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Abstract—The problem of source separation using an array of
microphones in reverberant and noisy conditions is addressed.
We consider applying the well-known linearly constrained min-
imum variance (LCMV) beamformer (BF) for extracting indi-
vidual speakers. Constraints are defined using relative transfer
functions (RTFs) for the sources, which are acoustic transfer
functions (ATFs) ratios between any microphone and a reference
microphone. The latter are usually estimated by methods which
rely on single-talk time segments where only a single source is
active and on reliable knowledge of the source activity. Two novel
algorithms for estimation of RTFs using the TRINICON (Triple-
N ICA for convolutive mixtures) framework are proposed, not
resorting to the usually unavailable source activity pattern. The
first algorithm estimates the RTFs of the sources by applying
multiple two-channel geometrically constrained (GC) TRINICON
units, where approximate direction of arrival (DOA) information
for the sources is utilized for ensuring convergence to the desired
solution. The GC-TRINICON is applied to all microphone pairs
using a common reference microphone. In the second algorithm,
we propose to estimate RTFs iteratively using GC-TRINICON,
where instead of using a fixed reference microphone as before,
we suggest to use the output signals of LCMV-BFs from the
previous iteration as spatially processed references (SPRs) with
improved signal-to-interference-and-noise ratio (SINR). For both
algorithms, a simple detection of noise-only time segments is
required for estimating the covariance matrix of noise and
interference. We conduct an experimental study in which the
performance of the proposed methods is confirmed and compared
to corresponding supervised methods.

Index Terms—Blind source separation, LCMV, relative trans-
fer function, voice activity

I. INTRODUCTION

Speech enhancement problems have attracted the attention of both
industry and research community for several decades. Applications
and use cases are vast and diverse, such as telecommunications,
entertainment and multimedia systems, human-machine interfaces,
hearing aids and many more. Technological advances enabled the
use of microphone arrays, allowing to utilize spatial properties of
the signals and extending the spectral-temporal filtering methods to
spatial-temporal methods.

In this contribution, we consider noise reduction and speech
enhancement problems for multiple speakers in determined and over-
determined scenarios where the number of sources is less or equal to
the number of microphones. Most algorithms for this problem can be
classified as either supervised, which usually optimize a second-order
statistics (SOS)-based criterion given a priori information about the
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spatial configuration or activity-patterns of the sources, or unsuper-
vised, leading to so-called blind algorithms, which utilize statistical
independence and often higher-order statistics (HOS). Algorithms of
both classes are based on applying linear filters to the microphone
signals followed by a summation, also known as beamforming.

Supervised algorithms for speech enhancement are surveyed in
[1]–[4]. The multichannel Wiener filter (MWF) is a BF which obtains
the minimum mean squared error (MMSE) for the estimated desired
speech signal. The speech-distortion-weighted (SDW)-MWF [5] ex-
tends the MWF and enables control over the tradeoff between desired
signal distortion and noise suppression by introducing a relative
weighting of the residual noise component in the optimization. In the
multiple speakers scenario a mean squared error (MSE) expression
with multiple weighted distortion components and individual desired
responses can be optimized, denoted multiple speech distortion
weighted (MSDW)-MWF [6].

The LCMV beamformer [7] optimizes the noise variance at the
output while maintaining a set of linear constraints. A special case
of the LCMV which satisfies a single constraint of keeping a desired
speech signal undistorted at the output is denoted as the minimum
variance distortionless response (MVDR) beamformer. The linearly
constrained BFs have an equivalent and efficient form, denoted as
generalized sidelobe canceler (GSC) [8], [9]. A common approach is
to design and apply the BF in the short-time Fourier transform (STFT)
domain, e.g., the transfer function GSC (TF-GSC) [10]. Note that in
[6] the MVDR and LCMV can be obtained as extreme cases of the
SDW-MWF and MSDW-MWF, respectively.

Designing the above-mentioned BFs requires knowledge of SOS
or ATFs of the various sources as well as of the noise. In [10]
it was suggested to use the ratios between source-microphones
ATFs and the ATF of a reference microphone, denoted RTFs, in
the construction of the MVDR-BF. Several procedures exist for
estimating the RTF: noise covariance subtraction (CS) [11]–[14];
noise covariance whitening (CW) [14]–[16] or methods based on
speech non-stationarity [10], [17].

Blind source separation (BSS) algorithms, as implied by their
name, do not require any information about the sources, and are
solely based on their statistical properties, such as mutual statistical
independence or non-Gaussian distribution. For a survey on BSS
methods please refer to [18]–[23]. Early contributions rely on criteria
derived from SOS whereas in more recent contributions HOS is also
considered, also known as independent component analysis (ICA).
The permutation ambiguity, which may arise from applying scalar
BSS individually for each frequency bin in the STFT domain, can
be mitigated by introducing a smoothing operating over nearby
frequencies [24], [25], or by soft or hard geometrical constraints
[26], [27]. Alternatively, a broadband criterion, defined in the time
domain, can be optimized in the frequency domain for efficiency and
completely avoiding the internal permutation ambiguity [28].

In [29], [30], a framework denoted TRINICON for blind pro-
cessing of multiple input/multiple output (MIMO) systems based
on minimizing mutual information is proposed. Specifically in BSS,
Triple-N ICA for convolutive mixtures (TRINICON) is attractive
as it can simultaneously exploit properties of non-stationarity, non-
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whiteness, and non-Gaussianity of the involved signals. The concept
of introducing a geometrical constraint into the BSS criterion was
incorporated into the TRINICON algorithm in [31], denoted GC-
TRINICON. It was used for source extraction, i.e., extracting a
desired source out of multiple sources, in the under-determined
scenario. This concept was then used to extend the TRINICON
criterion in [32] by introducing a set of linear constraints, denoted
linearly-constrained minimum mutual information (LCMMI). The
latter constraints allow to designate the target speakers based on their
DOA and to improve the convergence by effectively reducing the
number of degrees of freedom in the BF optimization. This work
was further generalized in [33] for the estimation of RTFs using
multiple TRINICON procedures applied to microphone pairs. For the
initial estimates of DOAs of the sources, blind ICA-based algorithms
such as [34], [35] can be used. Both of these methods are applicable
to the multiple-speakers convolutive mixtures case. Real-time and
reduced complexity versions of the TRINICON algorithm have been
suggested in [36] and [37]. In [38] a real-time implementation to a
GPU platform is described.

In the current contribution, we extend [33] by incorporating the
estimation method for source RTFs into a set of LCMV-BFs designed
for extracting individual sources. We propose two algorithms in
which GC-TRINICON is used for RTF estimation which is later
used for constructing LCMV-BFs. The first algorithm uses multiple
two-channel GC-TRINICON units whose input signals are given
by a chosen reference signal and one of the other sensor signals.
The second proposed algorithm also applies the GC-TRINICON
procedure to pairs of signals. However, instead of using one of the
microphone signals as reference we propose to use the outputs of
LCMV-BFs as spatially processed references (SPRs). This procedure
can be applied iteratively resulting in incrementally improved SPRs
contributing to an improved RTF estimate.

Various available algorithms which work under idealized condi-
tions (such as using perfect source activity knowledge and perfect
noise knowledge by the LCMV [15], or as using training data by
the multichannel non-negative matrix factorization (MCNMF) [39])
obtain satisfactory results in source-separation problems. The main
motivation of the proposed algorithm is that it offers real-time capa-
bility and requires no training, but a simple detector for identifying
noise-only time segments and coarse estimates of the sources’ DOAs.
Yet, its performance gets close to the optimum one of algorithms
operating under idealized conditions.

The paper is structured as follows. The problem is formulated in
Sec. II. Sections III and IV give necessary background on LCMV
beamforming and the TRINICON framework, respectively. In Sec. V
we propose a combined GC-TRINICON based RTF estimation [33]
and a LCMV-BF. The second proposed algorithm, which combines
GC-TRINICON and LCMV beamforming using SPRs in an iter-
ative estimation procedure, is derived in Sec. VI. Results of an
experimental study comparing the proposed methods with ideal and
estimation-based supervised methods as well with the state-of-the-art
MCNMF method [39] are given in Sec. VII. Finally, the contribution
is summarized and main conclusions are drawn in Sec. VIII.

II. PROBLEM FORMULATION

Consider a scenario with P speakers in a reverberant enclosure
received by a microphone array with M microphones. Let sp(n) for
p = 1, . . . , P denote the P speech signals received by a reference
microphone, here identified with m = 1. The received signal at the
mth microphone is given by:

xm(n) =

P∑
p=1

hpm(n) ∗ sp(n) + vm(n), (1)

where hpm(n) denotes the relative impulse response (RIR) RIR
between the the reverberant components of the p-th speaker, also
denoted for brevity as the components of the p-th speaker, at the m-
th microphone and at the reference microphone, and vm(n) comprises

all noise and interference components at the m-th microphone
(m = 1, . . . ,M ). Note that hp1(n) , δ(n), where δ(n) is the
unit impulse. Transforming the problem to the STFT domain with
a window length of K and overlap of κ yields:

xm(`, k) ,
P∑
p=1

hpm(k)sp(`, k) + vm(`, k) (2)

where hpm(k) is the discrete Fourier transform (DFT) of hpm(n),
also known as the RTF between the p-th source components at the m-
th and at the reference microphones. Note that underlined expressions,
i.e., •, denote terms in the DFT or STFT domains. The indices
` and k, corresponding to the STFT domain, stand for the time-
frame index and frequency-bin, respectively, whereas the index n
indicates sample time. It is assumed that the length of the RIRs is
shorter than the window length K, such that convolution in the time
domain is transformed into multiplication in the STFT domain. For
brevity, and since the algorithms presented and proposed in this paper
estimate the required parameters using a batch of samples, we confine
ourselves to the static scenario. Thus, for our analysis we assume that
speakers are static and that the noise is stationary. In many practically
relevant scenarios, the time-variance of the systems to be identified
can be assumed to be sufficiently slow, so that time-invariance for
the duration of the signal segments can be assumed. The extension of
the proposed algorithms to rapidly changing acoustic scenarios is left
for future work. Please refer to [17] and [40] for tracking the RTF
in dynamic scenarios. Actually, the stationarity of the noise is not
required by the TRINICON method, as long as the signal to noise
ratio (SNR) is sufficiently high. However, we adopt the stationarity
assumption for a consistent formulation.

Concatenating the microphone components at each frequency into
a single M × 1 vector, the following vector notation can be defined:

x(`, k) ,H(k)s(`, k) + v(`, k) (3)

where

x(`, k) ,
[
x1(`, k) · · · xM (`, k)

]T (4a)

s(`, k) ,
[
s1(`, k) · · · sP (`, k)

]T (4b)

v(`, k) ,
[
v1(`, k) · · · vM (`, k)

]T (4c)

hp(k) ,
[
hp1(k) · · · hpM (k)

]T
; p = 1, . . . , P (4d)

H(k) ,
[
h1(k) · · · hP (k)

]
(4e)

and (•)T denotes the transpose operator. The vector hp(k) is denoted
as the vector containing the RTFs for the p-th source. Define the time-
invariant noise correlation matrix and the time-varying microphone
signals correlation matrix at the k-th frequency bin as:

Φvv(k) ,E
[
v (`, k)vH (`, k)

]
(5)

Φxx(`, k) ,E
[
x (`, k)xH (`, k)

]
=H(k)Λs (`, k)H

H(k) + Φvv(k) (6)

respectively, where

Λs (`, k) , diag {λs1 (`, k) , . . . , λsP (`, k)} (7)

denotes the covariance matrix of the sources’ components at the
reference microphone,

λsp(`, k) , E
[
|sp(`, k)|

2] (8)

denotes the time-varying power of the component of the p-th source
at the reference microphone at the (`, k) time-frequency bin, for
p = 1, . . . , P and diag {•} denotes a diagonal matrix with its vector
argument on its diagonal.

Our goal is to separate the mixtures of the speech components at
the reference microphone and reduce the noise at the outputs yp(n),
for p = 1, . . . , P . In other words, we want to generate estimates of
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Fig. 1: Source separation scenario.

P desired signals, where in each estimated signal only one speaker is
enhanced and all other speakers and noise are attenuated. We assume
that the speakers’ components at the reference microphone are of
sufficient quality, and therefore, do not consider the dereverberation
problem. We confine ourselves to solutions consisting of filtering the
microphone channels followed by a summation. Hence the output
signals can be formulated in the time domain and in the STFT
domain, respectively, as:

yp(n) ,
P∑

m=1

wpm(n) ∗ xm(n), (9a)

y
p
(`, k) ,wT

p (k)x(`, k), (9b)

where yp(n) is an estimate of sp(n) for p = 1, . . . , P , wpm(n)
are two-sided, i.e, possibly non-causal finite impulse response (FIR)
filters of length L = Lc + Lnc, wpm(k) denotes their transforma-
tion to the DFT domain and wp(k) is defined by concatenating
the transformed p-th signal filters of all microphones wT

p (k) ,[
wp1(k) · · · wpM (k)

]
. Thereby Lc and Lnc are the lengths of

the causal and anticausal components, respectively. The STFT frame
length is selected such that L < K. We assume for simplicity that
the speech sources do not move, hence the separating filters can also
be time-invariant. This assumption is not mandatory, and separating
moving sources with time-varying ATFs can be obtained by extending
the algorithms proposed in this contribution. However, this is beyond
the scope of the current contribution. A block-diagram of the source
separation problem is depicted in Fig. 1.

Furthermore, we assume that for the separation task oracle in-
formation regarding the DOAs of the various speakers, denoted θp
for p = 1, . . . , P , is available. For the suppression of noise and
interference, information on noise-only time segments is required.
The concatenation of all DOAs into a single vector is defined as
θ , [θ1, . . . , θP ]

T . Estimating the sources’ DOAs and detecting
noise-only time segments are out of the scope of this contribution,
please refer to [41], [42] for some detection methods. The required
accuracy of the estimates is discussed in Sec. IV-B.

III. LCMV BEAMFORMER

A. Background
Given the RTFs of all sources, and the noise covariance matrix, a

LCMV-BF which extracts the p-th source while suppressing all other
sources and noise can be defined per frequency bin as in [15] (note
that we omit the frequency-bin index for brevity):

wLI
p ,

(
Φ−1
vvH

(
HHΦ−1

vvH
)−1

ep

)∗
. (10)

The latter BF is defined for p = 1, . . . , P , where ep is a selection
vector, used for extracting the p-th element of a P×1 vector, defined
as:

ep ,
[

01×(p−1) 1 01×(P−p)
]T
. (11)

The superscript (•)LI stands for LCMV in an ideal scenario where
all RTFs are available a priori. Usually, source RTFs as well as
noise covariance matrices are not available a priori and need to be
estimated from the received signals. After construction, the filters can
be transformed back into the time domain and applied as in Fig. 1.

B. Noise covariance whitening (CW)-based RTF estimation
CW is a common method for estimating the RTFs in a supervised

scenario [14]–[16], when information about the activity of the sources
is available. Given a noisy time segment in which all sources are
inactive, the noise covariance matrix is estimated using a sample
covariance matrix with recursive averaging, denoted by Φ̂vv:

Φ̂vv(`, k) = αΦ̂vv(`− 1, k) + (1− α)x(`, k)xH(`, k) (12)

where x(`, k) is a frame containing noise only.
Furthermore, given another noisy time segment in which only the

p-th source is active, the covariance matrix of the p-th source plus
the noise is estimated in the same way, and denoted Φ̂

p

xx(`, k). We
assume that the noisy speech time segment is long and that α→ 1.
Hence, we assume that Φ̂

p

xx(`, k) converges to an average variance
and disregard the dependency on time. Then we apply the generalized
eigenvalue decomposition (GEVD) [43] to the matrix Φ̂

p

xx using
Φ̂vv as a rotation matrix and denote the principal eigenvector by
ψ
p1

. Asymptotically, neglecting estimation errors, assuming that the
speakers are static and that the noise is stationary, the principal
generalized eigenvalue corresponds to the p-th source component. Its
corresponding generalized eigenvector ψ

p1
is parallel to the RTFs

vector of the p-th source, i.e., hp, rotated by the matrix Φ̂
−1

vv .
Finally, an estimate for the RTFs vector of the p-th source is obtained
by rotating ψ

p1
back to the microphones’ domain using Φ̂vv , and

normalizing the resulting vector by the element corresponding to the
reference microphone, i.e.:

ĥ
CW
p ,

Φ̂vvψp1

eT1 Φ̂vvψp1

. (13)

Concatenating all RTF vectors of the CW method into a single matrix
yields:

Ĥ
CW

,
[
ĥ

CW
1 · · · ĥ

CW
P

]
. (14)

Similarly to (10), the estimated RTFs are used for constructingwLCW
p ,

i.e., the LCMV-BF using RTF estimates obtained by the CW method:

wLCW
p ,

(
Φ̂
−1

vv Ĥ
CW
((
Ĥ

CW
)H

Φ̂
−1

vv Ĥ
CW
)−1

ep

)∗
(15)

for p = 1, . . . , P .
Note that for time-varying spatial properties of the noise, the

accuracy of above mentioned method for estimating the RTF will
be hampered. However, the TRINICON based method for RTF
estimation (described in the following Sec. IV-B), is robust to non-
stationary low-power noises.

IV. TRINICON

A. Background
The TRINICON is a MIMO framework for convolutive mixtures

of sources. If applied to BSS, unlike the supervised LCMV-BF, it
does not require a priori knowledge of the source RTFs, nor training
time-sequences with exclusive activity of single sources for their
estimation.

The generic optimization criterion of TRINICON [30] is based
on comparing the multivariate probability density function (PDF) of
the output signals to a source model PDF. The criterion exploits the
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non-stationarity, non-whiteness and non-Gaussianity properties of the
sources, and for BSS it is given by:

J (i) =

∞∑
i′=0

β(i′, i)
1

N

ni′1∑
n=ni′0

log

{
f̂y(yyy(n))∏P

p=1 f̂yp(yyyp(n))

}
, (16)

where the output signals are split into frames consisting of N
data blocks of size D each, i denotes the index of the current
frame, corresponding to block index n ∈ [ni0, ni1], β(i′, i) denotes
the weight of the i′-th frame contribution to the optimization cost
function and f̂yp denotes an estimate of the multivariate PDF of the
p-th output (over D consecutive samples. A discussion on choosing
D can be found in [30]):

yyyp(n) ,
[
yp(n) · · · yp(n−D + 1)

]T
, (17)

and f̂y denotes the multivariate PDF of all output signals, i.e.,

yyy(n) ,
[
yyyT1 (n) · · · yyyTP (n)

]T
. (18)

The criterion (16) accounts for the above-mentioned signal prop-
erties as follows (please refer to [30] for more details):
• Non-Gaussianity is exploited using non-Gaussian PDFs for both

sources and output signals.
• Non-whiteness is accounted for by considering output cross-

relations over D time-lagged output samples for each output
signal. Thus, both intra-channel and inter-channel statistical
relations of the outputs are modeled.

• Non-stationarity of the sources is exploited by averaging over
multiple frames (of length N data-blocks), each weighted by
the weighting function β(i′, i) with finite support [30].

The TRINICON criterion is applied in the time domain and the
complete set of parameters are optimized jointly. Unlike frequency-
domain BSS schemes, where the broadband optimization criterion is
split into frequency-bin-wise lower-dimensional optimization prob-
lems performed in parallel, the full-length separating filters are
optimized simultaneously. An efficient implementation of the time-
domain TRINICON criterion which transforms part of the compu-
tations into the DFT domain is given in [28]. As with all BSS
algorithms, TRINICON is known to work best if P is not greater than
two. A GPU-based implementation of two-channel SOS-TRINICON
BSS is available in [38], and allows for the parallel execution of
dozens to hundreds of BSS units in real-time.

B. TRINICON based RTF estimation
The TRINICON framework can also be used for estimating the

RTF of a source in the multiple-speakers scenario, by using only
two microphones. In [31], [44], a modified TRINICON criterion
which incorporates a geometrical constraint is proposed and denoted
GC-TRINICON. Using an approximate DOA of a desired source to
construct the constraint helps to “direct” the converged filters to block
the desired speaker in one of its output signals. The spatial filters
which block the desired source are used for obtaining its RTF.

W.l.o.g., assume that microphones 1 and m are used for estimating
the RTF of the p-th source in a scenario comprising P sources.
The two outputs of the GC-TRINICON, denoted by z1m

p (n) and
z1m
p̄ (n), are the enhanced p-th source and the blocked p-th source

signals, respectively. Note that since only two microphones are used
for filtering by the GC-TRINICON, theoretically, only one source
can be cancelled at each output. Hence, the filters which construct
the output z1m

p̄ (n), which are designed to block the p-th source,
can be used for RTF estimation as follows. Let us denote the GC-
TRINICON filters which generate z1m

p (n) and z1m
p̄ (n) as c1mpa , c1mpb

and c1mp̄a , c1mp̄b , respectively. The corresponding output signals are then
given by:

z1m
p (n) =c1mpa (n) ∗ x1(n) + c1mpb (n) ∗ xm(n) (19)

z1m
p̄ (n) =c1mp̄a (n) ∗ x1(n) + c1mp̄b (n) ∗ xm(n). (20)

Formally, the optimization criterion of the GC-TRINICON is
defined similarly to (16) as:

J p,1mGC (i) =

∞∑
i′=0

β(i′, i)
1

N

·
ni′1∑

n=ni′0

log

{
f̂p,1mz (zp,1m(n))

f̂1m
zp (z1m

p (n)) · f̂1m
zp̄ (z1m

p̄ (n))

}

+ η

K∑
k=1

|c1mp̄a (k)ĥ
0

pm(k) + c1mp̄b (k)|2, (21)

where η is a weight controlling the tradeoff between the constraint
and the original unconstrained TRINICON criterion. The term ĥ

0

pm

denotes an initial estimate of the RTF of the p-th source (relating the
m-th microphone to the reference microphone), estimated based on
the DOA of the source. Eq. (21) defines the p-th source as desired,
without loss of generality (w.l.o.g.), f̂1m

zp , f̂1m
zp̄ denote estimates of

the multivariate PDFs of the vectors z1m
p (n), z1m

p̄ (n), respectively,
defined over D consecutive samples as:

z1m
p (n) ,

[
z1m
p (n) · · · z1m

p (n−D + 1)
]T (22)

z1m
p̄ (n) ,

[
z1m
p̄ (n) · · · z1m

p̄ (n−D + 1)
]T (23)

and f̂p,1mz denotes the multivariate PDF of

zp,1m(n) ,
[ (
z1m
p (n)

)T (
z1m
p̄ (n)

)T ]T
. (24)

An estimate of the RTF of the p-th source relating the m-th
microphone (for m = 2, . . . ,M ) and the reference microphone can
be obtained by the GC-TRINICON:

ĥ
GT
pm(k) = −

c1mp̄a (k)

c1mp̄b (k)
(25)

for p = 1, . . . , P and for all frequency bins k = 1, . . . ,K, where
the superscript (•)GT stands for GC-TRINICON.

Finally, we define the initial estimates of the RTFs, i.e., ĥ
0

pm for
p = 1, . . . , P and m = 1, . . . ,M . The RTFs of the various speakers
are initialized as in [44] according to their corresponding relative
delays between the microphones and the reference microphone (de-
noted time difference of arrival (TDOA)) computed according to a
priori knowledge or estimates of the speaker DOAs. Given a coarse
estimate of the DOA of the p-th speaker, θp, the TDOA τpm of the
corresponding direct-arrival components at the m-th microphone and
at the reference microphone are explicitly given by:

τpm =
dm sin(θp)

c
(26)

where we assume that a linear array is used to simplify notation,
dm is the distance between the m-th microphone and the reference
microphone and c is the sound velocity. Consequently, the p-th
speaker RTF of the m-th microphone is initialized as:

ĥ
0

pm(k) , exp

(
−j2π

k

K
fsτpm

)
(27)

for p = 1, . . . , P and m = 1, . . . ,M where fs denotes the sampling
frequency and we assume far-field wave propagation. Using vector
notation, similarly to (4d), the initial estimate of the RTFs vector of
the p-th source is defined as:

ĥ
0

p(k) ,
[
ĥ

0

p1(k) · · · ĥ
0

pM (k)
]T

(28)

for p = 1, . . . , P .
It should be noted that the considered criterion in (21) relies on the

existence of a dominant direct-path signal, i.e., at least a moderate
direct to reverberant ratio (DRR) is assumed. Therefore, unsatisfac-
tory separation results must be expected if reverberation prevails over
the direct propagation path. According to [44], the TDOA estimates
need to be sufficiently accurate to allow neighbouring sources to be
distinguished.
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V. COMBINED LCMV-TRINICON

A simple and straightforward way of combining the LCMV-BF
with TRINICON-based RTF estimation is proposed next. First, the
RTFs relating the p-th source components at microphones m =
2, 3, . . . ,M to the reference microphone, the first microphone, are
estimated by the procedure described in Sec. IV-B. The latter RTFs
are denoted ĥ

GT
pm, for m = 2, . . . ,M . Define ĥ

GT
p1 , 1. Similarly to

(4d), define the vector of RTFs of the p-th source, estimated using
the GC-TRINICON algorithm as:

ĥ
GT
p ,

[
ĥ

GT
p1 · · · ĥ

GT
pM

]T
. (29)

The latter procedure is repeated for all sources, i.e., p = 1, . . . , P .
Note, that the GC-TRINICON RTF estimation procedure is applied
P · (M − 1) times in parallel. Similarly to (4e), define the concate-
nation of all RTFs into a single matrix by:

Ĥ
GT

,
[
ĥ

GT
1 · · · ĥ

GT
P

]
. (30)

Finally, in a similar manner to (10), define the LCMV-BF which is
constructed using the RTFs estimated with GC-TRINICON algorithm
as:

wLGT
p ,

(
Φ̂
−1

vv Ĥ
GT
((
Ĥ

GT
)H

Φ̂
−1

vv Ĥ
GT
)−1

ep

)∗
(31)

for p = 1, . . . , P , where the superscript (•)LGT stands for LCMV-
BF with RTFs estimates using the GC-TRINICON algorithm, and
Φ̂vv is an estimate of the noise covariance matrix, estimated during
a noise-only time segment.

VI. COMBINED LCMV-TRINICON WITH SPATIALLY
PROCESSED REFERENCES

In this section we propose an iterative algorithm which combines
the TRINICON criterion for estimating the RTFs of the sources and
the LCMV beamformer for separating the sources. The algorithm
is denoted as the LCMV-SPR-TRINICON. The complexity of the
proposed algorithm is analyzed in Sec. VI-D.

A. Spatially processed reference TRINICON-based RTF esti-
mation

Here, we extend the GC-TRINICON by replacing the reference
microphone signal with a SPR, which has an improved signal to
interference ratio (SIR). The modified RTFs, relating the desired
signal components in all microphones with the modified reference,
are estimated with higher accuracy as the SIR of the modified
reference increases. The RTFs with respect to the microphone signal
are obtained by proper normalization of the latter modified RTF
estimates. The GC-TRINICON can be obtained as a special case
of the SPR-GC-TRINICON with a simple spatial processing which
selects the reference microphone.

Consider estimating the RTFs of the p-th speaker, i.e., hpm(k),
for m = 1, . . . ,M . Given a modified reference signal:

rp(n) ,
M∑
m=1

qpm (n) ∗ xm (n) (32)

where at this point qpm(n) is an arbitrary filter. Note that by
transforming (32) into the frequency-domain and substituting (2) and
(3) we obtain:

rp(`, k) =

P∑
p=1

qT
p
(k)hp(k)sp(`, k) + q

T

p
(k)v(`, k). (33)

Denote the p-th speaker modified reference RTFs relating the com-
ponents of the p-th source at xm(n) and rp(n) by:

g
pm

(k) ,
hpm(k)

qT
p
(k)hp(k)

, (34)

where we assume that qT
p
(k)hp(k) 6= 0. Given an initial estimate of

ĝ0
pm(n), the GC-TRINICON is applied for obtaining a more accurate

estimate, denoted ĝpm(n). The modified reference rp(n) is filtered
by the a priori estimate ĝ0

pm(n), yielding:

rpm(n) , ĝ0
pm(n) ∗ rp(n) (35)

in the time domain and

rpm(`, k) , ĝ0

pm
(k) · rp(`, k) (36)

in the STFT domain. By substituting the p-th source component of
rp(`, k) from (33) in (36), its corresponding component coincides
with the p-th source component in xm(`, k), up to estimation errors
of the initial RTF ĝ0

pm
(`, k):

ĝ0

pm
(k) · qT

p
(k)hp(k)sp(`, k)

≈
hpm(k)

qT
p
(k)hp(k)

· qT
p
(k)hp(k)sp(`, k) = hpm(k)sp(`, k).

The GC-TRINICON with an initial constraint of a unit impulse, i.e,
δ(n), is then applied to the input signals rpm(n) and xm(n). The
more ĝ0

pm(n) is accurate the closer is rpm(n) to the component of
the p-th source at the m-th microphone, resulting in an estimated
RTF which is closer to a unit impulse. The estimated RTF relating
the components of the p-th source at xm(n) and rpm(n), denoted
by δ̂rpm(n), is used for updating the estimate of the RTF between
the components of the p-th source at the m-th microphone and at the
reference microphone, i.e.:

ĝST
pm(n) , ĝ0

pm(n) ∗ δ̂rpm(n), (37)

where the superscript (•)ST stands for SPR-GC-TRINICON. A block-
diagram of the SPR-GC-TRINICON is depicted in Fig. 2. The
notation (•)|θp is added to the initial RTF in the figure to emphasize
that it is computed based on the a priori known DOA. For brevity,
we omit this explicit DOA dependency in the text.

We apply the above-mentioned SPR-GC-TRINICON M times,
over all microphones with the p-th modified reference. Similarly to
(4d), a vector of modified reference RTFs is defined as:

g
p
(k) ,

[
g
p1
(k) · · · g

pM
(k)

]T
. (38)

Note that the p-th speaker RTFs vector, hp(k), can be expressed in
terms of the modified reference RTFs vector, i.e., g

p
(k), by:

hp(k) =
1

g
p1
(k)
g
p
(k). (39)

Hence, we propose to estimate hp(k) by:

ĥ
ST
p (k) =

1

ĝST
p1
(k)
ĝST
p (k) (40)

where, similarly to (38), ĥ
ST
p is defined as:

ĝST
p

,
[
ĝST
p1
· · · ĝST

pM

]T
. (41)

A block-diagram for estimating the RTFs of the p-th speaker using
the SPR-GC-TRINICON is depicted in Fig. 3.
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-

Fig. 2: Block-diagram of SPR-GC-TRINICON for estimating
the RTF between the m-th microphone and the modified
reference of the p-th source.

RTFs vector estimation

SPR-GC-TRINICON

RTF estimation

SPR-GC-TRINICON

RTF estimation

SPR-GC-TRINICON DFT

IDFT

Fig. 3: Block-diagram of SPR-GC-TRINICON for estimating
the RTFs of the p-th source.

B. Algorithm
The higher the SIR of the modified reference at the GC-

TRINICON is, the more accurate is the estimated RTF. Thus, we
propose an iterative two-stage algorithm for speaker separation: 1)
estimate vectors of RTFs of all speakers; 2) construct modified
reference signals for each of the speakers using LCMV-BFs. The
latter two stages can be repeated for improved performance.

Let us consider the i-th iteration of the algorithm. Denote by
ĥ

ST,i−1

p and wLST,i−1
p , the estimated RTFs and the LCMV-BFs at

iteration i−1, for p = 1, . . . , P . We apply the SPR-GC-TRINICON,
and update the estimated RTF vector of the p-th source, i.e., ĥ

ST,i
p , for

p = 1, . . . , P . We use the p-th output of the previous iteration as the
SPR of the current iteration, i.e., the SPR filters used for constructing
the SPR are defined as:

qi
p
(k) , wLST,i−1

p (k) (42)

where the superscript LST denotes LCMV-SPR-TRINICON and the
corresponding SPR is:

rip(`, k) ,
(
qi
p
(k)
)T
x(`, k) (43)

for p = 1, . . . , P . Note that the p-th source component at the
SPR is designed to coincide with the corresponding component at
the reference microphone, up to estimation errors of the RTFs. For
this specific selection the SPR of the p-th source is distortionless
for p = 1, . . . , P . Hence, the estimated RTFs relating the p-th
source components at the microphone signals with the corresponding
component at the p-th SPR, ĝST,i−1

p
, can be defined as the RTFs cor-

responding to the p-th source component at the reference microphone,
ĥ

ST,i−1

p , i.e.:

ĝST,i−1

p
(k) , ĥ

ST,i−1

p (k). (44)

Given the updated estimates of RTFs vectors, ĥ
ST,i
p (k) for p =

1, . . . , P , we update the LCMV-BFs following (10):

wLST,i
p ,

(
Φ̂
−1

vv

(
Ĥ

ST,i
)H ((

Ĥ
ST,i
)H

Φ̂
−1

vv Ĥ
ST,i
)−1

ep

)∗
(45)

where, similarly to (4e), the matrix Ĥ
ST,i

is defined as:

Ĥ
ST,i

,
[
ĥ

ST,i
1 · · · ĥ

ST,i
P

]
. (46)

The M × P dimensional matrix W LST,i(k) is defined as the
concatenation of the separating filters wLST,i

p (k) for all sources
(p = 1, . . . , P ) at the i-th iteration:

W LST,i ,
[
wLST,i

1 · · · wLST,i
P

]
. (47)

This iterative procedure is repeated I times.

C. Initialization
Finally, we define the initialization stage of the algorithm. The

initial RTF estimates are defined according to the given or estimated
DOAs of the various sources, as in (28), for p = 1, . . . , P . The initial
separation filters, i.e., wLST,0

p for p = 1, . . . , P , are defined similarly
to (45) using (28), where:

ĥ
ST,0
pm , ĥ

0

pm (48)

for p = 1, . . . , P and m = 1, . . . ,M .
A block-diagram of the iterative LCMV-SPR-TRINICON method

for RTFs estimation is depicted in Fig. 4. The notation Ĥ
ST,0

(k)|θ
in the figure is meant to emphasize that the initial RTF estimates are
constructed from the a priori DOA information. For brevity, we omit
this explicit DOA dependency in the text.

D. Complexity analysis of the combined LCMV-SPR-
TRINICON method

In this section we analyze the complexity of the proposed com-
bined LCMV-SPR-TRINICON method. The number of computations
depends on the length of the time-segment which is used for con-
structing the beamformer, denoted T , and the number of iterations
I .

The computation is comprised of several steps: 1) transforming
the microphone signals to the STFT domain; 2) constructing the
noise covariance matrix; 3) estimating the RTFs using the proposed
SPR-TRINICON method; 4) constructing the LCMV beamformers
for separating the sources; 5) generating the separated sources. Note
that the computation of steps 3 − 5 is repeated for each iteration,
i.e. I times. Furthermore, the computation of all steps, except for
the construction of the LCMV beamformers, depend linearly on the
length of the time-segment, T .
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RTFs vector estimation

LCMV-SPR-TRINICON

Control:

1) Init./Term.

2) iteration (i=1,..,I):

* Copy RTFs.

* Calculate LCMV-BFs.

RTFs vector estimation

SPR-GC-TRINICON

Source

RTFs vector estimation

SPR-GC-TRINICON

Source

IDFT DFT

Fig. 4: Block-diagram of the iterative LCMV-SPR-TRINICON
method for RTFs estimation.

For a detailed computational analysis of the TRINICON algorithm
please refer to [45]. Note that SPR-GC-TRINICON comprises of
M · P applications of the GC-TRINICON. Denote the complexity
per sample of the TRINICON algorithm by CT. According to [45],
for the parameters that we use here, CT ≈ 2× 104. The complexity
of constructing a single output LCMV beamformer (see [46]) is
approximately 2

3
(M3 + P 3) + 2M2P .

The complexity of the various steps is summarized in Table. I.
Clearly from this table, the complexity of the proposed LCMV-SPR-
TRINICON method is dominated by the RTFs’ estimation process,
which can be approximated as I · M · P · CT · T . However, an
efficient GPU real-time implementation of the TRINICON algorithm
is described in [38].

Step Number of computations
Analytic expression Empirical value

1) STFT of the inputs. 1
1−κM log2 K · T 1.3× 105

2) Construct noise 1
2(1−κ)

M2T 5.8× 105

covariance matrices.
A single iteration:
3) SPR-GC-TRINICON M · P · CT · T 2.9× 109

4) Construct LCMV
(

2
3

(
M3 + P 3

)
+ 4.5× 106

+2M2P
)
K·P

2

5) Generate separated 1
1−κP ·M · T 5.8× 105

sources.

TABLE I: Complexity of the combined LCMV-SPR-
TRINICON algorithm detailed for each of its components.
Empirical values refer to the parameters used in the nominal
case of the experimental study for a 1s time-segment (i.e., for:
T = 8000; I = 3; P = 3; M = 6; K = 2048; κ = 75%;
L = 2048; N = 4096; 75% overlap between TRINICON
blocks).

VII. EXPERIMENTAL STUDY

We evaluate the performance of the proposed algorithms in an ex-
perimental study. In Sec. VII-A we describe the compared algorithms
and the performance criteria. Two types of scenarios are considered
for the testing: 1) simulated scenarios using speech sources and
acoustic impulse responses (IRs) taken from published databases (see
Sec. VII-B); 2) real-life recordings of real persons recorded in an
acoustic lab (see Sec. VII-C). Examples of input and output signals
of the various algorithms can be found in [47].

A. Compared algorithms and evaluation criteria
We compare the following algorithms:
• Ideal LCMV-BF given the true RTFs and noise covariance

matrix, denoted by LI in short. The results of this algorithm
serve as an upper bound for the achievable performance.

• Practical LCMV-BF with CW estimates of RTFs (see
Sec. III-B), denoted by LCW in short. Perfectly detected single-
talk time segments for each of the speakers are used for
estimating the RTFs.

• An LCMV-BF computed from the steering vectors constructed
from the a priori knowledge of the sources DOA, denoted by LD
in short. These weights are denoted asW LD and are equal to the
initialization weights of the proposed LCMV-SPR-TRINICON
algorithm, i.e. W LD ,W LST,0 (see Sec. VI-C).

• MCNMF in convolutive mixtures [39], representing state-of-
the-art algorithms of the BSS family and denoted by NMF in
short. 1

• Proposed algorithm which combines LCMV-TRINICON (see
Sec. V), denoted by LGT in short.

• Proposed combined LCMV-SPR-TRINICON algorithm (see
Sec. VI), denoted by LST in short.

The window length of the STFT is set to K = 2048 and the
overlap is set to κ = 75%. In all algorithms, except for the ideal
LCMV-BF, the noise covariance matrix defined by (5) is estimated
by time-recursive sample covariance matrix during a noise-only time
segment at the beginning of the recording.

An efficient SOS realization of the TRINICON update rule [30] is
adopted here by applying D-variate Gaussian PDF models in (21).
The filter length is set to L = 2048, the block size for correlation
matrix estimation is N = 4096 samples, and the desired speakers’
DOAs are available to the algorithm (through oracle knowledge). The
overlap between TRINICON blocks is 75%.

The MCNMF is trained using the separated speakers components,
which are artificially contaminated by an additive white Guassian
noise at a SNR of 10dB.

The performance criteria measures are (see [49]) weighted signal-
to-distortion ratio (WSDR), weighted signal-to-interference ratio
(WSIR), weighted signal-to-noise ratio (WSNR) and normalized RTF
error (NRE). For this we denote the long-term averaged weighted
power of noise and the various speaker components at the reference
microphone and at the output by λξ,Av and

{
λξ,As,p

}P
p=1

, respectively,
where ξ ∈ {i, o} stands for input reference microphone and output,
respectively, and the superscript (·)A denotes the A-weighting [50].
The long-term weighted distortion between the p-th source compo-
nent at the p-th output signal and its corresponding component at the
reference microphone is denoted by λd,As,p . Formally, the WSIR and
WSNR criteria are defined for the p-th source as:

WSIRξp ,
λξ,As,p∑

p′ 6=p λ
ξ,A
s,p′

(49a)

WSNRξp ,
λξ,As,p

λξ,Av
(49b)

where p = 1, . . . , P and ξ ∈ {i, o} stands for input and output,
respectively. The WSDR of the p-th output signal is defined as:

WSDRp ,
λi,As,p

λd,As,p
. (50)

The NRE criterion for assessing the performance of an RTF estimate
ĥp(k) at the k-th frequency-bin is defined as:

NREp(k) ,
‖ĥp(k)− hp(k)‖2

‖hp(k)‖2
. (51)

1We would like to express our gratitude to D. Kounades-Bastian for sharing
his code, extending the original MCNMF implementation by A. Ozerov and
C. Févotte [48] from stereophonic input to any number of microphones.
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Then, by averaging over all frequencies, a broad-band NRE is defined
as:

NREp ,
1

K

∑
k

NREp(k). (52)

B. Simulated scenarios using speakers and IRs database
Various test-scenarios are simulated by convolving recorded speak-

ers from the WSJCAM0 database [51] with RIRs drawn from a
database [52]. We use a uniform linear array of M ∈ {4, 6, 8}
microphones with 8cm inter-microphone spacing.

The nominal testing scenario takes place in a reverberant room
of size 6m × 6m × 2.4m with a reverberation time (RT) of 360ms
and white Gaussian diffuse noise is generated using the simulator in
[53]. Unless noted otherwise, speech signals of P = 3 sources with
equal average power, arranged on a 1m radius circle, are received
by a linear microphone array comprising M = 6 microphones,
located at the center of the circle, with a WSNR of 14dB. The
average DRR is 10dB. The signal duration is 1min, with all sources
being simultaneously active. Only for the LCW algorithm, 1min time
segments of each of the sources contaminated with noise are used
for RTFs estimation. For each scenario, the performance measures
are averaged over 10 Monte-Carlo experiments, in which the DOAs
of the sources are randomly selected (with a minimum angle of 45o

between adjacent sources). The default number of iterations of the
LST is 3. Unless stated otherwise, these parameters are used in all
experiments.

We examine and compare the various algorithms versus the
number of speakers and number of microphones in Sec. VII-B1.
In Sec. VII-B2 we evaluate the performance of the various algo-
rithms versus RT. For BSS algorithms, LGT and LST, we test the
performance with different DOA initialization errors in Sec. VII-B3.
Finally, we explore the convergence of the proposed algorithm LST
over iterations in Sec. VII-B4.

1) Performance depending on number of speakers and
microphones: We consider three scenarios in order to evaluate
the performance of the algorithms versus number of speakers and
microphones:
• P = 2 speakers and M = 4 microphones.
• P = 3 speakers and M = 6 microphones.
• P = 4 speakers and M = 8 microphones.

In practice, the more microphones are used, a more robust beam-
former is obtained. For diffuse noises, this also improves the output
SNR significantly.

The results are depicted in Table II. All algorithms obtain simi-
lar WSNR improvement. Regarding WSIR improvement, evidently
the ideal LI outperforms all algorithms, and the supervised LCW
performs almost as well. This can be attributed to the fact that
the NRE of supervised algorithm LCW is fixed regardless of the
number of sources, as it uses single-talk time segments for RTFs
estimation. However, NRE of the proposed algorithms, LGT and LST,
degrade as the number of sources increases. Yet, the proposed LST is
consistently better than LGT, and obtains 13− 15.7dB improvement
in WSIR.

2) Performance depending on RT: Considering the nominal
scenario, we evaluate the algorithms’ performance with different RT
of 160ms, 360ms and 610ms and corresponding DRRs of 20dB,
10dB and 7dB, respectively. Results are depicted in Table III.
Performance of all algorithms degrade as RT increases. This results
from longer RIRs which require more parameters to estimate and
due to violation of the multiplicative transfer function (MTF) as-
sumption in the frequency domain. Supervised algorithms outperform
unsupervised algorithms, however, the difference diminishes as RT
increases. The proposed LST outperforms LGT with respect to WSIR
improvement by 1.6− 6.9dB.

3) Sensitivity to DOA errors: Next, we evaluate the sensitivity
of BSS algorithms to DOA errors of 0o, 5o, 10o during initialization.
Results are depicted in Table IV. Performance of both LST and

P Alg. WSNR [dB] WSIR [dB] WSDR NRE
Val. Imp. Val. Imp. [dB] [dB]

2 In. 13.6 − 0.0 − − −
LI 20.7 7.1 18.3 18.3 14.0 −

LCW 20.7 7.1 18.5 18.5 13.9 −27.4
LD 20.6 7.0 7.9 7.9 7.3 −7.3

NMF 20.7 6.9 14.3 4.3 9.0 −
LGT 20.5 6.9 14.5 14.5 11.2 −16.5
LST 20.7 7.1 15.7 15.7 12.2 −18.7

3 In. 14.4 − −3.6 − − −
LI 22.6 8.2 14.0 17.7 13.1 −

LCW 22.5 8.1 14.1 17.7 12.9 −26.4
LD 22.6 8.2 4.1 7.1 6.0 −6.3

NMF 21.1 6.6 11.5 15.1 7.9 −
LGT 22.5 8.1 7.9 11.4 8.1 −10.1
LST 22.8 8.4 10.8 14.4 10.8 −14.3

4 In. 13.8 − −5.5 − − −
LI 21.9 8.1 13.3 18.9 13.1 −

LCW 21.9 8.1 13.3 18.8 13.1 −25.7
LD 21.7 7.9 1.1 6.7 7.1 −5.6

NMF 21.2 7.1 10.0 15.4 7.9 −
LGT 21.6 7.8 4.5 10.6 6.2 −7.8
LST 22.2 8.4 7.4 13.0 8.5 −11.0

TABLE II: Performance depending on the number of speakers
where In., Val. and Imp. stand for Input, Value and Improve-
ment, respectively.

RT Alg. WSNR [dB] WSIR [dB] WSDR NRE
[ms] Val. Imp. Val. Imp. [dB] [dB]
160 In. 15.8 − −3.7 − − −

LI 22.3 9.0 27.5 31.1 25.9 −
LCW 22.3 9.0 26.9 30.6 25.2 −37.3
LD 22.4 9.1 7.8 11.5 6.8 −5.2

NMF 20.1 6.8 17.9 21.5 13.7 −
LGT 22.3 9.0 9.2 12.9 9.6 −9.2
LST 22.6 9.3 16.2 19.8 16.9 −16.1

360 In. 14.2 − −3.7 − − −
LI 22.5 8.3 13.9 17.4 12.7 −

LCW 22.5 8.2 14.0 17.5 12.7 −26.0
LD 22.5 8.3 3.8 7.3 4.0 −4.2

NMF 21.0 6.6 11.3 14.8 7.9 −
LGT 22.5 8.3 7.7 11.3 8.0 −10.0
LST 22.7 8.5 10.6 14.1 10.4 −13.8

610 In. 13.3 − −3.4 − − −
LI 23.3 10.0 8.0 11.4 7.7 −

LCW 23.2 9.9 8.5 11.9 8.0 −17.2
LD 23.3 10.0 2.3 5.7 1.7 −3.0

NMF 22.1 6.3 8.0 11.5 5.6 −
LGT 23.0 9.7 5.2 8.6 5.8 −9.9
LST 23.4 10.1 6.8 10.2 7.1 −11.1

TABLE III: Performance depending on the reverberation time
where In., Val. and Imp. stand for Input, Value and Improve-
ment, respectively.

LGT is robust to DOA errors of 5o. For DOA errors of 10o, WSIR
improvement of LGT is degraded by 3.0dB, whereas for LST the
degradation is only by 1.3dB.

4) Performance depending on number of iterations: Finally,
we check the performance of the proposed LST algorithm with
different numbers of iterations I = 1, 2, . . . , 5, see results in Table V.
Clearly, performance improves as number of iterations increase,
however after 3 iterations the performance doest not increase much.

In all of the scenarios abovementioned, the performance of the pro-
posed LST algorithm is comparable to the performance of the state-
of-the-art MCNMF algorithm. The WSIR improvement is roughly
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DOA Alg. WSNR [dB] WSIR [dB] WSDR NRE
err. Val. Imp. Val. Imp. [dB] [dB]

In. 14.5 − −3.6 − − −
0o LD 22.4 7.8 4.4 8.0 4.8 −

LGT 22.2 7.6 7.5 11.1 7.8 −10.1
LST 22.6 8.1 10.4 14.1 10.4 −14.1

5o LD 22.5 8.1 4.0 7.6 2.9 −
LGT 22.7 8.3 7.0 10.6 6.9 −7.9
LST 23.1 8.7 10.5 14.1 10.2 −12.7

10o LD 22.2 7.7 2.3 5.8 1.9 −
LGT 21.9 7.4 4.5 8.1 5.0 −5.0
LST 22.9 8.4 9.2 12.8 8.9 −9.8

TABLE IV: Performance depending on the DOA error where
In., Val. and Imp. stand for Input, Value and Improvement,
respectively.

Alg. Iter. WSNR [dB] WSIR [dB] WSDR NRE
Val. Imp. Val. Imp. [dB] [dB]

In. 14.4 − −3.7 − − −
LST 1 19.4 5.1 9.2 12.9 9.0 −8.1

2 19.6 5.2 10.8 14.5 10.8 −11.7
3 20.1 5.7 11.5 15.2 11.5 −14.2
4 19.4 5.0 11.8 15.5 11.7 −15.6
5 19.8 5.4 11.6 15.2 11.1 −16.4

TABLE V: Performance depending on the number of iterations
where In., Val. and Imp. stand for Input, Value and Improve-
ment, respectively.

equal ± 1dB, the WSNR improvement is higher in the LST by
1.5dB and the WSDR is higher in the LST by 2dB.

C. Real-life recorded scenario
The algorithms are also tested in a real-life recording with live

persons. The setup is comprised of a 16cm diameter circular array
comprising M = 8 microphones positioned on top of a table
at the center of a 6m × 6m × 2.4m room with a reverberation
time of 0.3s. 3 persons, two male and one female, are sitting at
a distance of 1m from the array at angles of [0o, 60o, 120o]. 8
loud-speakers emitting statistically independent stationary noises with
“speech like” spectrum are arranged at the 4 corners of the room and
against its 4 walls. The loud-speakers are facing the walls to make
the noise field more diffuse. The persons and noises are recorded
separately and mixed offline according to the desired levels. Here,
speech levels are equal and the noise level is 14dB weaker. The
performance of the various algorithms is depicted in Table VI. It
is evident from these results that the proposed algorithm performs
well in a real-life scenario. The LST outperforms the MCNMF: by
2dB in WSNR; by 5dB in WSIR; and by 4dB in WSDR. The
spectrograms of the first speaker at the input and at the output of the
LST algorithm are depicted in Fig. 5. Clearly, the desired signal is
enhanced significantly.

VIII. CONCLUSIONS

The problem of source separation using LCMV beamforming
with supervised and unsupervised filter optimization is considered.
Supervised algorithms which require single-talk time segments for
estimating RTFs, of course, exhibit better performance than unsu-
pervised. However, their application is restricted to scenarios where
such time segments exist and reliable information on source activity
patterns is available or can be estimated.

In this paper, we propose two methods in which the TRINICON
framework is used for circumventing both requirements, and separate
the sources given only a simple noise-only time segment detector

Alg. WSNR [dB] WSIR [dB] WSDR
Val. Imp. Val. Imp. [dB]

In. 14.7 − −2.7 − −
LI 25.0 10.3 21.0 23.7 19.7

LCW 22.7 11.1 20.0 22.7 18.7
LD 22.9 8.2 9.3 12.0 9.7

NMF 21.0 6.3 13.3 16.0 13.3
LGT 22.9 8.2 10.7 13.4 10.8
LST 23.0 8.3 18.3 21.0 17.3

TABLE VI: Performance comparison in a real-life scenario
where In., Val. and Imp. stand for Input, Value and Improve-
ment, respectively.

and approximate information of the DOAs of the sources. The first
proposed algorithm, denoted LCMV-TRINICON, estimates the RTFs
of the sources using multiple two-channel GC-TRINICON units
where one of the channels is a reference microphone. The estimated
RTFs are used in constructing multiple LCMV-BFs for extracting
each of the sources separately. In the second algorithm, similarly
to the first algorithm, multiple two-channel GC-TRINICON units
are used for estimating RTFs. However, instead of using one of
the microphones as reference, we propose to use the outputs of the
LCMV-BFs as SPRs. Assuming that SINR is improved at the output
of the BFs, the error of new estimates of RTFs will be reduced.
This procedure can be repeated iteratively where the separated
signals at each iteration serve as the SPRs of the next iteration,
thereby, continuously improving RTF estimates and the separation
performance. For estimating the necessary covariance matrix of noise
and interference for both algorithms, a simple detection of noise-only
time segments is required.

An experimental study verifies the efficacy and applicability to
real-life scenarios of the proposed algorithms. The performance of the
proposed method is comparable to the state-of-the-art MCNMF algo-
rithm. The evaluation relative to various algorithms which work under
idealized conditions (such as using perfect activity knowledge and
perfect noise knowledge by the algorithms ideal LCMV, DOA based
LCMV, and LCMV-CW or as using training data by the MCNMF)
showed that the proposed combined LCMV-SPR-TRINICON gets
close to the behaviour of these algorithms. The performance of the
proposed algorithm is close to the optimum while offering real-time
capability and requiring no training, only coarse estimates of the
sources’ DOAs.
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