the PSD matrix of the late
reverberation are estimated in the M-step of the EM algorithm.
The algorithm is evaluated using real room impulse responses
(RIRs) recorded in our acoustic lab with a reverberation time
set to 0.36 s and 0.61 s and several signal-to-noise ratio (SNR)
levels. It is shown that significant improvement is obtained and
that the proposed algorithm outperforms baseline single-channel
and multichannel dereverberation algorithms, as well as a state-
of-the-art multichannel dereverberation algorithm.

Index Terms—dereverberation, noise reduction, expectation-
maximization.

I. INTRODUCTION

DEREVERBERATION aims at the reduction of reverber-
ation that is caused by a multitude of reflections from

the room surfaces. Highly reverberant speech can be difficult
to understand for both humans and machines, and can lead
to listening fatigue [1]. Dereverberation has become a major
research topic in the past decade due to theoretical advances in
understanding the reverberation phenomenon and the available
computational power.

The current work can be considered as a natural extension
of the authors’ previous work [2]. In [2], a multi-microphone
minimum mean square error (MMSE) estimator of the early
speech component was implemented by a minimum variance
distortionless response (MVDR) beamformer followed by a
postfilter. The room impulse response (RIR) was modeled
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by two components (that are assumed to be uncorrelated),
namely the early reverberation (including the direct path and
some early reflections) and the late reverberation [3]–[5]. In
the short-time Fourier transform (STFT) domain, the early
speech component was modeled as a multiplication of the
transformed signal frame and the frequency response of the
early reverberation of the RIR. The late reflections are usually
dense, since they are a summation of many reflections arriving
from all directions. Therefore, the late reverberation and ideal
diffuse sound fields have very similar spatial properties. In
the STFT domain, the late reverberation was modelled as a
diffuse sound field with a time-varying level. The MVDR
beamformer was implemented in a generalized sidelobe can-
celler (GSC) structure. The fixed beamformer (FBF) block
of the GSC was implemented as a delay and sum (DS)
beamformer to reduce the early reflections, and the blocking
matrix (BM) of the GSC was designed to block the early
speech component. Consequently, the branches of the GSC
became nonorthogonal, unlike in the original GSC [6]. The
early speech component was blocked using estimates of the
relative early transfer functions (RETFs), for which a new
identification procedure was proposed. The reverberation level
was estimated by averaging the marginal reverberation levels
at the microphones, obtained by using the single-channel
estimator proposed in [7].

In the current paper, a procedure for simultaneous esti-
mation of all relevant beamformer’s parameters is proposed.
First, the dereverberation problem is restated as a maximum
likelihood (ML) estimation problem and then an expectation-
maximization (EM) algorithm, which alternately estimates the
beamformer’s parameters and the early speech component, is
presented. The anechoic speech is modelled as a Gaussian
source and is subsequently multiplied by the early transfer
functions (ETFs). The late reverberation is modelled as an
additive Gaussian interference, with a time-invariant spatial
coherence matrix multiplied by a time-varying power spectral
density (PSD) level. The noise is also modelled as an additive
Gaussian interference with known PSD matrix. The anechoic
speech and the late reverberation are defined as the hidden
data. Consequently, the estimation of the anechoic speech
is obtained in the E-step using a multichannel Wiener filter
(MCWF), while the PSD of the anechoic speech, the ETFs
(actually, their corresponding normalized RETFs), the time-
invariant spatial coherence matrix of the late reverberation and
the PSD of the late reverberation are estimated in the M-step.
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The main contribution of our approach is the simultaneous
estimation of the entire set of parameters (Coherence matrix,
speech and reverberation PSDs and early relative transfer
functions (RTFs)) using the ML criterion. This criterion is
iteratively implemented by applying the EM procedure, to
jointly estimate the desired speech and the parameters. The
key component of the contribution is the observation that
the perfect diffuse model is not accurate and should be
substituted by the estimated coherence matrix of the late
reverberation PSD. In previous works (e.g., [2], [8], [9]), the
spatial coherence matrix was modelled as an ideal diffuse
sound field, and was therefore assumed to be known. As
this ideal diffuse sound field is not an accurate model of the
reverberation phenomenon in many scenarios [10], we have
incorporated the spatial coherence of the late reverberation
into the set of estimated parameters, and show that by doing
so, the dereverberation performance can indeed be improved.

Within the model, there are two gain ambiguity problems: 1)
between the anechoic speech and the ETFs, and 2) between the
time-invariant spatial coherence matrix and the time-varying
PSD of the late reverberation. Methods to circumvent these
problems are presented by normalizing the ETFs and the
spatial coherence matrix. Due to the normalization of the ETFs
(to form the RETFs), only a filtered version of the early speech
components is estimated, rather than the anechoic speech.

The transition time between the early speech component
and the late speech component is not well-defined within the
framework of the EM algorithm. Accordingly, it is important
to avoid a power exchange between these two components.
A possible solution to this problem is proposed, based on the
estimation of the late reverberation PSD with the maximum
a posteriori (MAP)-EM [11] framework, to guarantee that the
estimate would not differ significantly from its prior value.
An alternative solution is to bound the estimator of the late
reverberation level from above.

This remainder of this paper is organized as follows. In
Section II, various solutions to the dereverberation task are
presented, as a background to our approach. In Section III,
we formulate the joint dereverberation and noise reduction
problem. In Section IV, the EM solution for our statistical
model is derived. Section IV-B is dedicated to the EM solution
for the general noisy case, and Section IV-C is dedicated to
the EM solution for the high signal-to-noise ratio (SNR) case.
In Section IV-D, solutions for the gain ambiguity problems
are presented and recommendations for initializations are
presented in Section IV-E. In Section V, the performance of
the proposed algorithm is evaluated. Section VI is dedicated
to concluding remarks.

II. BACKGROUND

Existing dereverberation methods can be broadly divided
into two categories, namely reverberation cancelation and
reverberation suppression [12]. The algorithm derived in this
paper share attributes of both categories, since the RETFs are
blindly estimated, as in the reverberation cancellation category,
while the late reverberation is suppressed by a postfilter, as in
the reverberation suppression category.

Reverberation cancelation algorithms are often based on
a convolutive reverberation model. Reverberation cancelation
can be achieved by directly inverting the acoustic system or
by first identifying and then equalizing the acoustic system.
Since clean speech is unobservable, these algorithms need to
blindly estimate the acoustic system or its inverse directly.
These acoustic systems may be very long in relation to the
analysis window and therefore difficult to estimate.

In [13], [14], multichannel linear prediction techniques
are used to blindly equalize the RIR without the need to
first identify the RIRs. In [15], a dual-channel reconstruction
method was presented, based on cepstrum techniques. A
single-channel dereverberation method was presented in [16],
based on the harmonic structure of the anechoic speech signal.
The direct sound was approximated by extracting its harmonic
parameters from the reverberant signal, and then the RIR was
estimated by a division in the frequency domain. In [17], a
two-stage multichannel dereverberation method was proposed.
In the first stage, the RIRs were extracted from the null
subspace of the data matrix. In the second stage, these esti-
mates were used to equalize the microphone signals using the
classical multichannel inverse theorem (MINT) method [18].
More recently, researchers proposed to apply channel short-
ening techniques to compute the inverse of the RIRs [19]–
[22]. A technique that is based on explicit modelling of the
vocal tract is the linear prediction (LP) residual enhancement
method [23], [24]. The speech signal can be modelled as an
LP residual excitation signal convolved with the vocal tract.
The vocal tract is modeled by an all-pole filter and its time
coefficients can be estimated by using common LP techniques.
By inverse filtering of the speech signal, the LP residual can
be restored. It turns out that it is easier to reduce the rever-
beration effects from the LP residual than from the regular
reverberant signal. The LP residual enhancement can utilize
single-channel [25] or multichannel [26] structures. In [27],
the authors modelled the late reverberation as a convolution
between past observations and a prediction filter. The weighted
prediction error (WPE) algorithm was presented where the
prediction filter coefficients are estimated in the ML sense.
Then, using the estimated coefficients, the late reverberation is
predicted and subtracted. When several channels are available,
the late reverberation components from all the channels are
predicted (using all the channels) and subtracted separately.

Reverberation suppression algorithms, which are often
based on an additive reverberation model, circumvent the task
of blindly identifying the acoustic system and employ instead
spectral enhancement procedures, which can be implemented
by using a simple reverberation model. Often, these spectral
enhancement procedures result in residual noise, known as
musical noise, which cannot be easily reduced.

Various techniques fall into the category of reverberation
suppression. Polack, in [28], formulated the RIR as indepen-
dent and identically distributed white Gaussian noise with
an exponential decaying variance. This property was first
utilized in [29] to show that the late reverberation PSD can
be expressed as a delayed and attenuated version of the
instantaneous reverberant PSD level. In [5], [29], a spectral
subtraction algorithm was used to obtain an estimate of the
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early speech component, using Polack’s statistical model. This
method was extended to the multi-microphone case in [30], by
employing the single-channel spectral subtraction algorithm at
the output of a DS beamformer. In this case, the estimation
of the late reverberation PSD level was assisted by spatial
averaging. In [9], [31], [32], both reverberation and noise
were subtracted. In the authors’ previous work [2], the MMSE
estimation of the early speech component in a noisy environ-
ment was derived, as explained above. The late reverberation
PSD level was estimated similarly to [29]. Although capable
of significant reverberation suppression, these techniques may
suffer from speech distortion, especially if the reverberation
level is overestimated.

The EM algorithm has been used to perform dereverberation
in the past. In [33], a single-channel algorithm for derever-
beration and noise reduction was presented. The reverberant
speech was modeled as an auto regressive (AR) process, while
the anechoic speech was modeled as an all-pole model. In the
E-step, the reverberant speech is estimated (without the noise
component), while the M-step estimates the reverberation
and speech parameters (the noise parameters assumed to be
known). The anechoic speech is then estimated, externally to
the EM iterations, by virtue of the MCWF. Since there is no
closed-form solution for the maximization in the M-step, the
expectation-conditional maximization (ECM) algorithm [34]
was used. The ECM algorithm integrates the coordinate de-
scent method within the M-step. In [35], an alternative mul-
tichannel EM-based dereverberation algorithm was presented.
The RIRs were defined as stochastic processes and modeled as
a first-order Markov chain, while the speech components were
modeled as time-varying parameters. In the E-step, the RIRs
were estimated using a virtue of the Kalman filter, and in the
M-step, the speech parameters were estimated. In [36], a re-
cursive multichannel EM-based algorithm was presented. The
RIRs were defined as deterministic time-varying parameters
and modeled using convolutive transfer functions (CTFs). The
Kalman-EM procedure [37] was adopted: the Kalman filter
was employed for estimating the anechoic speech in the E-
step and the RIRs were recursively estimated in the M-step.

An EM framework, consisting of an MCWF, was used
in [38], in order to employ source separation. Each source
signal was modelled as a scalar process multiplied by a transfer
function (TF), which yields a rank-1 PSD matrix for each
source. The source signals were defined to be the hidden data
and were separated in the E-step by the MCWF, while the
TFs, the PSDs of the sources and the noise PSD matrix were
estimated in the M-step. Note that TFs which are much longer
than the window length of the STFT cannot be accurately
estimated. In [39], a similar EM framework was used, with
the reverberant sources modelled as a full-rank PSD matrix
and a temporal gain. This modelling enabled the separation of
reverberant sources as well. However, this algorithm does not
aim at suppressing the reverberation, but rather at separating
the reverberant sources. In [40], an EM-based approach for
separating source signals, that also uses the MCWF, was
proposed. In this method, the anechoic signals are modelled
by the nonnegative matrix factorization (NMF) model. This
approach was later extended to dynamic scenarios in [41].

Our proposed algorithm exhibits similarities to the source
separation task of two sources, where in our case, the early
speech component and the late reverberation component (as-
sociated with a single speaker) will be separated. Accordingly,
the early speech component has a rank-1 PSD matrix and
the late reverberation has a full-rank PSD matrix. Note, that
in [38], [39], all sources were either modelled with full-rank
PSD matrices or with rank-1 PSD matrices. It was stated
in [40] that for rank-1 sources in the noiseless case, the EM
procedure converges very slowly. It is therefore required to
update the EM model for the noiseless case. In our paper, we
propose a simplified model for the noiseless case, for which
only the early speech component is defined as the hidden data,
thus circumventing the slow convergence.

III. PROBLEM FORMULATION

In the following section, the multichannel dereverberation
and noise reduction problem is formulated. The observations
consist of reverberant speech in a noisy environment. The
reverberant speech is split into two components, namely early
speech and late reverberation, such that the observations can
be modelled in the STFT domain as:

Yi(m, k) = Xe,i(m, k) +Ri(m, k) + Vi(m, k), (1)

where Yi(m, k) denotes the ith microphone observation at time
index m and frequency index k, Xe,i(m, k) denotes the early
speech component, Ri(m, k) denotes the late reverberation
and Vi(m, k) denotes the ambient noise. Here Xe,i(m, k) is
modelled as a multiplication between the anechoic speech and
the ETF, i.e.,

Xe,i(m, k) = Ge,i(k) S(m, k), (2)

where Ge,i(k) is the ETF and S(m, k) is the anechoic speech.
Concatenating the N microphone signals in a vector form

yields:

y(m, k) = xe(m, k) + r(m, k) + v(m, k) (3)
xe(m, k) = ge(k)S(m, k), (4)

where

y(m, k) =
[
Y1(m, k) Y2(m, k) . . . YN (m, k)

]T
xe(m, k) =

[
Xe,1(m, k) Xe,2(m, k) . . . Xe,N (m, k)

]T
r(m, k) =

[
R1(m, k) R2(m, k) . . . RN (m, k)

]T
v(m, k) =

[
V1(m, k) V2(m, k) . . . VN (m, k)

]T
ge(k) =

[
Ge,1(k) Ge,2(k) . . . Ge,N (k)

]T
.

To circumvent the gain ambiguity problem, the desired signal
can be recast as

xe(m, k) = ḡe(k)SF(m, k), (5)

where

SF(m, k) = qH(k)ge(k)S(m, k), (6)

ḡe(k) =
ge(k)

qH(k)ge(k)
, (7)
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and q(k) denotes a spatial filter. An example of such a spatial
filter is the DS beamformer

hds(k) =
1

N

[
1 exp

(
j 2πkK

τ2
Ts

)
. . . exp

(
j 2πkK

τN
Ts

) ]T
,

(8)
where τi is the time difference of arrival (TDOA) between the
ith microphone and 1st microphone, Ts is the sampling time
and K is the number of frequency bins. Hence, SF(m, k) is
a spatially filtered version of the early speech components
which enhances the direct arrival while incoherently adding
the early reflections [2]. Alternatively, q(k) can be defined as
q(k) =

[
1 0 . . . 0

]T
. In this case, the output of the

algorithm provides an estimate of the early speech component
at the first microphone.

The late reverberation and the noise components are as-
sumed to be undesired and have to be suppressed. The
late reverberation and the noise vectors are assumed to
be uncorrelated and may be modelled as zero-mean multi-
dimensional Gaussian probabilities. In [42], the author shows
that estimators based on super-Gaussian densities deliver an
improved SNR. However, to simplify the derivations, we
prefer to use the Gaussian density instead. The PSD matrix
of the noise is assumed to be time-invariant and known. The
late reverberation PSD matrix is time-variant, since the late
reverberation arises from the speaker. However, the spatial
characteristic of the late reverberation may be assumed to be
time-invariant, as long as the microphone array geometry is
fixed. Therefore, it is reasonable to model the PSD matrix
of the late reverberation as a time-invariant spatial coherence
matrix with time-variant PSD. Finally, the late reverberation
probability density function (p.d.f.) is modelled as

f (r(m, k);φR(m, k),Γ(k))

= NC(r(m, k); 0, φR(m, k) Γ(k)), (9)

where

NC(x; 0,Φ) =
1

πN |Φ|
exp

(
−xH Φ−1x

)
, (10)

x denotes Gaussian vector, Φ is a PSD matrix and | · |
denotes the matrix determinant operation. The time-invariant
spatial coherence matrix Γ(k) describes the spatial charac-
teristics of the late reverberant field, and φR(m, k) repre-
sents the time-variant PSD of the late reverberation. The
spatial coherence matrix Γ(k) is normalized, such that
1
N Tr[Γ(k)] = 1, where Tr [ ] denotes the trace operation1.
As a result, the PSD of the late reverberation is given by
φR(m, k) = 1

N

∑N
i=1E

{
|Ri(m, k)|2

}
, which represents the

average late reverberation PSD across the different micro-
phones. The filtered speech SF(m, k) can also be modelled
as a zero-mean Gaussian process with variance φSF(m, k) =
E{|SF(m, k)|2}2:

f (SF(m, k);φSF(m, k)) = NC(SF(m, k); 0, φSF(m, k)).
(11)

1Strictly speaking the matrix Γ(k) can be defined as a coherence matrix
only if the mean of its diagonal elements is equal to one.

2The variance of the Gaussian process is the PSD of the stochastic process,
that can be obtained by the Fourier transform of the auto-correlation sequence,
according to the Wiener-Khinchin theorem.

The ambient noise is modelled as a zero-mean Gaussian vector
with known PSD matrix Φv(k).

Define φR(k) = [φR(1, k), . . . , φR(M,k)] and φSF
(k) =

[φSF(1, k), . . . , φSF(M,k)], where M is the total number of
observed frames, i.e., m = 1, . . . ,M . The entire set of
parameters of the problem is therefore given by:

θ(k) =
{
φSF

(k), ḡe(k),φR(k),Γ(k)
}
. (12)

The number of the PSD parameters increases with the number
of processed frames. The RETFs and the coherence are
assumed to be time-invariant. Note, that as opposed to [2],
where Γ(k) obeys a perfectly diffuse sound field, here it is
an unknown parameter. This key component of the current
contribution is based on our observation that the perfect diffuse
model is not accurate. This observation has also been made by
other researchers and has been reported in the literature (e.g.,
in [10]).

The early speech component, the late reverberation and
the ambient noise are assumed to be mutually uncorrelated.
Therefore, the observed signal vector is also a zero-mean
Gaussian vector, and the PSD matrix of the observed signals
is equal to the sum of the individual PSD matrices of the
early speech component, late reverberation and ambient noise.
Defining the set of all M available measurement vectors by:

ȳ(k) =
[

yT (1, k) . . . yT (M,k)
]T
, (13)

their p.d.f. is given by:

f(ȳ(k);θ(k)) =
M∏
m=1

NC (y(m, k); 0,Φy(m, k)) , (14)

where it is further assumed that all measurements are inde-
pendent. The PSD matrix of the observations is given by:

Φy(m, k) = φSF(m, k)ḡe(k)ḡH
e (k)

+ φR(m, k) Γ(k) + Φv(k). (15)

The PSD matrix of the early speech component is
obtained by E

{
ge(k)SF(m, k) (ge(k)SF(m, k))

H
}

=

φSF(m, k)ḡe(k)ḡH
e (k).

Our goal now is to maximize the p.d.f. of the measurements
with relation to the parameters, namely to apply the ML
criterion yielding θ(k), i.e.,

θML(k) = argmax
θ

f(ȳ(k);θ(k)). (16)

The maximization operation may be a cumbersome task. To
simplify the derivations, the EM formulation is adopted in the
following section.

IV. EXPECTATION-MAXIMIZATION ALGORITHM

In order to implement the EM algorithm, the hidden data
should be defined. We are proposing to define SF(m, k)
and the late reverberation r(m, k) as the hidden data. The
expectation-step evaluates the auxiliary function (i.e., the ex-
pectation of the joint log-likelihood of the observations and
the hidden data, conditional upon the observations and the
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current estimate of the parameters) while the maximization-
step maximizes the auxiliary function with relation to the
set of parameters. This procedure converges into a local
maximum of the likelihood function of the observation [11].
In the following, the frequency index k is omitted for brevity
whenever possible.

A. Definition of the Auxiliary Function
Concatenate the two components of the hidden data:

d(m) ,
[
SF(m) rT (m)

]T
. (17)

Using this definition, the measurement equation (4) can be
rewritten as:

y(m) = H d(m) + v(m), (18)

where
H ,

[
ḡe IN×N

]
(19)

and IN×N is the identity matrix. Now, by concatenating the
hidden data vectors of time frames 1, . . . ,M , i.e.,

d̄ =
[

dT (1) . . . dT (M)
]T
, (20)

the auxiliary function, i.e., the conditional expectation of the
log-likelihood function, can be deduced as:

Q
(
θ;θ(`)

)
= E

{
log f(ȳ, d̄;θ)|ȳ;θ(`)

}
, (21)

where θ(`) is the parameter-set estimate at iteration `. The
joint probability of the observed data and the hidden data is
Gaussian and given by Bayes rule, where the p.d.f. of d̄ is
defined using (9) and (11):

f(ȳ, d̄;θ) = f(ȳ|d̄;θ) f(d̄;θ) =
M∏
m=1

NC(y(m)−Hd(m); 0,Φv)

×NC(r(m); 0, φR(m) Γ)×NC(SF(m); 0, φSF(m)). (22)

According to (15), the variance of the observations consists
of a summation of three main components: the early speech,
the late reverberation and the noise. The variances of the
early speech and the late reverberation are both inferred by
the EM algorithm. According to our model, the boundary
between the early component and the late component is not
well-defined. Accordingly, it is important to avoid leakage of
energy between these two component. A possible solution for
this indeterminacy is to replace the ML estimation procedure
of φR(m) with the MAP-EM [11] procedure, and hence to
guarantee that the estimate will remain close to the prior mean
of φR(m). In the Bayesian inference literature, it is customary
to model the variance matrix of a Gaussian vector using
the inverse Wishart probability, the so-called conjugate prior
probability of the Gaussian variance (e.g., see [43]). Since
φR(m) is a 1-dimensional variable, a degenerated version of
the inverse Wishart probability, the inverse Gamma probability,
can be used:

IG(φR(m);ψR(m), ν) =

ψνR(m)

G(ν)
(φR(m))

−(ν+1)
exp

(
−ψR(m)

φR(m)

)
, (23)

where ψR(m) denotes the scale parameter, ν denotes the
shape parameter and G(ν) denotes the Gamma function.
The maximum value of the inverse Gamma probability is
φR(m) = ψR(m)

ν+1 . Under the MAP framework, the joint p.d.f.
of the observed data, the hidden data and φR(m) can be
expressed as:

f(ȳ, d̄,φR; θ̃) = f(ȳ, d̄|φR; θ̃)
M∏
m=1

IG(φR(m);ψR(m), ν),

(24)
where θ̃ is the parameter set excluding φR. In practice, a
weighted version of the MAP criterion is commonly used,
namely:

f(ȳ, d̄,φR; θ̃) =

f (1−γ)(ȳ, d̄|φR; θ̃)

(
M∏
m=1

IG(φR(m);ψR(m), ν)

)γ
, (25)

where γ (0 ≤ γ < 1) is a weighting factor.
The augmented auxiliary function can now be defined as a

weighted combination of the ML auxiliary function and the
prior p.d.f.:

QMAP

(
θ;θ(`)

)
= (1− γ)Q

(
θ;θ(`)

)
+

γ
M∑
m=1

log IG(φR(m)|ψR(m), ν). (26)

In the experimental study below, we will examine the appli-
cability of the MAP estimation (and other potential solutions)
to the indeterminacy problem at hand.

B. Derivation of the E-step and M-step

For implementing the E-step, it is sufficient to estimate the
following:

1) d̂(m)

2) Ψ̂d(m) ,
((( hhh

d(m) dH(m),

where d̂(m) , E
{

d(m)|y(m);θ(`)
}

is the expected first-
order statistic of the hidden-data given the measurements,
and Ψ̂d , E

{
ddH |y(m);θ(`)

}
is the expected second-order

statistic of the hidden-data given the measurements. Note, that
the hidden data is an independent stochastic process (see (22)).
Hence, d̂(m) and Ψ̂d(m) only depend on the measurement
vector at frame m, namely y(m), and all other time frames
can be excluded from the estimation procedure. This is in line
with standard beamforming techniques.

Note, that the required sufficient statistics of r(m) and
SF(m) can be deduced from the above terms, i.e.,

r̂(m) = d̂{2:N+1}(m), (27a)

ŜF(m) = d̂{1}(m), (27b)
((( hhh

r(m)rH(m) = Ψ̂d,{2:N+1,2:N+1}(m), (27c)
(( hh
|SF(m)|2 = Ψ̂d,{1,1}(m), and (27d)

((( hhh
S∗F (m) r(m) = Ψ̂d,{2:N+1,1}(m). (27e)
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Since y(m) and d(m) in (18) are Gaussian random vectors,
d̂(m) can be estimated by the optimal linear estimator, which
in our case, is given by the MCWF

d̂(m) = E
{
d(m)yH(m)

}
×
(
E
{
y(m)yH(m)

})−1
y(m)

= Φ
(`)
d (m)

(
H(`)

)H (
Φ(`)

y (m)
)−1

y(m) (28)

with

Φ
(`)
d (m) =

[
φ
(`)
SF

(m) 01×N

0N×1 φ
(`)
R (m) Γ(`)

]
, (29)

0M×N an all-zeros matrix of dimension M ×N and Φ
(`)
y (m)

being the PSD matrix of the observations. The latter can be
calculated using Φ

(`)
y (m) = H(`)Φ

(`)
d (m)

(
H(`)

)H
+ Φv.

The matrix Ψ̂d(m) can be estimated using the following
relation:

Ψ̂d(m) = d̂(m) d̂H(m) + Cov
{

d(m)|y(m);θ(`)
}
, (30)

where Cov
{

d(m)|y(m);θ(`)
}

is the covariance matrix of
d(m) given y(m). Since d(m) and y(m) are Gaussian
random vectors, the conditional covariance matrix is generally
given by [44]:

Cov {d(m)|y(m)} = Φd(m)−Φdy(m)Φ−1y (m)Φyd(m),

(31)

where Φd(m),Φdy(m),Φyd(m) and Φy(m) are the corre-
sponding PSD matrices. The conditional covariance at the `th
iteration is therefore given by

Cov
{

d(m)|y(m);θ(`)
}

= Φ
(`)
d (m)−

Φ
(`)
d (m)

(
H(`)

)H (
Φ(`)

y (m)
)−1

H(`)Φ
(`)
d (m). (32)

Maximizing QMAP

(
θ;θ(`)

)
with relation to the problem

parameters constitutes the M-step:

1. φ
(`+1)
S (m) =

(( hh
|SF(m)|2 (33)

2. ḡ(`+1)
e =

∑M
m=1 Ŝ

∗
F (m)y(m)−

((( hhh
S∗F (m)r(m)∑

m

(( hh
|SF(m)|2

(34)

3. Γ(`+1) =
1

M

M∑
m=1

(
φ
(`)
R (m)

)−1 ((( hhh

r(m)rH(m) (35)

4. φ
(`+1)
R (m) =

γ ψR(m)
N + (1− γ)φ̄

(`+1)
R (m)

γ ν+1
N + (1− γ)

, (36)

where

φ̄
(`+1)
R (m) =

1

N
Tr

[
((( hhh

r(m)rH(m)
(
Γ(`+1)

)−1]
. (37)

This algorithm is a generalized form of the EM algorithm (re-
ferred to as the ECM algorithm in [34]). Since the maximiza-
tion operations of φ(`+1)

R (m) and Γ(`+1)(m) are interlaced,
each iteration of the M-step does not maximize the likelihood
but merely increases it.

As the algorithm uses the entire set of available measure-
ments, i.e., m = 1, . . . ,M , for estimating ḡ

(`+1)
e and Γ(`+1),

it should be applied in batch mode. Recursive solutions of the
problem at hand are beyond the scope of this contribution.

Note, that when γ = 0 the contribution of the prior p.d.f.
is discarded, and when γ = 1 the PSD φ

(`+1)
R (m) = ψR(m)

ν+1 .
The scale parameter ψR(m) may be set by utilizing the initial
value of φR(m), i.e.,

ψR(m) = φ
(0)
R (m) (ν + 1). (38)

To simplify the denominator in the calculation of φ(`+1)
R (m),

ν was set to N − 1. Consequently, (36) can be written as

φ
(`+1)
R (m) = γφ

(0)
R (m) + (1− γ)φ̄

(`+1)
R (m). (39)

C. High SNR Case

In cases where the noise PSD matrix tends to zero, the
resulting update rule for the other parameters might converge
slowly or not converge at all [40]. Therefore, it is worthwhile
to define an alternative model when the SNR is high. When
the SNR is very high, the signal model in (1) can be simplified
to:

Yi(m) = Ḡe,i SF(m) +Ri(m). (40)

We can now simplify the hidden data to consist only of the
filtered speech SF(m), i.e., without the reverberation term.
Similar to the joint p.d.f. of the observed data and the hidden
data given by (22), the joint p.d.f. of the observations and the
anechoic speech is given by:

f(y(m), SF(m);θ) = NC(y(m)− ḡeSF(m), 0, φR(m) Γ)

×NC(SF(m), 0, φSF(m)). (41)

The E-step can be derived similarly to the noisy case:

ŜF(m) = φ
(`)
SF

(m)
(
ḡ(`)

e

)H (
Φ(`)

y (m)
)−1

y(m) (42)

and

(( hh
|SF(m)|2= |ŜF(m)|2 + φ

(`)
SF

(m)−(
φ
(`)
SF

(m)
)2 (

ḡ(`)
e

)H (
Φ(`)

y (m)
)−1

ḡ(`)
e , (43)

where Φy(m) = ḡeḡ
H
e φSF(m) + φR(m) Γ. For ν = N − 1,

the M-step is obtained by:

1. φ
(`+1)
SF

(m) =
(( hh
|SF(m)|2 (44)

2. ḡ(`+1)
e =

∑M
m=1

(
φ
(`)
R (m)

)−1
Ŝ∗F (m)y(m)∑M

m=1

(
φ
(`)
R (m)

)−1 (( hh
|SF(m)|2

(45)

3. Γ(`+1) =
1

M

M∑
m=1

(
φ
(`)
R (m)

)−1
Ẑ(`+1)(m) (46)

4. φ
(`+1)
R (m) = γφ

(0)
R (m) + (1− γ)φ̄

(`+1)
R (m), (47)
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where

Ẑ(`+1)(m) ,
((((((((

hhhhhhhh

(y(m)− ḡeSF(m))(y(m)− ḡeSF)H(m)

= y(m)yH(m)− ḡ(`)
e ŜF(m)yH(m)

− y(m)Ŝ∗F (m)
(
ḡ(`)

e

)H

+
(( hh
|SF(m)|2 ḡ(`)

e

(
ḡ(`)

e

)H
, (48)

and

φ̄
(`+1)
R (m) =

1

N
Tr
[
Ẑ(`+1)(m)

(
Γ(`+1)

)−1]
. (49)

It is evident that the algorithm for the noiseless case is also
applied in batch mode.

D. Practical Considerations

In the following, several practical aspects are discussed.
These aspects are relevant to both the low and high SNR cases.

1) Normalization: The RETF ḡe and filtered speech
φSF(m) are both estimated by the algorithm, such that
ḡeḡ

H
e φSF(m) represents the total PSD matrix of the early

speech component. Therefore, each aḡe and 1
|a|2 φSF(m)

satisfies the same likelihood score, where a is an arbitrary
frequency-dependent gain. Similarly, each 1

bφR(m) and bΓ
satisfies the same likelihood, where b is an arbitrary frequency-
dependent gain. Since we know that qHḡe = 1 (see (7)) and
1
N Tr [Γ] = 1, the following normalization operations may be
employed to resolve these gain ambiguity issues:

ḡ(`+1)
e ← ḡ

(`+1)
e

qHḡ
(`+1)
e

(50)

φ
(`+1)
SF

(m)← |qHḡ(`+1)
e |2φ(`+1)

SF
(m) (51)

Γ(`+1) ← Γ(`+1)

1
N Tr

[
Γ(`+1)

] . (52)

The PSD φR(m) is then automatically normalized, due to (37).
2) Avoiding speech distortion: To avoid speech distortion

in estimating SF(m), it is proposed to replace the regular
E-step at the last (Lth) iteration by an alternative step. The
optimal MCWF in (28) can be split into a multichannel MVDR
beamformer and a subsequent single-channel Wiener filter as
shown in [45], [46]. The output of the MVDR beamformer is
computed using:

Ŝ
(L)
MVDR(m) =

(
w

(L)
MVDR(m)

)H
y(m), (53)

where

w
(L)
MVDR(m) = (

φ
(L)
R (m) Γ(L) + Φv

)−1
ḡ
(L)
e(

ḡ
(L)
e

)H (
φ
(L)
R (m) Γ(L) + Φv

)−1
ḡ
(L)
e

. (54)

Then, only at the Lth iteration, the single-channel Wiener
filter is substituted by the following single-channel postfilter

(with ξ(L)(m) denoting the a priori signal-to-reverberation
plus noise ratio (SRNR)):

H
(L)
W (m) = min

{
ξ(L)(m)

ξ(L)(m) + 1
, Hmin

}
, (55)

i.e., a single-channel Wiener filter with a lower-bound con-
straint Hmin. Since the SRNR is unobservable, we recursively
estimate it using the posterior SRNR, as proposed in [5]:

ξ(L)(m) = βr|H(L)
W (m− 1)|2η(L)(m− 1)+

(1− βr) max
{
η(L)(m)− 1, 0

}
, (56)

where βr is a weighting factor and η(L)(m) is the a posteriori
SRNR at the MVDR output given by:

η(L)(m) =

∣∣∣Ŝ(L)
MVDR(m)

∣∣∣2
φ̃
(L)
R (m) + φ̃

(L)
V (m)

. (57)

The residual reverberation φ̃(L)R (m) and the residual noise φ̃(L)V

at the output of the MVDR stage are, respectively, given by

φ̃
(L)
R (m) =

(
w

(L)
MVDR(m)

)H
φ
(L)
R (m) Γ(L)w

(L)
MVDR(m) (58)

and

φ̃
(L)
V (m) =

(
w

(L)
MVDR(m)

)H
Φvw

(L)
MVDR(m). (59)

The output of the algorithm is finally given by:

ŜO(m) = H
(L)
W (m) Ŝ

(L)
MVDR(m). (60)

3) Using only relevant time frames: In practice, a poor
estimate of r(m) may be obtained when the late reverberation
power is much smaller than the power of the early speech
component. Therefore, we propose to evaluate φR(m) and Γ
in (36) and (35), respectively, based on the late-reverberation-
to-early-speech ratio (RER) and the late-reverberation-to-noise
ratio (RNR), and to select only segments for which both ratios
are higher than a predefined threshold, i.e.,

RER ,
φ
(`)
R (m)

φ
(`)
S (m)

> λRER, (61)

RNR ,
φ
(`)
R (m)

1
N Tr [Φv]

> λRNR. (62)

Similarly, the estimation of φSF(m) and ḡe in (33) and (34),
respectively, should be carried out only in segments where the
early-speech-to-late-reverberation ratio (ERR) and the early-
speech-to-noise ratio (ENR) are higher than a predefined
threshold, i.e.,

ERR ,
1

RER
=
φ
(`)
S (m)

φ
(`)
R (m)

> λERR, (63)

ENR ,
RNR
RER

=
φ
(`)
S (m)

1
N Tr [Φv]

> λENR. (64)
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4) Upper-bound for φ(`)R (m): To avoid overestimation of
φ
(`)
R (m) by the EM algorithm, we propose to bound from

above its estimated value by 1
N yH(m)y(m). The latter is an

instantaneous estimate of the a posteriori PSD level of the
observations, and can hence serve as an upper-bound of the
late reverberation component. This heuristic step may alleviate
the need for the EM-MAP procedure, as will be examined in
the experimental study.

E. Initialization and Summary

It is well known that the performance of the EM algorithm
depends on the initialization of the parameters. In the follow-
ing, parameter initialization procedures are provided.

1) Late reverberation PSD: The late reverberation PSD
level can be initialized by averaging the PSD level at each
microphone, φRi(m), which can be obtained using Polack’s
model [28] (c.f. [4], [5], [7], [12], [47]), after compensating
for the noise level φ̂Vi

at each microphone:

φ̂Ri
(m) = exp(−2αRJ) ×

[
φ̂Y,i(m− J)− φ̂Vi

]
, (65)

where α = 3 log(10)
T60fs

, J is the time in frames (measured with
respect to the arrival time of the direct sound) indicating the
beginning of late reverberation, R is the number of samples
between two subsequent STFT frames, T60 is the reverberation
time, and fs is the sampling frequency in Hz. The PSD
of Yi(m) can be estimated recursively from the microphone
signals, using:

φ̂Y,i(m) = βyφ̂Y,i(m− 1) + (1− βy)|Yi(m)|2, (66)

where βy is a forgetting factor. An estimate of the late
reverberation level is obtained by averaging the PSD estimates
across all channels:

φ
(0)
R (m) =

1

N

N∑
i=1

φ̂R,i(m). (67)

2) Relative early transfer functions: Initialization of the
RETFs ḡe is a necessary step for constructing the beamformer.
We propose the following procedure that will be applied to the
microphone signals prior to the application of a beamforming
step.

From (5), the (normalized) early speech components at the
microphone signals are the output of filtering the (normal-
ized) desired signal by the RETFs, namely Xe,i(m, k) =
Ḡe,i(k)SF(m, k); i = 1, . . . , N . Multiplying both sides by
S∗F (m) and taking the expectation yields:

φXe,i,SF(m) = Ḡe,iφSF(m), (68)

which can be used to formulate a least squares (LS) opti-
mization criterion for the estimation of the RETF. Assuming
that the RETF are slowly time-varying, and hence may be
considered time-invariant during the M time frames, the LS
estimate of Ḡe,i can be used to initialize the RETFs:

Ḡ
(0)
e,i =

∑M
m′=1 φXe,i,SF(m

′)φSF(m
′)∑M

m′=1 φ
2
SF,SF

(m′)
. (69)

The auto- and cross-PSDs are, respectively, recursively esti-
mated using:

φ̂SF(m) = βeφ̂SF(m − 1) + (1 − βe)|ŜF(m)|2 (70)

and

φ̂Xe,i,SF(m) = βeφ̂Xe,i,SF(m− 1)

+ (1− βe)X̂e,i(m)Ŝ∗F (m). (71)

Note, that both Xe,i(m, k) and SF(m, k) are unavailable at this
stage. We therefore propose the following procedure to obtain
a preliminary estimate that can be utilized to estimate ḡ

(0)
e .

The early speech component at the ith microphone X̂e,i(m)
can be obtained by applying a single-channel dereverberation
algorithm based on the Wiener filter as presented in [2], and
the preliminary estimate of the desired signal can be obtained
as (see (5)-(6)):

ŜF(m) = qHx̂e(m). (72)

3) Spatial coherence matrix of the late reverberation: The
normalized spatial coherence matrix of the late reverberation
can be initialized as a spherically isotropic sound field [48],
[49] plus diagonal loading:

Γ(0)(k) =


sinc

(
2πfskd1,1

Kc

)
. . . sinc

(
2πfskd1,N

Kc

)
...

. . .
...

sinc
(

2πfskdN,1

Kc

)
. . . sinc

(
2πfskdN,N

Kc

)


+ εI, (73)

where sinc(x) = sin(x)/x, K is the number of frequency bins,
di,j is the inter-distance between microphones i and j, c is the
sound velocity, and ε is a small positive number.

4) PSD of the filtered early speech component: In order
to initialize φSF(m), an initial estimate of ŜF(m), denoted as
ŜINIT(m), may be used. Note, that the estimate in (70) is only
a preliminary estimate, since it uses the received microphone
signals but not any beamformer output. A better estimate of
ŜINIT(m) is obtained by:

ŜINIT(m) = H
(0)
W (m) Ŝ

(0)
MVDR(m), (74)

where H(0)
W (m) was defined in (55) and Ŝ(0)

MVDR(m) is similar
to (53) with L substituted by 0. Then φSF(m) can be estimated
as follows:

φ
(0)
SF

(m) = βs φ
(0)
SF

(m− 1) + (1− βs) |ŜINIT(m)|2, (75)

with βs a forgetting factor.
5) Noise PSD matrix: The noise PSD matrix Φv can

be estimated during speech-absence segments by using an
estimate of the speech presence probability (c.f. [50]–[53]).
Estimating the noise PSD matrix is beyond the scope of this
contribution.

The EM based dereverberation and noise reduction algo-
rithm for the noisy case is summarized in Algorithm 1.
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Algorithm 1: EM based dereverberation and noise reduc-
tion algorithm.

Initialize ḡ
(0)
e by (69), φ(0)S (m) by (75), Γ(0) by (73)

and φ(0)R (m) by (67).
for ` = 1, . . . , L do

E-step:
if SNR is low then

Calculate d̂(m) by (28) and Ψ̂d(m) by (30).
else

Calculate Ŝ(m) by (42) and
(( hh
|S(m)|2 by (43).

end
M-step:
Calculate φ(`+1)

S (m), ḡ
(`+1)
e , φ(`+1)

R (m) and Γ(`+1)

by (33)-(36) for low SNR or by (44) for high SNR.
Normalize Γ(`+1), ḡ

(`+1)
e and φ(`+1)

S (m) by (50).
end
Calculate ŜO(m) using (60).

V. PERFORMANCE EVALUATION

The performance of the proposed algorithm is evaluated in
terms of two objective measures that are commonly used in the
speech enhancement community, namely perceptual evaluation
of speech quality (PESQ) [54] and log-spectral distance (LSD).
The experiments consist of reverberant signals plus directional
noise or diffuse noise with various SNR levels.

For comparison, we also evaluated the performance of the
single-channel dereverberation algorithm, proposed in [5], and
the performance of ŜINIT(m), as defined in (74). ŜINIT(m)
is the MMSE estimate of the early speech component given
the initial parameter-set. ŜINIT(m) can be considered as the
output of the multichannel MMSE dereverberation and noise
reduction algorithm proposed in [2], since they share an
identical parameter-set. The only difference between the two
lies in the implementation of the MVDR stage. Whereas in [2],
it was implemented in a (non-orthogonal) GSC structure, as
explained in Sec. I, here we use a direct MVDR implementa-
tion.

To demonstrate the effectiveness of the proposed algorithm,
the results of a competing state-of-the-art algorithm [27]
known as WPE3 are also presented. The results are reported
only for the reverberant and noiseless case, since the WPE
algorithm was designed only for this case.

A. Setup

For all considered scenarios, a loudspeaker was positioned
at a distance of 2 m in front of a non-uniform linear array
with 4 microphones, such that no delay compensation was
required. Thus, q = 1

4

[
1 1 1 1

]T
. Anechoic speech

signals were convolved by RIRs which were downloaded from
an open-source RIRs database. Details about the database and
RIR estimation method can be found in [55]. An illustration

3The results for the WPE method were obtained using the implementation
available at http://www.kecl.ntt.co.jp/icl/signal/wpe/

Speaker

Noise-Source

2 m

2 m

Fig. 1: Geometric setup (adopted from [55]).

of the geometric setup is given in Fig. 1. Further details about
the speaker-microphones constellation can be found in [55].

The sampling frequency was 16 kHz and the frame length
of the STFT was 32 ms with 8 ms between successive time
frames (i.e., 75% overlap). We set the starting point of the
late reverberation to 32 ms after the arrival of the direct-path,
namely J = 4 in (65). The spatial coherence matrix Γ was
estimated using frames where the RER and RNR are above
0 dB (i.e., λRER = λRNR = 1), and φR(m) was estimated
using only frames with RER and RNR above −10 dB (i.e.,
λRER = λRNR = 10−1). The RETF ḡe and the filtered speech
PSD φSF(m) were estimated using frames where the ERR is
above 0 dB and the ENR is above 0 dB (i.e., λERR = λENR =
1).

The designated threshold values, λRER, λRNR, λERR, and
λENR are the nominal values used throughout the simulation
study unless otherwise stated. As part of the study, we will
examine a range of values for these thresholds and their
influence on the performance of the algorithm.

The role of the MAP weighting factor γ in (26) will also
be examined as part of the simulation study. Its nominal value
was set to zero, i.e., the contribution of the a priori knowledge
was discarded.

The nominal values of all other parameters of the algorithm
is summarized in Table I. Note, that all parameter values are
independent of the SNR level (apart from βe and βy) and of
the noise field (either directional or diffuse noise).

In Sec. V-C we will explicitly examine the influence of
changing the value of some of the important parameters (i.e.,
L, T60, γ and the thresholds) to a range around their nominal
values.

B. Performance Measures

The speech quality was evaluated by computing the PESQ
score and LSD. Both the PESQ and the LSD were measured
by comparing ŜF(m) with SF(m), where SF(m) was obtained
by filtering the anechoic speech S(m) with the average ETF
1
N

∑N
i=1Ge,i. The first 32 ms (measured from the arrival time

of the direct-path) of the RIRs were assumed to be the ETF.
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TABLE I: The simulation setup.

Parameter Setting
βr 0.3
βy , βe 0.9 noisy case; 0.2 noiseless case
βs 0.1
Hmin −10 dB
L 2
Microphone-speaker distance 2 m
J 4
T60 0.36 s, 0.61 s
Inter-microphone distance [0.03, 0.08, 0.03] m
fs 16 kHz
Room dimensions 6× 6× 2.4 m
FFT size, overlap, analysis win. 1024, 75%, 32 ms
ε 0.1

The LSD between ŜF(m, k) and SF(m, k) is obtained using

LSD =
1

M

∑
m

√√√√ 1

K

∑
k

[
20 log10

(
max{|SF(m, k)|, ε}
max{|ŜF(m, k)|, ε̂}

)]2
,

(76)
where

ε = 10−AdB/10 max
m,k
{|SF(m)|}

ε̂ = 10−AdB/10 max
m,k
{|ŜF(m)|}.

The parameter AdB was set to the desired dynamic range,
which was chosen, in our case, to be 60 dB. The PESQ scores
and LSDs were computed by averaging the results obtained
using 100 sentences, 50 by male speaker and 50 by female
speaker, with each sentence being 3-5 s long and consisting of
2-8 words. As for the single-channel dereverberation algorithm
proposed in [5], the algorithm was applied to Y1(m) and the
output was compared with S(m)Ge,1.

C. Experimental Results

In the following sections, the results for the proposed
algorithm and the competing algorithms are presented. The
influence of the hyper-parameters on the performance of the
proposed algorithm are then analyzed. Next, the results for
the noisy case are presented (including directional noise and
diffuse noise) and then the results for the noiseless case.
The latter results also include a comparison of the proposed
algorithm and the WPE [27]. Unless otherwise stated, the
nominal parameters discussed in Sec. V-A are used.

1) Preliminary test of the EM algorithm: We start by
examining the convergence of the EM algorithm along the
iteration index. For that, microphone observations, obeying
the exact model with a predefined set of parameters θ, were
synthesized. A total of N = 4 microphones with M = 10000
samples and K = 1 frequency bins were synthesised and
L = 1000 iterations were carried out. The log-likelihood
of the observations as a function of the iteration index is
depicted in Fig. 2. It is evident that the log-likelihood indeed
increases monotonically with the number of iterations. As
for the complexity of the algorithm, only two iterations were
carried out in each time-frequency bin. Each iteration consists
of an inversion of a N ×N matrix Φ

(`)
y (m) in the E-step and

the inversion of a N ×N matrix Γ(`)(k) in the M-step.
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Fig. 2: Log-likelihood as a function of the iteration index.

2) Influence of the hyper-parameters: Secondly, we ex-
amine the influence of the hyper-parameters controlling the
algorithm. A representative scenario with 15 dB SNR and
reverberation time of 0.61 s was examined. LSD results and
PESQ scores were calculated for all 100 signals and their
mean value is depicted in the following tables. Specifically,
the following parameters are examined: 1) L, the number of
iterations; 2) T60, the value of the reverberation given to the
algorithm; 3) λRER, λRNR, λENR and λERR, the parameters
that determine which segments should be taken into account;
4) γ, the weighting factor of the EM-MAP extension. Apart
from the examined parameter, all other parameters are fixed
to their nominal value.

First, the iteration number L is examined. In Table II, the
results for ŜO(m) are presented for L = 0, . . . , 7. It can be
seen that two iterations are sufficient to obtain satisfactory
results. Although the results do not show monotonic improve-
ment with relation to the iteration index, this non-monotonic
behaviour is not severe.

The value of T60 is used by the algorithm for initializing
the PSD of the late reverberation in (65). In this experiment,
the true value of T60 is 0.61 s. We examine the sensitivity
of the algorithm to the T60 parameter by varying it in the
range 0.1, 0.2, . . . , 1.5 s. In Table III, the results for ŜINIT(m)
and ŜO(m) are presented. As expected, the best result was
obtained for T60 = 0.7 s. Nevertheless, the algorithm is only
marginally sensitive to the value of T60.

We turn now to the examination of the influence of the
threshold levels on the performance of the algorithm. As
explained in Sec. IV-D3, λRNR and λRER control the number
of frames used for estimating Γ and φR(m). We first allow
these thresholds to control only the number of frames used
for estimating Γ (and hence its accuracy), while keeping
the nominal values of the thresholds in estimating φR(m).
Table IV depicts the performance of the algorithm for various
values of λRNR = λRER. It is evident from the table that
the proper setting of λRER and λRNR is critical and that
the nominal values λRER = λRNR = 1 yield the best
performance.

In Table V, we use λRNR and λRER to control the number
of frames used for estimating φR(m), while keeping the
threshold values used for estimating Γ at their nominal value.
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We see only weak dependency on these thresholds with best re-
sults obtained for the nominal values λRER = λRNR = 10−1.

To complete this examination, we test the influence of
the values of λERR and λENR on the performance of the
algorithm. These thresholds determine the number of frames
used for the estimation of φS(m) and ge. It is evident from
Table VI, that choosing λERR = λENR = 10 achieves
the best results and that the results for the nominal values
λERR = λENR = 1 are comparable. Finally, the contribu-
tion of the EM-MAP extension (versus the standard EM) is
examined. Three representative values of γ were chosen: 0,
0.5 and 1. Note, that setting γ = 0 discards the contribution
of the priors p.d.f. and setting γ = 1 fixes φR(m) to its
prior estimation and discards the contribution of the EM
iterations. In Table VII, the results for the proposed EM
algorithm are presented for the various values of γ. As an
alternative, we have also examined the setting γ = 0, together
with bounding φR(m) from above to 1

N yH(m)y(m). Since
the performance measures only exhibit marginal sensitivity to
the various options, we have decided to choose the simpler
upper-bound option for the remaining experiments to avoid
unreasonable reverberation level estimates. Note, that in this
option, the EM-MAP extension is inactive.

3) Results for the noisy case: For the following experi-
ment, RIRs recorded in a room with a reverberation time of
approximately T60 = 0.36 s and T60 = 0.61 s were used.
Directional noise was added to the speech signals with various
SNR levels. The noise source was placed at 90 degrees relative
to the microphone array at a distance of 2 m. The directional
noise was generated by convolving a noise signal with the
corresponding RIR. All the parameters of the algorithm were
tuned to their nominal value.

Another set of experiments was carried on in the presence
of diffuse noise. Rather than adding the directional noise, an
artificial diffuse noise4 was added to the speech signals with
various SNR levels.

White noise was added in the two noise-field cases to
simulate sensor noise. The directional noise-to sensor noise
ratio and diffuse noise-to-sensor noise ratio were set to 20 dB.
The PSD matrix Φv, which is non-diagonal, was estimated
using periods during which the desired speech source was
inactive.

In Tables VIII and IX, the PESQ and LSD scores are
presented for several SNR levels for the directional noise case
and the diffuse noise case, respectively. The advantage of using
the EM algorithm is demonstrated for all SNR levels. We have
added an additional row to the tables, depicting the results
obtained by employing the MCWF with true parameters. We
refer to the proposed algorithm with the true parameters as
the oracle algorithm. The true late reverberation coherence
was obtained by computing the normalized coherence of the
synthesized late reverberant signals, which was computed by
convolving the speech signal with the tails of the RIRs. The
spatially averaged PSD of the late reverberation was obtained

4Details on the diffuse noise generator can be found in [49] and the
software can be freely downloaded from https://www.audiolabs-erlangen.de/
fau/professor/habets/software/noise-generators

by computing the level of the synthesized late reverberant sig-
nals. The ETFs were computed by applying the LS technique
to the early speech components. These results can be consid-
ered as the best achievable results of the algorithm. It can be
observed that the results obtained by our algorithm are quite
close to the oracle algorithm. In our opinion, the results of
the oracle algorithm are limited due to the following reasons:
1) in every MMSE estimation there is an estimation error,
even while using the oracle parameters; 2) the late component
is modelled in our approach with a fixed normalized PSD
matrix and a time-varying level. It seems that this model does
not accurately reflect real recordings.

To demonstrate the effectiveness of the algorithm, an ex-
ample of the cross PSD between the first and the second
microphones along the frequency index Γ

(L)
1,2 (k) is depicted in

Fig. 3. In addition, the coherence of an ideal (spherical) diffuse
sound field, and the true coherence of the late reverberation
field are depicted. It is evident that the diffuse noise modeling
is only a rough estimate of the true late reverberation field,
while the coherence obtained by the proposed algorithm is
closer to the true sound field. The good fit between the
estimated sound field and the true sound field is reflected
in the improved dereverberation performance of the proposed
algorithm.

4) Results for the noiseless case: In the noiseless case,
only the dereverberation task is carried out as elaborated in
Section IV-C. As a benchmark to the proposed algorithm, the
WPE algorithm was applied to the same data. The length
of the prediction filter was set to 3, when T60 = 0.36 s,
and to 9, when T60 = 0.61 s. The lengths were optimized
in order to achieve the best possible results. The range of
lengths which was examined was 1, . . . , 7 when T60 = 0.36
and 5, . . . , 13 when T60 = 0.61. The other parameters of
the WPE algorithm remained fixed according to the nominal
values provided on the website. The N outputs of the WPE
algorithm were delayed and summed similarly to (72). By this,
the early components were also reduced in a similar way to
our approach.

In Table X, the results for the algorithms under examina-
tion are presented. In terms of LSD results, our algorithm
outperforms the WPE algorithm for both reverberation levels.
In terms of PESQ scores, the WPE outperforms the proposed
algorithm for T60 = 0.61 s, while the proposed algorithm
exhibits better scores for T60 = 0.36 s.

Sonogram examples of the various signals for the noiseless
case are depicted in Fig. 4. Fig. 4a depicts the early rever-
beration. The presence of reverberation is evident in Fig. 4b,
depicting the observed signal. Fig. 4c depicts the result of
the single-channel algorithm, and Fig. 4e depicts the output
signal after the initialization stage ŜINIT(m). The output of the
proposed algorithm ŜO(m) is depicted in Fig. 4f. The output
of WPE is depicted in Fig. 4d. By careful examination of
the sonograms, it can be verified that the algorithm is capable
of dereverberating the signal and that it outperforms ŜINIT(m).
The output of WPE has some residual reverberation which can
be noticed. Audio examples for both the noisy and noiseless
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TABLE II: PESQ scores (top) and LSD results (bottom) for the proposed algorithm along the iterations index.

Alg.\ L 0 1 2 3 4 5 6 7

proposed EM 2.17 2.19 2.19 2.19 2.19 2.18 2.17 2.17

Alg.\ L 0 1 2 3 4 5 6 7

proposed EM 3.86 3.66 3.63 3.62 3.62 3.62 3.64 3.64

TABLE III: PESQ scores (top) and LSD results (bottom) for T60 = 0.61 s with T60 in (65) set in the range 0.1, 0.3, . . . , 1.5 s.

Alg.\ T60 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

4-channel derev. (init.) 2.05 2.15 2.17 2.17 2.17 2.16 2.16 2.15
proposed EM 2.08 2.17 2.18 2.19 2.19 2.19 2.18 2.18

Alg.\ T60 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

4-channel derev. (init.) 4.10 3.90 3.87 3.86 3.87 3.87 3.88 3.89
proposed EM 3.86 3.68 3.64 3.62 3.62 3.63 3.63 3.63
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Fig. 3: Spatial coherence between the first and second microphone of i) an ideal diffuse field, ii) the oracle late reverberation
field, and iii) the estimated reverberant field.

TABLE IV: PESQ scores (top) and LSD results (bottom) for
the proposed EM with λRNR = λRER = 10−2, . . . , 102,
determining the frames used for the estimation of Γ.

Alg.\ λRNR, λRER 10−2 10−1 100 101 102

Proposed EM 2.16 2.18 2.19 2.18 2.19

Alg.\ λRNR, λRER 10−2 10−1 100 101 102

Proposed EM 3.74 3.68 3.63 3.65 3.74

cases are available on our website5. By listening to these
5http://www.eng.biu.ac.il/gannot/speech-enhancement/

TABLE V: PESQ scores (top) and LSD results (bottom) for
the proposed EM where λRNR = λRER = 10−2, . . . , 102,
determining the frames used for the estimation of φR(m).

Alg.\ λRNR, λRER 10−2 10−1 100 101 102

Proposed EM 2.18 2.19 2.19 2.18 2.18

Alg.\ λRNR, λRER 10−2 10−1 100 101 102

Proposed EM 3.64 3.63 3.63 3.65 3.64

examples, it is evident that the proposed algorithm produces
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TABLE VI: PESQ scores (top) and LSD results (bottom) for
the proposed EM where λERR = λENR = 10−2 . . . 102,
determining the frames used for the estimation of φS(m) and
ge.

Alg.\ λERR, λENR 10−2 10−1 100 101 102

Proposed EM 2.20 2.20 2.20 2.21 2.19

λERR, λENR 10−2 10−1 100 101 102

Proposed EM 3.63 3.63 3.62 3.60 3.69

TABLE VII: PESQ scores (top) and LSD results (bottom) for
the proposed EM with γ = 0, 0.5, 1 and using upper limitation
of φR(m)

Alg.\ γ 0 0.5 1 U.L.

Proposed EM 2.20 2.19 2.18 2.20

Alg.\ γ 0 0.5 1 U.L.

Proposed EM 3.61 3.61 3.63 3.62

the most natural dereverberated speech, when compared with
the baseline and competing algorithms.

VI. CONCLUSIONS

In this contribution, a novel algorithm was presented to
obtain an estimate of a spatially filtered version of the early
speech component, thereby suppressing early reflections, late
reverberation and ambient noise. The EM algorithm was used
to estimate the spatial parameters of the early speech and the
late reverberation components. The early speech component
was modelled as anechoic speech multiplied by an early
TF, while the late reverberation was modelled as additive
interference with time-invariant spatial characteristics and a
time-varying level. The PSD of the anechoic speech, the ETFs
and the PSD matrix of the late reverberation (modelling the
time-varying level and time-invariant spatial characteristics)
were estimated by the M-step of the EM algorithm. The
hidden data was defined to be the anechoic speech and the
late reverberation signals. The parameters-based estimation
of the anechoic speech was obtained in the E-step of each
iteration. As a result of a gain ambiguity problem between the
anechoic speech and the ETFs, only a filtered version of the
early speech components was estimated. The algorithm was
tested in a room with a reverberation time of 0.36 s and 0.61 s
for several signal-to-noise levels. In terms of the objective
performance measures as well as an informal listening test,
the proposed algorithm outperforms baseline and competing
single-channel and multichannel dereverberation algorithms
for the considered scenarios.
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TABLE VIII: PESQ scores (top) and LSD results (bottom) for reverberant signals plus directional noise for a reverberation
time of 0.36 s (left) and 0.61 s (right).

Alg.\SNR 10 dB 15 dB 20 dB 25 dB 30 dB 10 dB 15 dB 20 dB 25 dB 30 dB

Unprocessed 1.48 1.72 2.00 2.25 2.43 1.48 1.65 1.82 1.93 2.00
1-channel derev. 1.67 2.00 2.33 2.59 2.77 1.64 1.87 2.04 2.15 2.22
4-channel derev. (oracle) 2.62 2.94 3.18 3.33 3.40 2.14 2.35 2.51 2.63 2.70
4-channel derev. (init.) 2.46 2.78 2.98 3.10 3.17 2.01 2.18 2.29 2.35 2.39
Proposed EM 2 ite. 2.56 2.90 3.13 3.27 3.33 2.05 2.21 2.31 2.37 2.42

Alg.\SNR 10 dB 15 dB 20 dB 25 dB 30 dB 10 dB 15 dB 20 dB 25 dB 30 dB

Unprocessed 10.06 7.39 5.32 3.93 3.05 10.75 8.20 6.33 5.14 4.41
1-channel derev. 7.25 5.21 3.81 2.96 2.53 7.77 5.85 4.58 3.84 3.45
4-channel derev. (oracle) 2.83 2.24 1.91 1.76 1.70 3.76 2.07 2.69 2.50 2.41
4-channel derev. (init.) 3.47 2.73 2.34 2.12 2.00 4.63 3.76 3.33 3.13 3.04
Proposed EM 2 ite. 3.01 2.37 2.07 1.93 1.87 4.11 3.38 3.04 2.88 2.80

TABLE IX: PESQ scores (top) and LSD results (bottom) for reverberant signals plus diffuse noise for a reverberation time of
0.36 s (left) and 0.61 s (right).

Alg.\SNR 10 dB 15 dB 20 dB 25 dB 30 dB 10 dB 15 dB 20 dB 25 dB 30 dB

Unprocessed 1.49 1.74 2.02 2.26 2.43 1.50 1.67 1.83 1.93 1.99
1-channel derev. 1.70 2.00 2.31 2.57 2.75 1.66 1.87 2.03 2.14 2.21
4-channel derev. (oracle) 2.24 2.63 2.96 3.23 3.38 2.05 2.31 2.52 2.65 2.73
4-channel derev. (init.) 2.16 2.49 2.77 2.98 3.12 1.92 2.11 2.24 2.32 2.37
Proposed EM 2 ite. 2.20 2.54 2.84 3.09 3.26 1.95 2.14 2.28 2.37 2.43

Alg.\SNR 10 dB 15 dB 20 dB 25 dB 30 dB 10 dB 15 dB 20 dB 25 dB 30 dB

Unprocessed 15.52 11.71 8.1 5.10 3.17 15.63 12.00 8.67 6.06 4.49
1-channel derev. 11.19 7.82 5.14 3.44 2.60 11.43 8.22 5.76 4.22 3.49
4-channel derev. (oracle) 6.19 3.99 2.63 1.97 1.71 6.11 4.14 3.03 2.54 2.39
4-channel derev. (init.) 6.72 4.35 2.95 2.31 2.07 7.24 4.87 3.58 3.07 2.92
Proposed EM 2 ite. 6.48 4.18 2.80 2.15 1.92 6.93 4.66 3.43 2.92 2.78

TABLE X: PESQ scores (top) and LSD results (bottom) for
reverberant signals for two different reverberation times.

Alg.\ T60 0.36 s 0.61 s

Unprocessed 2.68 2.07
1-channel derev. 2.99 2.28
4-channel derev. (oracle) 3.44 2.75
4-channel derev. (WPE) 3.09 2.65
4-channel derev. (init.) 3.28 2.42
Proposed EM 2 ite. 3.39 2.46

Alg.\ T60 0.36 s 0.61 s

Unprocessed 2.24 3.77
1-channel derev. 2.25 3.20
4-channel derev. (oracle) 1.69 2.35
4-channel derev. (WPE) 2.11 2.69
4-channel derev. (init.) 1.72 2.78
Proposed EM 2 ite. 1.71 2.67

[28] J. D. Polack, “La transmission de l’énergie sonore dans les salles,” Ph.D.
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(a) Early reverberation.
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(b) Microphone signal.
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(c) Single-channel algorithm.
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(d) WPE algorithm.
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(e) Initial estimate using (60).
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(f) Proposed EM algorithm after 2 iterations.

Fig. 4: Spectrograms of a real noiseless recording with T60 = 0.61 s.
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