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A Hybrid Approach for Speech Enhancement Using MoG Model
and Neural Network Phoneme Classifier
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In this paper we present a single-microphone speech en-
hancement algorithm. A hybrid approach is proposed merging
the generative Mixture of Gaussians (MoG) model and the
discriminative deep neural network (DNN). The proposed algo-
rithm is executed in two phases, the training phase, which does
not recur, and the test phase. First, the noise-free speech log-
power spectral density (PSD) is modeled as a MoG, representing
the phoneme-based diversity in the speech signal. A DNN is
then trained with phoneme labeled database of clean speech
signals for phoneme classification with mel-frequency cepstral
coefficients (MFCC) as the input features. In the test phase,
a noisy utterance of an untrained speech is processed. Given
the phoneme classification results of the noisy speech utterance,
a speech presence probability (SPP) is obtained using both the
generative and discriminative models. SPP-controlled attenuation
is then applied to the noisy speech while simultaneously, the
noise estimate is updated. The discriminative DNN maintains the
continuity of the speech and the generative phoneme-based MoG
preserves the speech spectral structure. Extensive experimental
study using real speech and noise signals is provided. We
also compare the proposed algorithm with alternative speech
enhancement algorithms. We show that we obtain a significant
improvement over previous methods in terms of speech quality
measures. Finally, we analyze the contribution of all components
of the proposed algorithm indicating their combined importance.

Index Terms—speech enhancement, MixMax model, Neural-
network, phoneme classification

I. INTRODUCTION

ENHANCING noisy speech received by a single mi-
crophone is a widely-explored problem. A plethora of

approaches can be found in the literature [1]. Although many
current devices are equipped with multiple microphones, there
are still many applications for which only a single microphone
is available.

The celebrated short-time spectral amplitude estimator
(STSA) and log-spectral amplitude estimator (LSAE) [2],
[3] are widely-used model-based algorithms. The optimally
modified log spectral amplitude (OMLSA) estimator and, in
particular, the improved minima controlled recursive averaging
(IMCRA) noise estimator are specifically tailored to nonsta-
tionary noise environments [4], [5]. However, fast changes in
noise statistics may cause a severe performance degradation,
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often manifested as musical noise artifacts at the output of the
enhancement algorithm.

Recently, DNN techniques gained a lot of popularity due
to theoretical and algorithmic progress, and the availability of
more data and more processing power. Unlike past learning
algorithms for DNN, it is now possible to infer the parameters
of the DNN with many layers, and hence the name deep learn-
ing. Deep learning methods were mainly applied to speech
recognition and, more recently, to speech enhancement as well.
DNN and a deep auto-encoder (DAE) were used as a nonlinear
filters in [6] and [7], respectively. The networks are trained on
stereo (noisy and clean) audio features, to infer the complex
mapping from noisy to clean speech. An experimental study
testing this approach is given in [8]. The DNN significantly
reduces the noise level. However, the enhanced signals suffer
from noticeable speech distortion.

Other methods attempt to train a DNN to find a mask, which
classifies the time-frequency bins into speech/noise classes.
Given the binary mask, the noisy bins are suppressed. In [9] for
instance, a support vector machine (SVM) is used to estimate
the ideal binary mask (IBM) for speech separation from non-
speech background interference. A DNN is trained to find the
input features for the SVM. A simpler approach is to train the
DNN itself to find the IBM. Different targets for the DNN
are presented in [10]. The IBM has shown advantageous in
terms of intelligibility [11]. Yet, the binary mask is known
to introduce artifacts such as musical noise. Although, for
intelligibility tasks, this might not be problematic, for speech
enhancement tasks the application of IBM may not sufficient.
To circumvent this phenomenon, in [12] the DNN is trained
to find the ideal ratio mask (IRM), which is a soft mask. A
comparison between the IBM and the IRM is presented in [13],
demonstrating that latter outperforms the former in terms of
speech quality. Although not assuming any specific model for
the enhanced signals, these method do not generalize well to
noise types that are beyond the noisy training set, resulting
in poor enhancement in an untrained noise environment. To
circumvent this problem, in [14] the DNN was trained with
more than 100 different types of noise. Nevertheless, in
real-life where the number of noise types is unlimited, this
approach may not be satisfactory.

Training-based algorithms, such as MixMax (MM) [15],
were also developed. These algorithms are carried out in two
phases, the training phase and the test phase. In the training
phase the parameters of the model are found, usually with
an unsupervised machine learning algorithms, such as the
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expectation-maximization (EM) algorithm in [15]. In the test
phase, the enhancement is carried out using the learned model
parameters. One weakness of the algorithm is that the speech
parameters are found in an unsupervised manner that ignores
the phoneme-based structure of speech. Another drawback of
the MM algorithm is that the noise parameters are estimated
once at the beginning of the utterance and then are kept fixed
during the entire utterance. This enhancement approach is not
always sufficient for real-life noises.

In this study, we propose a hybrid approach, which in-
tegrates two distinctive paradigm for speech enhancement,
namely the generative model-based approach (using MoG
model) and the discriminative DNN approach. As in [15], we
use a two phase algorithm. In the training phase, the clean
speech is modeled by a phoneme-based MoG that is built
using phoneme-labeled database. A DNN is then trained to
classify clean1 time-frame features to one of the phonemes in
the phoneme-based MoG. Once the training phase is over, it
does not recur. In the test phase a noisy utterance is processed.
The DNN estimates the phonemes, and use them to calculate
an SPP utilizing the generative model. The SPP controls the
amount of attenuation of the noisy time-frequency bin (the
lower is the SPP the higher is the attenuation). Simultaneously,
when the SPP is low, the noise estimate is updated. The
continuity of the speech is maintained by feeding the DNN
with context frames on top of the current frame. In addition,
the DNN supports the calculation of the SPP. Furthermore, the
phoneme-based MoG and the soft SPP preserve the spectral
structure of the speech, thus alleviating the musical noise
phenomenon.

The contribution of this paper is four-fold. First, we sub-
stitute the original generic MoG speech modelling in [15]
with the more appropriate MoG modelling, inferred from its
phoneme structure. Second, we derive an accurate bin-wise
SPP detector. The proposed SPP detector is a combination
of the phoneme-based generative MoG speech model and a
discriminative DNN, utilized as a powerful phoneme classifier.
Third, based on the proposed SPP detector, a fast adaption
mechanism for the noise statistics is derived. Finally, a sim-
plified reconstruction procedure is proposed, based on spectral
attenuation, with the noise attenuation level controlled by the
SPP, thus alleviating the annoying musical noise artifacts.
To summarize, our proposed hybrid approach, harnesses the
power of the modern DNN classifier to improve the well-
established model-based speech enhancement method.

The rest of the paper is organized as follows. In Section II,
a generative model is presented. Section III presents the
proposed enhancement algorithm and describes its imple-
mentation in details. A comprehensive experimental results
using speech databases in various noise types are presented in
Section IV. In Section V the building blocks of the algorithm
are analyzed. Finally, some conclusions are drawn and the
paper is summarized in Section VI.

1The DNN is trained on clean signals in order to remain general and not
to bias the network towards certain noise types.

II. A GENERATIVE NOISY SPEECH MODEL

In this section, a generative model of the noisy speech
signal is presented. We follow the model proposed by Nádas
et al. [16] that was utilized in [15].

A. Maximization approximation

Let x(t) and y(t) 0 < t < T denote the speech and noise
signals, respectively. The observed noisy signal z(t) is given
by

z(t) = x(t) + y(t). (1)

Applying the short-time Fourier transform (STFT) (with
frame-length set to L samples and overlap between successive
frames set to 3L/4 samples) to z(t) yields Z(n, k) with n
the frame index and k = 0, 1, . . . , L− 1 the frequency index.
The frame index n is henceforth omitted for brevity, whenever
applicable.

Let Z denote the L/2 + 1 dimensional log-spectral vector,
defined by

Zk = log |Z(k)|, k = 0, 1, . . . , L/2.

Note that the other frequency bins can be obtained by the
symmetry of the discrete Fourier transform (DFT). Similarly,
we define X and Y to be the log-spectral vectors of the speech
and noise signals, respectively.

It is assumed that the noise is statistically independent of the
speech signal. Furthermore, it is assumed that both the speech
and noise are zero-mean stochastic processes. Due to these
assumptions the following approximation can be justified:

|Z(k)|2 ≈ |X(k))|2 + |Y (k)|2

hence
2Zk ≈ log(e2Xk + e2Yk).

Following Nádas et al. [16], the noisy log-spectral can be
further approximated:

Z ≈ max(X,Y) (2)

where the maximization is component-wise over the elements
of X and Y. This approximation was found useful for speech
recognition [16], speech enhancement [15], [17] and speech
separation tasks [18], [19]. In a speech enhancement task, only
the noisy signal Z is observed, and the aim is to estimate the
clean speech X.

B. Clean speech model - Phoneme based MoG

It is well-known that a speech utterance can be described as
a time-series of phonemes, i.e. speech is uttered by pronounc-
ing a series of phonemes [20]. In our approach, we give this
observation a probabilistic description, namely the log-spectral
vector of the clean speech signal, X, is modeled by a MoG
distribution, where each mixture component is associated with
a specific phoneme. Training a MoG for each phoneme is a
common practice in speech recognition. Here our goal is not
to extract the exact transcription but to improve the speech
quality. Hence, to make our enhancement algorithm robust to
many variants of noise types and signal to noise ratio (SNR)
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levels, a parsimonious speech model that provides a simple
but yet effective parametric representation of the clean speech
was built. Unlike [15], that uses unsupervised clustering of the
speech frames, we use here a supervised clustering, explicitly
utilizing the labels of the phonemes of the training speech
signals. Based on the MoG model, the probability density
function f(x) of the clean speech X, can be written as

f(x) =
m∑
i=1

cifi(x) =
m∑
i=1

ci
∏
k

fi,k(xk) (3)

where m is the number of mixture components and

fi,k(xk) =
1√

2πσi,k
exp

{
− (xk − µi,k)

2

2σ2
i,k

}
. (4)

Let I be the phoneme indicator random variable (r.v.) associ-
ated with the MoG r.v. X, i.e. p(I = i) = ci. The term fi(x)
is the Gaussian probability density function (p.d.f.) of X given
that I = i. The scalar ci is the probability of the i-th mixture
and µi,k and σi,k are the mean and the standard deviation of
the k-th entry of the i-th mixture Gaussian, respectively.

Any residual correlation between the frequency bins is
neglected. The log-spectral vector, which provides a full
frequency-based description of the speech signal, is used here
as the feature-set for the MoG model since it provides full
description of the frequency content required for reconstruc-
tion. Using a MoG with diagonal covariance matrices is only
a simplified modeling of a clean speech signal but has an
advantage of a robust modeling that circumvents the need for
large matrices inversion.

To set the MoG parameters we used the phoneme-labeled
TIMIT database [21] as described in Sec. III-D.

C. Noisy speech model

Let Y define the log-spectral vector of the noise signal, and
let g(y) denote the p.d.f. of Y. As with the log-spectral vector
of the speech signal, it is assumed that the components of Y
are statistically independent. For simplicity, g(y) is modeled
as a single Gaussian, with diagonal covariance i.e.,

g(y) =
∏
k

gk(yk) (5)

where

gk(yk) =
1√

2πσY,k
exp

{
− (yk − µY,k)

2

2σ2
Y,k

}
. (6)

Initial estimation and adaptation of the noise parameters will
be explained in Sec. III-E.

Using the maximum assumption in the log-spectral vector of
the noisy speech Z = max(X,Y), as explained above, it can
be verified [16] that the p.d.f. of Z is given by the following
mixture model:

h(z) =
m∑
i=1

cihi(z) =
m∑
i=1

ci
∏
k

hi,k(zk) (7)

where

hi,k(zk) = fi,k(zk)Gk(zk) + Fi,k(zk)gk(zk) (8)

such that Fi,k(x) and Gk(y) are the cumulative distribution
functions of the Gaussian densities fi,k(x) and gk(y), respec-
tively. The term hi(z) is the p.d.f. of Z given that I = i.

The generative modeling described above was nicknamed
MM [15], [16], since it is based the modelling of the clean
speech as a (Gaussian) mixture p.d.f. and the noisy speech is
modeled as the maximum of the clean speech and the noise
signal. Originally, the mixture components were not associated
with phonemes, but rather learned in an unsupervised manner.

III. THE NEURAL-NETWORK MIXMAX ALGORITHM

In this section, we describe the proposed enhancement algo-
rithm. In Sec. III-A we remind the minimum mean square error
(MMSE) estimator based on the MM model [15], [16]. We
then propose in Sec. III-B a new variant of the estimator that
utilizes the same model but allows for better noise attenuation.
In Sec. III-C a DNN approach is introduced as a tool for
accurate phoneme classification. Issues regarding the training
of the DNN are discussed in Sec. III-D. Finally, test-phase
noise adaption is discussed in Sec. III-E.

A. The MMSE-based approach
An MMSE of the clean speech X from measurement z is

obtained by the conditional expectation x̂ = E(X|Z = z).
Note, that since the p.d.f. of both X and Z is non-Gaussian,
this estimator is not expected to be linear. Utilizing the
generative model described in the previous section we can
obtain a closed-form solution for the MMSE estimator as
follows.

x̂ =
m∑
i=1

p(I = i|Z = z)E(X|Z = z, I = i). (9)

The posterior probability p(I = i|Z = z) can be easily
obtained from (7) by applying the Bayes’ rule:

p(I = i|Z = z) =
cihi(z)

h(z)
. (10)

Since the covariance matrices of both the speech and the noise
models are diagonal, we can separately compute

x̂i = E(X|Z = z, I = i)

for each frequency bin. For the k-th frequency bin we obtain:

x̂i,k = E(Xk|Zk = zk, I = i) (11)
= ρMM

i,k zk + (1− ρMM
i,k )E(Xk|Xk < zk, I = i)

such that

ρMM
i,k = p(Yk < Xk|Zk = zk, I = i) =

fi,k(zk)Gk(zk)

hi,k(zk)
(12)

and for the second term in (11) is:

E(Xk|Xk < zk, I = i) = µi,k − σ2
i,k

fi,k(zk)

Fi,k(zk)
. (13)

The closed-form expression for the MMSE estimator of
the clean speech x̂ = E(X|Z = z) [16] is obtained
from (9),(11),(12),(13). These expressions are the core of the
MM speech enhancement algorithm proposed by Burshtein
and Gannot [15]. In their approach, the MoG parameters of the
clean speech are inferred from a database of speech utterances
utilizing the EM algorithm in an unsupervised manner.
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B. Soft mask estimation of the clean speech
Assuming the maximization model in (2) is valid, ρMM

i,k

was obtained in (12). Summing over all the possible mixture
components, we obtain:

ρMM
k =

m∑
i=1

p(I = i|Z = z)ρMM
i,k = p(Xk > Yk|Z = z). (14)

The term ρMM
k can be interpreted as the probability that, given

the noisy speech vector z, the k-th frequency bin of the current
log-spectral vector z is originated from the clean speech and
not from the noise. The probability ρMM

k can thus be viewed
as a training-based SPP detector, namely the probability that
the designated time-frequency bin is dominated by speech.
Consequently, (1 − ρMM

k ) can be interpreted as the posterior
probability that the k-th bin is dominated by noise.

Using ρMM
k and some straightforward applications of the

Bayes’ rule, we can derive the k-th frequency bin of the
MMSE estimator x̂ = E(X|Z = z) from (9),(11) :

x̂k =

m∑
i=1

p(I = i|Z = z)x̂i,k

= ρMM
k zk + (1− ρMM

k )E(Xk|Xk < zk,Z = z) (15)

Hence, given the generative model, the enhancement proce-
dure in (15) substitutes the frequency bins identified as noise
with the a priori value drawn from the MoG model given
by (13). Note, that (11) differs from (15), as the former is
the conditional expectation given the measurement per class
I = i, while the latter is the conditional expectation given the
measurement, i.e. using the entire set of classes.

The structure of a voiced speech PSD consists of dominant
spectral lines which recur at multiples of the fundamental
frequency (known as pitch). The PSD of different speakers
pronouncing the same phoneme share similar properties, but
are never identical. Hence, the MoG parameters inferred
from multiple speakers, is never individualized to the current
speaker and therefore cannot represent the specific periodicity.
The phoneme-based MoG parameters are only capable of
preserving the general structure of an averaged phoneme. This
might lead to residual noise even when the algorithm identifies
the noise correctly.

To circumvent this problem, we propose to substitute the
conditional expectation that uses the MoG parameters with
a simpler estimator based on the soft spectral attenuation
paradigm, namely:

E(Xk|Xk < zk,Z = z) (16)

is substituted by:
zk − β (17)

where β is a noise attenuation level (in the log domain). It
is well-known that frequency-selective attenuation is prone to
musical noise [22] [23]. In our proposed method, the estimator
also incorporates the soft mask deduced from the SPP, thus
potentially alleviating the musical noise phenomenon.

Substituting (zk − β) in (15) we obtain the following
simplified expression for the estimated clean speech:

x̂k = ρMM
k · zk + (1− ρMM

k ) · (zk − β) (18)

or, equivalently

x̂k = zk − (1− ρMM
k ) · β (19)

which can be interpreted as an SPP-driven spectral attenuation.
In speech enhancement there is always a tradeoff between
speech distortion and noise suppression.

C. Neural network for phoneme classification

The gist of our approach is the calculation of the SPP (14).
This calculation necessitates two terms, ρMM

i,k which is given
by (12) and the posterior phoneme probability pi , p(I =
i|Z = z). Utilizing the generative model defined in Section II,
pi is obtained from (7) by applying the Bayes’ rule (10). This
approach exhibits some major shortcomings. Estimating the
required noise statistics is a cumbersome task, especially in
time-varying scenarios. Furthermore, as the calculation in (10)
is carried out independently for each frame, continuous and
smooth speech output cannot be guaranteed.

In our approach, (unlike [15]) we adopt a supervised
learning approach in which each mixture component of the
clean speech is associated with a specific phoneme. Hence
the computation of the posterior probability of a specific
mixture is merely a phoneme classification task (given the
noisy speech). To implement this supervised classification task,
we substitute (10) with a DNN that is known to be significantly
better than MoG models for phoneme classification tasks (see
e.g. [24]).

The DNN is trained on a phoneme-labeled clean speech.
For each log-spectral vector, z (identical to x for the clean
speech), we calculate the corresponding MFCC features (and
their respective delta and delta-delta features). To preserve
the continuity of the speech signal, 17 MFCC vectors are
concatenated (the current vector and 8 vectors in each side)
to form the feature vector, denoted v, which is a standard
feature set for phoneme classification. This feature vector is
used as the input to the DNN, and the phoneme label as
the corresponding target. The phoneme-classification DNN
is trained on clean signals. However, as part of the speech
enhancement procedure, we apply it to noisy signals. To
alleviate the mismatch problem between train and test con-
ditions, we use a standard preprocessing stage for robust
phoneme classification, namely cepstral mean and variance
normalization (CMVN) [25].

The SPP is calculated using (14), which requires both ρMM
i,k

and pi. While ρMM
i,k is calculated from the generative model

using (12), we propose to replace (10) for calculating pi by a
better phoneme-classification method.

It is therefore proposed to infer the posterior phoneme
probability by utilizing the discriminative DNN, rather than
resorting to the generative MoG model:

pNN
i = p(I = i|v;DNN). (20)

Note, that the compound feature vector v is used instead of
the original log-spectrum z. Finally, the SPP ρk is obtained
using (12) and (20):

ρk , ρNN-MM
k =

m∑
i=1

pNN
i ρMM

i,k . (21)
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The proposed SPP calculation is thus based on a hybrid
method, utilizing both the generative MoG model and a
discriminative approach to infer the posterior probability. For
the latter we harness the known capabilities of the DNN.

D. Training the MoG model and the DNN classifier

We used the phoneme-labeled clean speech TIMIT
database [21] to train a DNN phoneme classifier and the
MoG phoneme-based generative model. We describe next the
training procedure. We used 462 speakers from the training set
of the database excluding all SA sentences, since they consist
of identical sentences to all speakers in the database, and hence
can bias the results.

In the training phase of the phoneme-based MoG we set
the number of Gaussians to m = 39 (see [26]), where each
Gaussian corresponds to one phoneme. All frames labeled by
the i-th phoneme were grouped, and for each frequency bin
the mean and variance were computed using (22). First, the
log-spectrum of the segments of these clean speech utterances
is calculated. Since the database is labeled, each segment
is associated with a phoneme i. We can then calculate the
following first- and second-moment with phoneme label i:

µi,k =
1

Ni

Ni∑
n=1

xi,k(n)

σ2
i,k =

1

Ni − 1

Ni∑
n=1

(xi,k(n)− µi,k)
2

(22)

where xi,k(n) is k-th bin of the n-th log-spectra vector with
phoneme label i. The term, Ni is the total number of vectors
associated with phoneme labeled i.

For training the DNN as a discriminative phoneme classifier,
we used the MFCC feature vectors v powered by the delta and
delta-delta coefficients. In total, 39 coefficients per time frame
were used. Eight Context frames from each side were added to
the current frame as proposed in [27]. Hence, each time frame
was represented by 663 MFCC features. We used a DNN with
2 hidden layers. Each hidden layer comprising 500 neurons.

The network is constructed with rectified linear unit (ReLU)
as the transfer function [27], [28] for the hidden layers:

h1,i =max(0,w>
1,iv + b1,i), i = 1, . . . , 500

h2,i =max(0,w>
2,ih1 + b2,i), i = 1, . . . , 500

and a softmax output layer to obtain m probabilities associated
with the various phonemes:

p(I = i|v) =
exp(w>

3,ih2 + b3,i)∑m
k=1 exp(w

>
3,kh2 + b3,k)

, i = 1, . . . ,m

where w1, w2, w3, b1, b2 and b3 are the weights ma-
trices, and the bias vectors of the hidden layers and the
output layer, respectively. Given a sequence of MFCC feature
vectors v1, ..,vN , where N is the total number of vectors
in the training set, with the corresponding phoneme labels,

I1, . . . , IN ∈ {1, . . . ,m}, the DNN is trained to maximize the
log-likelihood function2:

L(W) =
N∑
t=1

log p(It|vt;W). (23)

where W = {w1,w2,w3,b1,b2,b3} is the parameter set of
the model. We can initialize the training procedure of W by
random weights (or use pre-training methods (see [29])) and
continue by applying back-propagation algorithm in conjunc-
tion with gradient ascent procedure. Additionally, we used the
dropout method [30] to circumvent over-fitting of the DNN
to the training set database. To avoid mismatch between train
and test conditions, each utterance was normalized prior to
the adaptation of the network, such that the sample-mean and
sample-variance of the utterance are zero and one, respec-
tively [25].

To verify the accuracy of the classifier, the trained DNN
was applied to a clean test set (24-speaker core test set drawn
from TIMIT database). Finally, during the test phase of the
algorithm, the DNN is applied to speech signals contaminated
by additive noise. We have therefore applied the CMVN pro-
cedure, prior to the application, of the classifier to circumvent
the noisy test condition [25].

E. Noise parameter initialization and adaptation

To estimate the noise parameters it is assumed that the first
part of the utterance (usually 0.25 Sec) the speech is inactive
and it consists of noise-only segments. These first segments
can therefore be used for initializing the parameters of the
noise Gaussian distribution as follows:

µ̂Y,k =
1

NY

NY∑
n=1

yk(n)

σ̂2
Y,k =

1

NY − 1

NY∑
n=1

(yk(n)− µ̂Y,k)
2

(24)

where NY is the number of vectors constructed form the noise-
only samples, and µ̂Y,k and σ̂2

Y,k are the initial estimate of the
noise parameters. The term yk(n) denotes the k-th bin of the
n-th noise vector.

In [15], the noise parameters remain fixed for the entire
utterance, rendering this estimate incapable of processing
nonstationary noise scenarios. The noise p.d.f. g(y), is a
vital element in (12). Therefore, updating the parameters of
the noise Gaussian is crucial for calculating accurate SPP.
Following an adaptation algorithm presented in [5] (see (3)
in [5]) we use the SPP to update the noise parameters. We
used the following adaptation scheme for the noise model
parameters:

µ̂Y,k ← ρkµ̂Y,k + (1−ρk) (αzk + (1−α)µ̂Y,k)

σ̂2
Y,k ← ρkσ̂

2
Y,k + (1−ρk)

(
α(zk − µ̂Y,k)

2 + (1−α)σ̂2
Y,k

)
(25)

2Maximizing the log-likelihood function (which is the log-probability of
the correct label given the MFCC feature vector) is equivalent to minimizing
the cross entropy.
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Algorithm 1: Training phase
Input :

• Clean speech log-spectral vectors x1, . . . ,xN

• Corresponding MFCC vectors v1, . . . ,vN

• Corresponding phoneme labels i1, . . . , iN
Output: MoG parameters and trained DNN (22)
MoG construction:
for i=1:39 do

for k=0:L/2 do
µ̂i,k = 1

Ni

∑Ni

n=1 xi,k(n)

σ̂2
i,k = 1

Ni−1

∑Ni

n=1 (xi,k(n)− µi,k)
2

end
end
DNN training:
Train a DNN for phoneme classification using (v1, i1), . . . , (vN , iN ) by maximizing (23)

Algorithm 2: Test phase
Input : Log-spectral vector of the noisy speech z and a corresponding MFCC vector v.
Output: Estimated log-spectral vector of the clean speech x̂.

Compute the phoneme classification probabilities using the trained DNN (20):

pNN
i = p(I = i|v;DNN), i = 1, . . . ,m

for k=0:L/2 do
Compute (12):

ρMM
i,k = p(Yk < Xk|Zk = zk, I = i) =

fi,k(zk)Gk(zk)
hi,k(zk)

, i = 1, . . . ,m

Compute the speech presence probability (21):

ρk =
∑m

i=1 p
NN
i ρMM

i,k

Estimate the clean speech by adapting (19) to the DNN-based SPP:

x̂k = zk − (1− ρk) · β

Adapt the noise parameters µY,k and σY,k (25):

µ̂Y,k ← ρkµ̂Y,k + (1−ρk) (αzk + (1−α)µ̂Y,k)

σ̂2
Y,k ← ρkσ̂

2
Y,k + (1−ρk)

(
α(zk − µ̂Y,k)

2 + (1−α)σ̂2
Y,k

)
end

where 0 < α < 1 is a smoothing parameter. Using this
scheme, the noise statistics can be adapted during speech
utterances, utilizing the frequency bins that are dominated by
noise. This scheme is particularly useful in nonstationary noise
scenarios. As a consequence, the first few segments, assumed
to be dominated by noise, are only used for initializing the
noise statistics and their influence is fading out as more data
is collected. If speech is active during the first 0.25 Sec
of the utterance, we might encounter some initial speech
distortion problems, since speech components might influence
the estimated noise statistics. The algorithm will recover very
fast from this mismatched initialization, due to the capabilities
of the DNN-based SPP to accurately distinguish between
speech phonemes and noise.

The train and test algorithms are summarized in Algo-
rithms 1 and 2, respectively. In Fig. 1 we present a block

diagram summarizing the entire algorithm. The blue lines
represent the generative path, the light blue lines represent
the discriminative path and the orange lines represent the
noise adaptation path. We dub the proposed algorithm neural
network mixture-maximum (NN-MM) to emphasize its hybrid
nature, as a combination of the generative MM model and the
phoneme-classification DNN.

IV. EXPERIMENTAL STUDY

In this section we present a comparative experimental
study. We first describe the experiment setup in Sec. IV-A.
In Sec. IV-B we examine the influence of the attenuation
factor. Objective quality measure results are then presented in
Sec. IV-C. Finally, the algorithm is tested with an untrained
database in Sec. IV-D.
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Fig. 1: Block diagram of the NN-MM algorithm.

A. Experimental setup and quality measures

To test the proposed algorithm we have contaminated
speech signal with several types of noise from NOISEX-
92 database [31], namely Speech-like, Babble, Car, Room,
AWGN and Factory. The noise was added to the clean signal
drawn from the test set of the TIMIT database (24-speaker
core test set), with 5 levels of SNR at −5 dB, 0 dB, 5 dB,
10 dB and 15 dB in order to represent various real-life
scenarios. Note, that the train and test sets of TIMIT do not
overlap. The algorithm was tested similarly, with the untrained
wall street journal (WSJ) database [32]. Table I summarizes
the experimental setup. We compared the proposed NN-MM
algorithm to the OMLSA algorithm [4] with IMCRA noise es-
timator [5], a state-of-the-art algorithm for single microphone
speech enhancement. The default parameters of the OMLSA
were set according to [33].

In order to evaluate the performance of the NN-MM speech
enhancement algorithm, several objective and subjective mea-
sures were used. The common perceptual evaluation of speech
quality (PESQ) measure, which is known to have high corre-
lation with subjective score [34], was used. Additionally, the
composite measure, suggested by Hu and Loizou [35], was
used. The composite measure weights the log likelihood ratio
(LLR), the PESQ and the weighted spectral slope (WSS) [36]
to predict the rating of the background distortion (Cbak),
the speech distortion (Csig) and the overall quality (Covl)
performance. The rating is based on the 1-5 mean opinion
score (MOS) scale, with clean speech signal achieving MOS
value of 4.5.

Finally, we have also carried out informal listening tests
with approximately thirty listeners3

3Audio samples comparing the OMLSA, the origi-
nal MM and the proposed NN-MM algorithm can be
found in www.eng.biu.ac.il/gannot/speech-enhancement/
hybrid-dnn-based-single-microphone-speech-enhancement/.

B. Setting the maximum attenuation level
In all experiments in the paper, we set β to correspond

to attenuation of 20 dB, a value which yielded high noise
suppression while maintaining low speech distortion. Fig. 2
illustrates the influence of excessively high attenuation which
clearly leads to speech distortion. In Fig. 2c, the value of
β corresponds to an attenuation of 60 dB. It is evident
that this excessively high attenuation results in severe speech
distortion. Using the nominal β, corresponding with an at-
tenuation of 20 dB, maintains low distortion while sacrificing
noise reduction, as evident from Fig. 2d. This conclusion is
also supported by the PESQ measures. While for the high
attenuation, the PESQ value is 1.7, for the nominal attenuation
level, it increases to 2.3.

C. Objective results - TIMIT test set
We first evaluate the objective results of the proposed

NN-MM algorithm and compare it with the results obtained
by the state-of-the-art OMLSA algorithm. To further examine
the upper bound of the proposed method we also replaced the
DNN classifier with an ideal classifier that always provides the
correct phoneme, denoted Oracle. The test set was the core
set of the TIMIT database.

Fig. 3 depicts the PESQ results for all examined algorithms
for the Speech-like, Room, Factory and Babble noise types
as a function of the input SNR. In Fig. 4 we show the Covl
results for Factory and room noises.

It is evident that the proposed NN-MM algorithm outper-
forms the OMLSA algorithm in the two designated objective
measures. While in high SNR scenarios the difference between
the algorithms is only marginal, it is more significant in low
SNR. This can be explained as follows. In low SNR case,
where the audio signal is very corrupted, using the phoneme
classification adds significant information on the structure of
the speech signal, consequently improving speech quality.
Since the OMLSA algorithm does not use this information
it may suffer from low speech quality in low SNR scenarios.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TASLP.2016.2618007

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

www.eng.biu.ac.il/gannot/speech-enhancement/hybrid-dnn-based-single-microphone-speech-enhancement/
www.eng.biu.ac.il/gannot/speech-enhancement/hybrid-dnn-based-single-microphone-speech-enhancement/


IEEE/ACM TRANSACTION ON AUDIO, SPEECH AND LANGUAGE PROCESSING 8

Train phase

Database Details

Phoneme-based MoG construction TIMIT (train set) Log-spectrum vectors
DNN train TIMIT (train set) MFCC vectors

Test phase

Database Details

Speech TIMIT (test set), WSJ
Noise NOISEX-92 White, Speech-like, Room, Car, Babble, Factory
SNR - -5, 0, 5, 10, 15 dB
Objective measurements - PESQ, Composite measure

TABLE I: Experimental setup.
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(b) Factory noise (SNR 5dB), (PESQ=1.5).
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(c) β ∼ 60 dB, (PESQ=1.7).
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(d) β ∼ 20 dB, (PESQ=2.3).

Fig. 2: The influence of excessively large β on the performance of the proposed algorithm.

The Oracle naturally outperforms the NN-MM, but the
performance difference is rather marginal in high SNR. In
low SNR, although there is room for improvement, the perfor-
mance degradation is not severe. This can be attributed to two
factors. The first is the application of the CMVN [25]. Second,
even if the algorithm misclassifies the correct phoneme by a
phoneme with a similar spectral structure, it can still improve
the quality of the enhanced speech.

To gain further insight, we have also compared the enhance-
ment capabilities of the proposed algorithm and the state-of-
the-art OMLSA algorithm in the challenging Babble noise
environment. For this experiment we have set the SNR to
5 dB. We have encircled in the sonograms, depicted in Fig. 5,
areas where the OMLSA exhibit a noticeable level of residual
noise. On the contrary, the proposed NN-MM is less prone
to this musical noise artifact, while maintaining comparable
noise level at the output. The reader is also referred to the
sound clips that can be found in our website.

D. Performance with a different database

Finally, we would like to demonstrate the capabilities of
the proposed NN-MM algorithm when applied to speech
signals from other databases. In this work, we have trained
the phoneme-based MoG and the DNN using the TIMIT
database. In this section, we apply the algorithm to 30 clean
signals drawn from the WSJ database [32]. The signals
were contaminated by Factory and room noise, drawn from
NOISEX-92 database, with several SNR levels. Note, that the
algorithm is not trained with noisy signals, neither it uses
any prior knowledge on the noise signal. Fig. 6 depicts the
PESQ measure of the NN-MM algorithm in comparison with
the OMLSA algorithm (since phoneme transcription of the
WSJ database is not available, we do not have results for
the oracle estimator). It is evident that the performance of
proposed algorithm is maintained even for sentences drawn
from a database other than the training database. The results
for other noise types, not shown here due to space constraints,
are comparable .
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(d) Babble noise.

Fig. 3: Speech quality results (PESQ) for several noise types.
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Fig. 4: Results of Covl in two noise types.

V. ANALYSIS OF THE BUILDING BLOCKS OF THE
ALGORITHM

In this section, we analyze the individual contributions of
each component of the proposed algorithm to the overall
performance. First, in Sec. V-A the two SPP estimators pre-
sented in this paper are compared. The advantage of the soft
attenuation over the conditional expectation is presented in
Sec. V-B. The importance of the phoneme-based MoG and
the DNN phoneme classifier is discussed in Sec. V-C. Finally,
in Sec. V-D the noise adaptation mechanism is tested in real-
life scenario.

A. The speech presence probability: ρMM Versus ρNN-MM

One of the major differences between the original MM
algorithm [15] and the proposed NN-MM algorithm is the
construction of the MoG model and the associated classifica-
tion procedure. While the former uses unsupervised clustering

procedure, based on the EM algorithm, and classifies speech
segments using the generative model (10); the latter uses
supervised clustering, utilizing the phonemes’ transcription,
and classifies speech segments using a discriminative approach
via the application of DNN (20). Consequently, the clusters
in the proposed algorithm consist of different utterances of
the same phoneme, while each cluster obtained by the EM
algorithm, may consist mixtures of different phonemes. We
postulate that the supervised clustering and DNN classification
is advantageous over the unsupervised clustering and the
generative model. We will examine this claim in the current
section, using clean speech signal contaminated by Room
noise with SNR=5 dB.

Define, µMM
i,k as the centroids of the clusters inferred from

the EM algorithm and, respectively, µNN-MM
i,k as the centroids of

the clusters obtained by the labeled phonemes, both inferred in
the training phase. Now, define the average PSDs of the speech
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(a) Clean signal.
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(b) Noisy signal (PESQ=2.140).
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(c) Signal at the output of the OMLSA algorithm (PESQ=2.251).
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(d) Signal at the output of the NN-MM algorithm (PESQ=2.351).

Fig. 5: STFT and time-domain plots of clean, noisy (Babble noise, SNR=5 dB), and signals enhanced by the OMLSA and the
NN-MM algorithms.
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Fig. 6: PESQ results with WSJ database for various SNR levels.

segment as the weighted average of the centroids of the clus-
ters, namely µMM

k and µNN-MM
k , respectively. The weights of the

averaging are given by the associated posterior probabilities
(either (10) or (20)), respectively. The average PSD obtained
by the unsupervised clustering and the generative model is
given by:

µMM
k =

m∑
i=1

pMM
i µMM

i,k . (26)

Similarly, the average PSD obtained by the supervised clus-
tering and the discriminative DNN are given by:

µNN-MM
k =

m∑
i=1

pNN
i µNN-MM

i,k . (27)

In Figs. 7a and 7b, the clean and noisy PSDs, respectively,
are depicted. Fig. 7c and Fig. 7d illustrates the estimated

averaged PSDs inferred from the training data, namely µNN-MM

and µMM. It is evident that µNN-MM better maintains the
envelope of clean speech PSD than µMM. It is important to
stress that the clean speech utterance is drawn from the test
set and does not appear in the training set.

Utilization of the phoneme-based MoG plays a central role
in the estimation of the SPP, either ρMM

k or ρNN-MM
k , and hence

in the enhancement attained by the algorithm.
To exemplify this, both SPPs are depicted in Figs. 7e and 7f,

respectively. It can be easily observed that ρNN-MM
k has a better

resemblance to the clean speech sonogram depicted in Fig. 7a
and that it suffers from less artifacts. Additionally, it is also
smoother than ρMM

k , both along the time and frequency axes.
Conversely, vertical narrow spectral lines can be observed in
ρMM
k . This spectral artifacts may be one of the causes for

the differences in the enhancement capabilities of the two
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algorithms, as clearly depicted in Figs. 7g and 7h.
We claim that the observed advantages of the proposed ap-

proach stem, at least partly, from the phoneme-based clusters
and the better classification capabilities of the DNN. Moreover,
the original MM algorithm is only utilizing the current frame
for inferring the posterior probabilities, while the proposed
algorithm takes into account the context of the phoneme by
augmenting past and future frames to the current frame. This
guarantees a smoother SPP and consequently less artifacts and
musical noise at the output of the algorithm.

B. Advantage of the soft attenuation over the conditional
expectation

In Sec. V-A, the role of the proposed SPP ρNN-MM was pre-
sented. It is indicated that the this SPP maintains the harmonic
structure of the voiced speech, i.e. the strong components at the
harmonics of the pitch frequency. Consequently, the frequency
content of the gaps between the harmonics were correctly
classified as noise.

We will examine now the differences between the con-
ditional expectation (16), and the proposed soft attenuation
approach (17). We claim that the conditional expectation
that substitutes the noisy utterance by an average of the
respective cluster (phoneme), cannot accurately describe the
gaps between the pitch harmonics of the current utterance,
and therefore exhibits limited to noise reduction in these
frequencies.

To support this claim we have enhanced a noisy utterance
of speech and factory noise at SNR=5dB.

As clearly indicated in Fig. 8, the amount of noise reduction
between the harmonics is much higher for the proposed soft
attenuator (17) as compared with the attenuation obtained
by the conditional expectation (16). This is attributed to
the averaging operation of different utterances with different
pitch frequencies in (22). We therefore conclude that another
important factor of the proposed algorithm is the utilization of
the (simpler) soft mask.

C. Phoneme classification task

In Sec. V-A we have shown that the SPP obtained by the
NN-MM algorithm better suits the clean speech signal than
the respective SPP obtained by the original MM algorithm.
We would like to have now a closer look at the role of the
phoneme classifier in the proposed algorithm. For that, we
have implemented two different variants of the MM algorithm.
In these variants, we are using the enhancement procedure
in (19) and the noise adaptation as explained in Sec. III-E.
The first variant uses the unsupervised EM-based clustering
and the generative model for classification (10). This variant is
therefore denoted MM EM-based. Note, that this variant differs
from the original MM algorithm in two major components,
namely the noise adaptation and the enhancement procedure.
The second variant uses supervised phoneme-based MoG and
again (10). This variant is therefore denoted MM phoneme-
based. These two variants will be compared with the proposed
algorithm that uses supervised phoneme-based MoG and a
discriminative classification (20).

Clean speech from the test set of the TIMIT database was
contaminated by Babble and Factory noise with various SNR
levels.

We first compare the success rate in the task of phoneme
classification of the MM phoneme-based algorithm and the
proposed DNN phoneme classifier. Fig. 9 depicts the per-
centage of correct classification results obtained on the test
data. The results clearly indicate that the DNN-based classifier
significantly outperforms the classifier based on the generative
model, and is hence better suited for the task at hand.

We turn now to the assessment of the overall performance
of the two variants and the proposed NN-MM algorithm as
depicted in Fig. 10. It is evident that the proposed algorithm
outperforms the two MM variants.

It can therefore be deduced that the phoneme-based model
and the associated DNN-based classifier are significant con-
tributors to the performance of the proposed algorithm.

D. The Noise adaptation

In this section we examine the contribution of another
important component of the proposed algorithm, namely the
noise adaptation scheme described in (25). We chose α =
0.06 which approximately refers to memory length of 16
frames. A city ambiance noise [37] that consists of a siren and
passing cars was chosen, as it is a highly nonstationary noise
source with fast PSD changes during the speech utterance. The
clean and noisy signals are depicted in Figs. 11a and 11b. The
input SNR was set to 5 dB (resulting in an input PESQ=2.124).

In Fig. 11c the real noise STFT is depicted and in Fig. 11d
its estimate using the proposed adaptation scheme and the SPP
inferred by the NN-MM algorithm. It can be observed that the
estimate is quite accurate even when the noise PSD changes
very fast. Note that during speech dominant time-frequency
bins, the noise estimate cannot adapt. These adaptation ca-
pabilities are also reflected at the output of the algorithms,
especially in comparison with the OMLSA algorithm, as
depicted in Figs. 11e and 11f. We observe that the NN-MM
algorithm outperforms the OMLSA in reducing this challeng-
ing noise. This is also indicated by the PESQ measure. While
the OMLSA degrade the speech quality (PESQ=1.847), the
proposed hybrid algorithm slightly improves it (PESQ=2.438).
The reader is also referred to our website where these sound
clips can be heard.

To further evaluate the contribution of the noise adaptation
to the overall performance of the algorithm, a city ambiance
noise was added to clean speech utterances drawn from the
TIMIT database with various SNR levels. Table II indicates
the PESQ results for two variants of our proposed algorithm,
namely with noise adaptation and without noise adaptation.
The PESQ results were obtained by averaging over the entire
TIMIT test set (approximately 120 sentences). It is clear that
the noise adaptation significantly contributes to the perfor-
mance of the algorithm and to the quality of the output signal.

To further assess the contribution of the noise adaptation
we continue with the same experimental setup and examine
the output of the NN-MM with the noise adaptation disabled.
Fig. 12 illustrates the quality degradation of the enhanced
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(a) Clean signal.
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(b) Noisy signal (PESQ=1.632)
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(c) µMM (Log-spectrum).
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(d) µNN-MM (Log-spectrum).
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(e) ρMM parameter.
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(f) ρNN-MM parameter.

F
re

qu
en

cy
 [K

H
z]

0

2

4

6

8

-60

-50

-40

-30

-20

-10

0

10

Time [Sec]
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
m

pl
itu

de

-1

0

1

(g) MixMax Enhanced (PESQ=2.105).
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(h) NN-MM Enhanced (PESQ=2.202).

Fig. 7: Sonograms of the clean, noisy and enhanced signals together with the averaged PSD and the SPP using either the
NN-MM model or the original MM model.

TABLE II: PESQ results to test the significance of the noise
adaptation.

PESQ
SNR [dB] -5 0 5 10 15
Noisy 1.89 2.03 2.26 2.51 2.81
Without noise adaptation 1.85 3.12 2.45 3.74 3.12
With noise adaptation 1.95 2.21 2.64 2.97 3.28

signal (PESQ=2.122), as compared with Fig. 11f depicting
the output of the same algorithm with noise adaptation ac-

tive. It can be deduced that the noise estimation is another
crucial contributor to the overall performance of the proposed
algorithm.

VI. CONCLUSION

In this paper a novel speech enhancement scheme, denoted
NN-MM, is presented. The proposed algorithm is based on
a hybrid scheme which combines phoneme-based generative
model for the clean speech signal with a discriminative, DNN-
based SPP estimator. In the proposed algorithm, we adopt the
advantages of model-based approaches and DNN approaches.
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(a) Clean signal.
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(b) Noisy signal.
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(c) ρNN-MM.

Time [Sec]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

F
re

qu
en

cy
 [K

H
z]

0

2

4

6

8

-10

-8

-6

-4

-2

(d) E(X|X < z,Z = z).

Fig. 8: Advantage of the soft attenuation over the conditional expectation
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Fig. 9: Results of phoneme classification task performed on noisy data.

While the former usually trades-off noise attenuation capabil-
ities with residual musical noise, the latter often suffer from
speech distortion artifacts.

In the proposed algorithm we take advantage of the dis-
criminative nature of the DNN that preserves speech smooth-
ness by using context frames. Moreover, the phoneme-based
MoG model, where each Gaussian corresponds to a specific
phoneme, preserves the general phoneme structure and reduces
musical noise.

The proposed algorithm requires neither noise samples
nor noisy speech utterances to train. Alternatively, using the
embedded DNN-based SPP, allows for fast adaptation to fast-
changing noise PSD.

A comprehensive set of experiments demonstrate the ca-
pabilities of the proposed algorithm in improving objective
quality measures (as can also be verified by various sound
examples). The NN-MM algorithm is shown to outperform
state-of-the-art algorithm (OMLSA) for both stationary and
nonstationary environmental noise and a variety of SNR levels.
An elaborated analysis verifies their significant contribution of

all the components of the proposed algorithm to the overall
performance enhancement.
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[27] L. Tóth, “Phone recognition with deep sparse rectifier neural networks,”
in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on. IEEE, 2013, pp. 6985–6989.

[28] G. Dahl, T. Sainath, and G. Hinton, “Improving deep neural networks
for lvcsr using rectified linear units and dropout,” in Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE International Conference
on, May 2013, pp. 8609–8613.

[29] Y. Bengio, “Learning deep architectures for AI,” Found. Trends Mach.
Learn., vol. 2, no. 1, pp. 1–127, Jan. 2009.

[30] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[31] A. Varga and H. J. Steeneken, “Assessment for automatic speech recog-
nition: Ii. noisex-92: A database and an experiment to study the effect of
additive noise on speech recognition systems,” Speech communication,
vol. 12, no. 3, pp. 247–251, 1993.

[32] D. B. Paul and J. M. Baker, “The design for the wall street journal-based
csr corpus,” in Proceedings of the Workshop on Speech and Natural
Language, ser. HLT ’91. Stroudsburg, PA, USA: Association for
Computational Linguistics, 1992, pp. 357–362. [Online]. Available:
http://dx.doi.org/10.3115/1075527.1075614

[33] “Matlab software for speech enhancement based on optimally modified
lsa (om-lsa) speech estimator and improved minima controlled recursive
averaging (imcra) noise estimation approach for robust speech enhance-
ment,” http://webee.technion.ac.il/people/IsraelCohen/.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TASLP.2016.2618007

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://scitation.aip.org/content/asa/journal/jasa/125/4/10.1121/1.3083233
http://www.sciencedirect.com/science/article/pii/S0167639306001129
http://www.sciencedirect.com/science/article/pii/S0167639306001129
http://dx.doi.org/10.1007/978-3-642-55016-4_12
http://dx.doi.org/10.3115/1075527.1075614
http://webee.technion.ac.il/people/IsraelCohen/


IEEE/ACM TRANSACTION ON AUDIO, SPEECH AND LANGUAGE PROCESSING 15

F
re

qu
en

cy
 [K

H
z]

0

2

4

6

8

-60

-50

-40

-30

-20

-10

0

10

Time [Sec]
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

A
m

pl
itu

de

-1

0

1

(a) Clean signal.
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(b) Noisy signal (SNR=5 dB) (PESQ=2.124).
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(c) Real noise.
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(d) Estimated noise.
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(e) OMLSA enhanced (PESQ=1.847).
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(f) NN-MM enhanced (PESQ=2.438).

Fig. 11: Noise adaptation capabilities with highly nonstationary siren noise (SNR=5 dB), and the outputs of the OMLSA and
NN-MM algorithms.
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Fig. 12: NN-MM enhanced without noise adaptation, (PESQ=2.122).
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