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Blind synchronization in wireless acoustic sensor networks

Dani Cherkassky, Student member, IEEE, and Sharon Gannot, Senior member, IEEE

The challenge of blindly resynchronizing the data acquisition
processes in a wireless acoustic sensor network (WASN) is
addressed in this paper. The sampling rate offset (SRO) is
precisely modeled as a time scaling. The applicability of a
wideband correlation processor for estimating the SRO, even
in a reverberant and multiple source environment, is presented.
An explicit expression for the ambiguity function, which in our
case involves time scaling of the received signals, is derived by
applying truncated band-limited interpolation. We then propose
the recursive band-limited interpolation (RBI) algorithm for
recursive SRO estimation. A complete resynchronization scheme
utilizing the RBI algorithm, in parallel with the SRO com-
pensation module, is presented. The resulting resynchronization
method operates in the time domain in a sequential manner
and is thus capable of tracking a potentially time-varying SRO.
We compared the performance of the proposed RBI algorithm to
other available methods in a simulation study. The importance of
resynchronization in a beamforming application is demonstrated
by both a simulation study and experiments with a real WASN.
Finally, we present an experimental study evaluating the expected
SRO level between typical data acquisition devices.

Index Terms—Distributed microphone array, Wireless acoustic
sensor network, Blind synchronization, Sampling rate offset,
Wideband correlation processing

I. INTRODUCTION

M ICROPHONE arrays are used in a wide range of
acoustical signal processing applications, e.g., local-

ization, speech enhancement, and blind source separation
[1],[2],[3],[4],[5]. A traditional microphone array consists of
several microphones connected to a data acquisition center
equipped with a processing unit. Such a configuration sup-
ports coherent acquisition of the signals and facilitates the
application of optimal array processing methods [6],[7] to
extract the spatial information. In recent years, the concept of
wireless acoustic sensor networks (WASNs) has attracted the
attention of the speech processing community [8]. Together
with the appealing advantages offered by WASNs, some
new challenges arise. One of the challenges is the lack of
synchronization between the WASN nodes, which results in
incoherent acquisition of the acoustical scene and thus prevents
the straightforward application of the optimal array processing
methods.

In contrast to a microphone array, where all signals are
sampled with the same clock, the sampling process in each
WASN node relies on its local clock oscillator, rendering
sampling rate offsets (SROs) inevitable. The general challenge
of synchronizing the data acquisition processes in a WASN, in
particular in communication applications, has been addressed
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in the literature [9], [10], [11]. The vast majority of traditional
synchronization methods are founded on an exchange of time
stamp information between the network nodes [12], [13].

In the field of audio signal processing, the task of resynchro-
nizing WASN signals can be accomplished by either process-
ing the audio signals or distributing a synchronization signal
in the network. An early work by Wehr et al. [14] addressed
the synchronization problem in a distributed beamforming
for blind source separation. They proposed an algorithm for
estimating the SRO based on a modulated reference signal
that is broadcast in the WASN. In [15], the authors proposed
an SRO estimation methodology based on the communication
layer, in which time stamps between the network nodes are
broadcast. The time stamps are utilized by a Kalman filter to
adjust and control the sampling rate in each node.

The methods aimed at resynchronizing a WASN solely
by utilizing the audio signals are frequently referred to in
the literature as blind synchronization methods. Blind syn-
chronization involves two processing stages: SRO estimation
and SRO compensation. In general, blind synchronization
dictates an exchange of audio signals between the independent
nodes, which prima facie seems unfavorable in terms of the
resulting communication bandwidth. However, a broadcast of
the audio signals in the network is typically required from the
application perspective, e.g., a distributed beamforming [8].
Accordingly, blind WASN synchronization does not neces-
sarily impose an excessive communication bandwidth. In this
paper, we address the challenge of blindly resynchronizing a
WASN.

An early work by Pawig et al. [16] considered blind SRO
estimation between input and output channels in a single
channel echo cancellation system. They proposed a combined
time-recursive algorithm for tracking the room impulse re-
sponse and the SRO simultaneously. In this method, the SRO
compensation is achieved by applying a non-integer sampling
rate conversion method [17]. In general, the SRO can be easily
compensated once the offset is determined by resampling
the discrete-time signals. Lagrange polynomial interpolation
[18] and band-limited interpolation [19] are well-known and
commonly used techniques for resampling discrete-time data
streams.

In recent years, several studies addressed blind SRO esti-
mation. In [20], the authors proposed approximating the SRO
phenomenon by using linear phase drift between the signals in
time. In this method, the SRO is estimated assuming a spatially
coherent and statistically stationary environment. The linear
phase drift approximation was also considered in [21], where
the authors proposed a maximum likelihood SRO estimator
achieved by modeling the microphone signals in the short-
time Fourier transform (STFT) domain with a multi-variant
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Gaussian distribution. The linear phase drift approximation
was also utilized in [22],[23] and [24] for the same purpose.
Recently, Wang and Doclo utilized a similar approximation
in [25] and proved that the correlation coefficient between
two signals tends to present the highest value when their
sampling is synchronized. Accordingly, they proposed a two-
stage exhaustive search for maximizing the correlation coef-
ficient between two asynchronous signals and thus deduced
their SRO.

In [26], we proposed an alternative approach for modeling
the SRO and blindly estimating it. The SRO was precisely
modeled as a time scaling and its equivalence to the Doppler
effect was shown. We also demonstrated that the wideband
correlation processor [27] is an applicable SRO estimator,
even in a reverberant and multiple speaker scenario. In this
method, the maximization of the wideband correlation between
two asynchronous signals is implemented by utilizing an
exhaustive search. At each grid point, one of the signals is
time-scaled and translated. The effectiveness of the proposed
method was validated in a simulation study, as well as in a
real-life application. However, the computation load associated
with the aforementioned procedure makes it impractical for a
typical real-time application.

In the method described in the current paper, we adopt
the time-scaling model and utilize the wideband correlation
preprocessor for estimating the SROs. First, we derive an
explicit expression of the ambiguity function, which in our
case, involves time scaling of the received signals. The time
scaling of the signals is implemented by applying truncated
band-limited interpolation [28]. We propose an iterative batch
algorithm for maximizing the ambiguity function, based on the
well-known Newton-Raphson root finding method. Addition-
ally, we utilize stochastic approximation in order to implement
the batch iterative algorithm in a recursive fashion. The main
contribution of this work is a complete resynchronization
scheme utilizing the recursive band-limited interpolation (RBI)
algorithm, in parallel with the SRO compensation module.
The resulting resynchronization method operates in the time
domain in a sequential manner and is thus capable of tracking
a potentially time-varying SRO.

The paper is organized as follows. Section II is dedicated
to introducing the preliminaries of blind WASN synchro-
nization. The time-scaling model of the SRO is presented.
The performance of the wideband correlation preprocessor for
estimating the SRO and the delay in sampling start (DISS) is
analyzed. In Section III, the proposed RBI framework for SRO
estimation and resynchronization is presented. An empirical
and simulative study is described in Section IV. The first
part of the study is aimed at evaluating the performance of
the RBI synchronization method in comparison with existing
algorithms. In the second part, we address the distributed
beamforming task and demonstrate the importance of synchro-
nization in this application, by both simulation and a labo-
ratory experiment. The capability of the proposed recursive
algorithm to track a time-varying SRO is also demonstrated
by simulation. Section V concludes with a brief summary.
In Appendix A, we present an empirical study examining
the expected SRO level between typical asynchronous data

acquisition devices.

II. PRELIMINARIES

The following section is divided into two parts. In the
first part, we present the time-scaling model of the SRO. In
the second part, the wideband correlation processor and its
applicability to the SRO estimation in a reverberant and multi
speaker scenario is addressed. The model and the estimator
were already presented in [26]. Nevertheless, since the model
and the estimator are the core of the proposed RBI algorithm,
hereafter we present the main results.

A. Sampling rate offset model

Consider Ns coherent speech sources {sn(t)}Ns
n=1 prop-

agating in a reverberant environment and captured by an
array of microphones. The microphones’ signals are further
corrupted by a low-level, spatially uncorrelated sensor noise
v(t). Accordingly, the continuous-time signal at the output of
the mth microphone is given by

xm(t) =

Ns∑
n=1

hnm(t) ∗ sn(t) + vm(t), (1)

where t is the continuous-time index, ∗ represents the linear
convolution operator, and hnm(t) is the acoustic impulse re-
sponse relating sn(t) and the mth microphone.

Since the sampling process in each WASN node relies on
its local clock source, SROs are inevitable. For the sake of
simplicity and without loss of generality, let us assume in the
following that each node comprises a single microphone. The
sampling rate of the mth microphone is defined in terms of
the sampling rate of the reference microphone, fs, as fms =
fs/am. Without loss of generality, we set the first microphone
to be the reference by setting a1 = 1.

We demonstrated in [26] that the effect induced by the SRO
is similar to the Doppler effect. Accordingly, we can formulate
an equivalent problem, in which the sampling process in all
nodes is synchronized, but the continuous-time signal at the
mth microphone is time scaled by am and translated by
dm with respect to (w.r.t.) the first microphone, while dm
indicates the DISS between the mth microphone and the first
microphone. Under this model, the equivalent continuous-time
signal received by the mth microphone is given by

x̃m(t) =

Ns∑
n=1

xnm (am t+ dm) + vm(t), (2)

where a1 = 1, d1 = 0 Sec and xnm(t) denote the component
of sn(t) at the mth microphone.

The performance of any data-dependent array processing
algorithm depends on the coherence level between the array
signals [6]. It is clear that the coherence between the signals
{x̃m(t)}Mm=1 drops when the difference between the scaling
factors, {am}Mm=2 and a1 increases. In the following section,
we present the wideband correlation processor for SRO (i.e.,
{am}Mm=2) estimation. In order to analyze the properties of
the estimator, we use the equivalent microphone signals (2).
Based on this analysis, we derive a recursive SRO correction
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WCx̃1x̃m
(α, τ) =

√
|α|
∫ ∞
−∞

x̃m(t)x̃1 (αt− τ) dt =
√
|α|
[
W 1(α, τ) +W 2(α, τ)

]
(3)

where:

W 1(α, τ)
4
=

∫ ∞
−∞

∫ ∞
−∞

[C1
m(am, dm − r1, τ + r2, α)h

1
m(amr1)h

1
1(amr2)]dr1dr2 (4a)

W 2(α, τ)
4
=

∫ ∞
−∞

∫ ∞
−∞

[C2
m(am, dm − r1, τ + r2, α)h

2
m(amr1)h

2
1(amr2)]dr1dr2 (4b)

C1
m(am, dm,τ, α)

4
=

∫ ∞
−∞

s1 (amt+ dm) s1 (αt− τ) dt (4c)

C2
m(am, dm,τ, α)

4
=

∫ ∞
−∞

s2 (amt+ dm) s2 (αt− τ) dt. (4d)

algorithm directly applied to the original measurements (1) in
Section III.

B. Wideband correlation processor

Correlation processing is a very common technique in
radar and sonar signal processing, aimed at identifying and
localizing objects by means of time difference of arrival
(TDOA) and scale difference of arival (SDOA) estimation
[29]. In [26], we demonstrated that the wideband correlation
processor can be utilized for SRO estimation in the problem
at hand. Since the wideband correlation processor is the core
of the algorithm proposed in Section III, we present the main
result of [26] in the following.

For the sake of brevity and clearness, let us consider a
scenario with Ns = 2. However, all the results are valid for
more complex scenarios, with a larger number of coherent
sources, as validated experimentally in Section IV. The only
limitation that should be considered is the assumption that the
sources are uncorrelated. Applying the wideband correlation
processor to the equivalent signals, assuming that s1(t) and
s2(t) are uncorrelated, the noise is spatially incoherent, and
some straightforward algebra leads to the expression (3).

It is clear from (4c) and (4d) that C1
m and C2

m are the time-
scaled auto-correlation functions of s1(t) and s2(t), respec-
tively, and that they obtain their maximum values at τ = −dm
and α = am. However, as W 1(α, τ) and W 2(α, τ) are related
to C1

m and C2
m, respectively, by a (double) linear convolution,

a pronounced peak at τ = −dm cannot be guaranteed. This
is due to the TDOA axis being smeared by the convolution of
C1
m and C2

m with the acoustical impulse responses, as evident
from (4a) and (4b). On the other hand, since the SDOA axis
is not smeared by the convolution, a pronounced extremum of
W 1(s, λ) and W 2(s, λ), and hence also of their sum (3), can
be expected in the SDOA axis.

It is therefore concluded that the maximum of the wideband
correlation function w.r.t. the SDOA establishes a suitable
SROs estimator, while its maximum w.r.t. the TDOA estab-
lishes a biased DISS estimator. Since WCx̃1x̃m

vanishes when
both s1(t) and s2(t) are inactive, it is meaningful to apply
the wideband correlation processor when at least one coherent
source is active. Accordingly, a detection procedure for source
inactivity is required for facilitating a robust estimation. The

design of such a detection procedure is, however, beyond the
scope of this study.

III. SYNCHRONIZATION ALGORITHM

Let us revert to the SRO estimation challenge and derive
the RBI synchronization algorithm.

The principal idea of using the discrete-time version of
the wideband correlation processor (3) for SRO estimation
in a WASN was explored by the authors in [26]. Explicitly,
we demonstrated that the SRO between the mth and the
first microphone can be estimated by solving the following
maximization problem:

âm = argmax
α

{Q(α, τ)} (5a)

Q(α, τ) =
N∑
n=1

xm[n]xατ1 [n], (5b)

where xm[n],∀n = 1, . . . , N are the samples of xm(t) and
xατ1 [n] = x1(αt − τ)|t= n

fs
,∀n = 1, . . . , N are the samples

of a time-scaled and time-translated continuous-time signal
x1(αt− τ). In [26], an exhaustive grid search was applied for
establishing the maximum of the ambiguity function Q. In the
following, we derive the RBI algorithm for computing xατ1 [n],
optimizing the ambiguity function Q and resynchronizing the
network.

A. Approximate ambiguity function

As demonstrated in Appendix A, the expected SROs in a
WASN are in the order of tens of PPM, where PPM = 10−6.
Accordingly, an optimization of Q by an exhaustive search has
to be implemented over a very fine grid and thus requires an
enormous amount of computation power, specifically in real-
time applications. To circumvent this drawback, we propose
in the following a recursive method for solving (5a) based on
truncated band-limited interpolation [19].

Given a sequence of samples x1[l],−L ≤ l < L, we can
reconstruct the corresponding continuous-time signal x1(t) by
applying band-limited interpolation [28]:

x1(t) =
L∑

l=−L

x1[l] sinc

((
t− l

fs

)
fs

)
, (6)
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where sinc(a) = sin(πa)/(πa). The reconstructed continuous-
time signal can be time-scaled by α and translated by τ :

x1(αt− τ) =
L∑

l=−L

x1[l] sinc

((
αt− τ − l

fs

)
fs

)
. (7)

The scaled continuous-time signal x1(αt− τ) can be sam-
pled with the nominal sampling rate fs:

xατ1 [n] =
L∑

l=−L

x1[l] sinc (αn− τfs − l) . (8)

It should be noted that in general, in the case where α >
1, the procedure described in (6)-(8) results in a sampling
frequency reduction. Accordingly, to avoid aliasing, a lowpass
filter should be applied before sampling the scaled continuous-
time signal. However, in our specific case, we consider modest
SROs, of a fraction of Hertz at maximum, as presented in Table
II. Thus, the lowpass filtering was not applied for the sake of
simplicity.

We can now substitute the scaled discrete-time signal (8)
into (5b) and write the explicit form of the ambiguity function
Q in terms of the available samples only:

Q(α, τ) =
N∑
n=1

L∑
l=−L

xm[n]x1[n] sinc (αn− τfs − l) . (9)

Although perfect band-limited interpolation requires L→∞,
practically sinc(a) ≈ 0 for |a| � 1. Thus, we can approximate
Q by considering only the terms satisfying |αn−τfs−l| ≤ L0,
where L0 is a design parameter controlling the approximation
accuracy:

Q(α, τ) ≈
N∑
n=1

p+L0∑
l=p−L0

xm[n]x1[n] sinc (αn− τfs − l) ,

(10)
where p = bαn− τfsc. The approximate ambiguity function
(10) can be substituted into (5a), constituting an explicit
optimization problem that has to be solved for estimating
the SRO of the mth microphone w.r.t. the first microphone.
We present the solution of the optimization problem in the
following section.

B. Ambiguity function optimization

Finding an analytical solution for θθθ = [α, τ ]T that max-
imizes the ambiguity function Q is a cumbersome task.
However, we are able to derive analytic expressions for the
first- and second-order derivatives of Q w.r.t. θθθ. Thus, we can
optimize Q by applying a gradient descent search method. Let
us rewrite (10) using θθθ:

Q(θθθ) =

N∑
n=1

p+L0∑
l=p−L0

xm[n]x1[n] sinc
(
θθθT r[n]− l

)
, (11)

where r[n] = [n,−fs]T . Applying the Newton-Raphson iter-
ative optimization method [30] yields the following iteration
rule:

θ̂θθ
i+1

= θ̂θθ
i
+
[
Hi
]−1 ∇i, (12)

where i is the iteration index, H is the Hessian matrix, and
∇ is the gradient vector. The gradient and the Hessian of the
ambiguity function Q can be straightforwardly calculated:

∇i 4=
∂Q(θθθ)

∂θθθ
=

N∑
n=1

p+L0∑
l=p−L0

d′[n, l]xm[n]x1[l]r[n], (13)

Hi 4=
∂2Q(θθθ)

∂θθθ∂θθθT
=

N∑
n=1

p+L0∑
l=p−L0

d′′[n, l]xm[n]x1[l]r[n]r
T [n],

(14)

d′[n, l] =

{
0, if ϕ = 0
π2ϕ cos(πϕ)−π sin(πϕ)

(πϕ)2 , otherwise
, (15)

d′′[n, l] =

{
− 1

3π
2, if ϕ = 0

(2−π2ϕ2) sin(πϕ)−2πϕ cos(πϕ)
πϕ3 , otherwise

(16)

where d′[n, l] and d′′[n, l] are the first- and second-order
derivatives of the sinc function, respectively, and ϕ = θθθT r− l
is the argument of the sinc function in (11).

The iterative-batch SRO estimation algorithm, as defined
in (12), requires the use of an analysis window with a
length equal to N , over which the SRO between the signals
is assumed to be constant. This assumption does not hold
in practice, as the independent clock sources in the nodes
typically fluctuate over time. To circumvent the piecewise
constant SRO assumption, we suggest a sequential SRO esti-
mation algorithm. To obtain a sequential algorithm, we utilize
the stochastic approximation methodology, with the iteration
index is substituted with the time index:

θ̂θθ[n] = θ̂θθ[n− 1] + Ĥ
−1

[n] · ∇̂[n], (17)

where Ĥ[n] and ∇̂[n] are the estimates of the Hessian matrix
and the gradient vector, accordingly. For calculating Ĥ[n] and
∇̂[n], we incorporate a forgetting factor 0 ≤ λ ≤ 1 and apply
the well-known recursive exponential smoothing procedure:

∇̂[n] =

N∑
n=1

λn−i
p+L0∑
l=p−L0

d′[n, l]xm[n]x1[l]r[n]

= λ∇̂[n− 1] + r[n]xm[n]

p+L0∑
l=p−L0

d′[n, l]x1[l], (18)

Ĥ[n] =
N∑
i=1

λn−i
p+L0∑
l=p−L0

d′′[n, l]xm[n]x1[l]r[n]r
T [n]

= λĤ[n− 1] + xm[n]r[n]rT [n]

p+L0∑
l=p−L0

d′′[n, l]x1[l].

(19)

The framework defined by (17)-(19) constitutes a recursive
method for estimating a (potentially) time-varying SRO.
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Fig. 1: Recursive band-limited interpolation synchronization
algorithm

C. Practical considerations

The complete synchronization algorithm is presented in
Fig. 1. It comprises two major building blocks: the SROs
estimator and resampler. Several practical aspects related to the
implementation of the proposed scheme should be considered.

1) Delay in sampling start estimation
As demonstrated in Sec. II-B, the TDOAs at the output

of the proposed algorithm {τ̂m}Mm=2 are biased estimates of
the DISS between the nodes {dm}Mm=2. This is due to the
TDOA axis being smeared by the convolution of Cdm and Cim
with the acoustical impulse responses, as evident from (4c)
and (4d). Accordingly, {τ̂m}Mm=2 cannot be used for accurate
compensation of the DISS. However, under the plausible
assumption that |τ̂m − dm| ,m = 2, . . . ,M are smaller than
the analysis window of the array processor, the bias effect
can be absorbed into the estimation of the acoustic impulse
responses hdm(t), him(t) [1].

2) Recursive band-limited interpolation initialization
Since in the general case the objective function Q(θθθ) is not

unimodal, the search method (17) could become trapped in
a local maximum, depending on the initial conditions. It is
therefore important to initialize the search algorithm in close
proximity to the global maximum. As reflected in Table II, the
typical values of am are very close to 1.0, and thus initializing
the search with {αm[0] = 1.0}Mm=1 should be sufficient for
avoiding local maximum on the SDOA axis, in most cases.
It should be stressed that the last argumentation can by no
means serve as a proof that initializing {αm[0] = 1.0}Mm=1

will guarantee avoiding local maximum. A further study of
the variation of the objective function w.r.t. the {αm}Mm=1 is
required in order to suggest an optimal initialization technique.
However, this is beyond the scope of the current study. The
initializing of {τm[0]}Mm=1 close to the true DISS seems to
be an even more difficult task. In the case where {dm}Mm=2

are small, their coarse estimates can be obtained from cross-
correlating x1[n] and xm[n]. Let us define L1 as a number
of samples used for estimating the cross-correlation. L1 is
one of the design parameters of the proposed RBI algorithm.
However, since the nodes are fully independent, the delay
in the sampling start is arbitrary and unbounded. Thus, in
the most general case, when no prior information about the

DISS between the nodes is available, the signals have to be
coarsely aligned using side information that might be available
in the network, for example by exchanging time stamps or
by broadcasting an acoustic signature upon start of work. In
general, the coarse alignment mechanism should compensate
the DISS such that the residual delay is much smaller than
L1.

3) Resynchronization
In order to resynchronize the network, we have to utilize the

estimators {α̂[n], τ̂ [n]}Mm=2 for compensating their effects. In
our proposed scheme shown in Fig. 1, the resampling module
is independent of the estimation module. Thus, principally, any
time-domain resampling technique is applicable. For example,
considering WASN resynchronization, in [25] and [20] it was
proposed that a fourth-order Lagrange interpolation be used; in
[26], we utilized splines interpolation. However, in the scope
of this work, it is natural to utilize band-limited interpola-
tion for resynchronizing the network. Given the estimators
{α̂[n], τ̂ [n]}Mm=2, the signal at the mth node is resampled by

xα̂τ̂m [n] =

L2∑
l=−L2

xm[l] sinc

(
1

α̂
n+ τ̂ fs − l

)
, (20)

where L2 is a design parameter controlling the tradeoff of the
accuracy and complexity of the resampling.

D. Computational complexity

Let us consider the computational complexity of the pro-
posed RBI algorithm. The algorithm contains two modules,
SRO estimation and SRO compensation (resynchronization).
In order to estimate the SRO of the mth microphone (17)-
(19) have to be solved each time a new sample is acquired.
The resynchronization of the mth microphone is achieved by
computing (20) each time a new sample is acquired.

The precise computational power required for implement-
ing the RBI algorithm strongly depends on the manner in
which the sin(·), cos(·) and sinc(·), functions are computed.
However, for our needs, let as assume that all the related
trigonometric functions are stored as tables and their value
can be evaluated in O(1).

The resynchronization (20) requires O(2L2) multiplications
per sample. The implementation of (17) requires an inversion
of a 2 × 2 matrix, multiplication of a 2 × 2 matrix with
2× 1 vector, and addition of two 2× 1 vectors; the resulting
computational load is O(1). An implementation of (18) and
(19) requires O(2L0) multiplications each. Accordingly, the
computational power required for implementing the proposed
resynchronization scheme is O(4L0 + 2L2) per sample.

IV. EXPERIMENTAL STUDY

In the following sections we compare the performance of
the proposed RBI method to some state of the art alternative
algorithms and demonstrate the necessity of resynchronizing
the WASN prior to applying the beamforming algorithms.
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A. Setup and definitions

The proposed algorithm was tested both in a simulated and a
real 6×6×2.4 m room with T60 ≈ 200 msec. A uniform linear
array comprising M microphones with 2 cm inter-spacing
was positioned in the center of the room. Three acoustical
sources were positioned at a distance of 2 m from the array,
with an angle of arrival (AOA) equal to 60◦, 90◦, 120◦ w.r.t.
the array axes. Namely, two directional speech signals si(t),
and sd(t) impinged the array with an AOA equal to 60◦, 90◦,
respectively, and a stationary fan noise v(t) impinged the array
with an AOA equal to 120◦. The powers of the sources are
defined as σ2

i , σ
2
d , and σ2

v , respectively. In the simulation ex-
periments, the impulse responses between the sources and the
microphones were simulated using [31] and the microphone
signal was further corrupted by a spatially uncorrelated sensor
noise with a power equal to σ2

n . In the following, we utilize the
following definitions to characterize the setups and the results.

SIR
4
=
σ2

d

σ2
i
, SNR

4
=
σ2

d

σ2
v
, γ

4
=
σ2

d + σ2
i

σ2
v

, ρ
4
=
σ2

d + σ2
i + σ2

v

σ2
n

.

(21)

In the following, the stationarity and the microphones’ signals
are manifested by the value of γ. When γ → ∞, the mi-
crophones’ signals are dominated by the speech components,
which are by definition non-stationary, while when γ → 0 the
microphones’ signals are dominated by the stationary noise.
The amount of spatial coherence between the microphones’
signals is manifested by the value of ρ. The signals are
dominated by the coherent sources when ρ → ∞ and by the
spatially uncorrelated noise when ρ→ 0.

The linearly constrained minimum variance (LCMV) beam-
former [32] was chosen as a test algorithm for the beamform-
ing experiments. The constraint vector of the LCMV was set
to impose a distortionless response toward sd(t) and a null
towards si(t). The response toward v(t) was unconstrained.
In the first part of the beamforming experiments, the sources
were active in a non-overlapping pattern, while in the second
part all the sources were concurrently active. The signals
acquired during the first part of the experiments were utilized
for estimating the covariance matrix of v(t), as well as for
estimating the relative transfer functions (RTFs) of sd(t) and
si(t). The RTFs were estimated by eigenvalue decomposition
of the received signals’ covariance matrix [33]. The LCMV
beamformer was applied to the signals acquired in the second
part of the experiments. We characterize the LCMV perfor-
mance by three attributes:

SIR Gain
4
=

SIRoutput

SIRinput
, SNR Gain

4
=

SNRoutput

SNRinput
,

Distortion
4
=

NT∑
n=1

(d[n]− y[n])2 , (22)

where d[n] and y[n] are the desired and the actual outputs
of the beamformer, respectively, and NT is the length of the
considered signals in samples. The subscripts input and output
describe the parameter at the input and the output of the
beamformer, respectively.

Fig. 2: Summary of sampling rate offset estimation perfor-
mance. The true sampling rate offset is set to 5.27 PPM in
this experiment.

Fig. 3: Summary of sampling rate offset estimation perfor-
mance. The true sampling rate offset is set to 30.74 PPM in
this experiment.

The RBI design parameters were fixed to L0 = 10, L1 =
1000, L2 = 30, λ = 0.999 during the following experiments.

B. Sampling rate offset estimation benchmark

We turn now to a simulation study aimed at comparing the
performance of the RBI algorithm proposed in Section III-B
with that of the correlation maximization (CM-2) algorithm
proposed in [25] and the linear-phase drift estimation algo-
rithm (LPDE) proposed in [20]. To facilitate the comparison,
we utilized the above specified simulative setup with M = 2,
σ2
i = 0 and set the nominal sampling rate to 16 kHz. The

signal at the second microphone was resampled to introduce
an artificial SRO. Since CM-2 and LPDE do not address DISS
estimation, d2 was set to zero.

In the first study, we evaluated the influence of signal length
T and γ on the estimation performance of CM-2, LPDE, and
RBI, while ρ was set to 40 dB. The expected SRO in real
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Fig. 4: Comparison of the robustness of the CM-2, linear-
phase drift estimation, and recursive band-limited interpolation
algorithms to an incoherent noise.

WASN is in the range of 0−50 PPM, as shown in Appendix A.
Accordingly, we evaluated the performance of the algorithms
for SROs of this order of magnitude and present hereafter two
representative test cases. In Fig. 2, the performance of the
algorithms are depicted for a test case where the SRO was
set to 5.27 PPM, while in Fig. 3 we present the performance
for a test case where the SRO was set to 30.74 PPM. We
implemented 100 independent realizations for both of the
considered test cases; the average absolute SRO estimation
error is presented in Fig. 2 and Fig. 3.

The LPDE algorithm considers SRO estimation in a sta-
tionary environment only. Accordingly, it demonstrates a rel-
atively poor performance for γ ≥ 0 dB. It should be noted,
however, that LPDE results in a reasonable estimation error for
γ ≤ −10 dB. In contrast to LPDE, assuming that sufficiently
long signals are available, e.g., T ≥ 20 Sec, the value of γ
has only a minor effect on the CM-2 and RBI performance.

In terms of the required signal length, CM-2 seems to be
the most sensitive to the available signal length, in particular
when a small SRO is considered. On the other hand, RBI
demonstrated a relatively stable estimation performance for
the considered lengths of the signals.

In the second study, we evaluated the robustness of CM-2,
LDPE, and RBI to the sensor noise. For this purpose, we set
T = 20 sec, γ = 10 dB; otherwise, the setup was identical
to that previously described. The average absolute estimation
error over 100 independent realizations as a function of ρ is
depicted in Fig. 4. As can be readily seen, CM-2 demon-
strates the most robust performance against incoherent noise,
while relatively poor robustness is demonstrated by LPDE.
The robustness demonstrated by proposed RBI algorithm is
comparable to that demonstrated by CM-2.

C. Beamforming in a simulated environment

In this simulation study, we explored the SRO’s effect on
the beamforming performance and tested the effectiveness of
the proposed RBI algorithm in resynchronizing the WASN.

TABLE I: Introduced artificial sampling rate offset and the
respective estimates using the recursive band-limited interpo-
lation estimator

True SRO [PPM] Estimated SRO [PPM]

Mic 1 0 0
Mic 2 100 99.559
Mic 3 -100 -99.772
Mic 4 50 49.577
Mic 5 -50 -49.787
Mic 6 150 149

To facilitate this experiment, we utilized the setup described
in Section IV-A with M = 6, nominal sampling frequency
fs = 16 kHz, SIR = 0 dB, SNR = 8 dB, and ρ = 40 dB.
The network was desynchronized by introducing an artificial
SROs w.r.t. fs to each microphone signal individually, while
dm = 0,∀m = 1, ..., 6. The artificial SROs were generated by
resampling the microphone signals in the time domain.

The first microphone was selected as a reference, and the
SROs at the remaining microphones were blindly estimated
by the RBI (17) w.r.t. the first microphone. The introduced
artificial SROs and the respective estimates are presented in
Table I. It should be noted that the presented estimates were
obtained only after the RBI algorithm had converged. The
estimated SROs were utilized to resynchronize the network
by applying (20) on each signal individually.

The LCMV performances in a synchronized, unsynchro-
nized, and re-synchronized network are presented in Fig. 5.
The behavior of the SIR gain, SNR gain and the distortion over
time, averaged across a time window of 1.0 sec, is presented.
As can be readily observed, the beamforming performance in
an unsynchronized network is considerably lower than in a
synchronized network. It is also seen that the performance
in an unsynchronized network degrades over time, until a
stationary state is reached after approximately 30 sec. By
resynchronizing the network, we considerably improved the
beamforming performance. However, because of the SRO
estimation errors, which are presented in Table I, a perfect
synchronization was not achieved. By carefully observing the
graphs, one can notice that the gap between the solid and the
dotted curves becomes wider with time. This variation in time
demonstrates that even a modest SRO (or in this case SRO
estimation error) reduces the beamforming performance, after
sufficient time has elapsed.

D. Tracking a time-varying sampling rate offset

In the simulation study described in the following, we
examined the ability of the proposed RBI algorithm to track
a time-varying SRO. The setup in this study was identical to
that utilized in the previous one, except for a single change:
only two microphones were considered. The first microphone
was selected as a reference, while a time-varying SRO was
introduced to the second microphone by re-sampling its signal.
The SRO of the second microphone w.r.t. the first one was then
blindly estimated by applying the RBI algorithm (17). The
introduced artificial SROs and the resulting estimates produced
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Fig. 5: Summary of linearly constrained minimum variance
beamformer performance.

Fig. 6: Summary of linearly constrained minimum variance
beamformer performance.

by the RBI are presented in Fig. 6. As demonstrated in this
“toy example,” the RBI continuously tracks the actual SRO
between the microphones. In a real WASN, we might expect
high frequency and small amplitude SRO variations because
of the fast and small variations in the local clock oscillators.
However, the analysis of the RBI tracking capabilities in a real
WASN is beyond the scope of the current contribution.

E. Beamforming in a real environment

In this experiment, we evaluated the beamforming per-
formance in a real WASN. To facilitate this experiment,
the Acoustic Laboratory at Bar-Ilan University was arranged
according to the setup described in Section IV-A with M = 4
and T60 ≈ 200 msec. Each of the microphones was connected
to an independent recording device. The following recording
devices were tested: iPhone 5, Sony Ericsson Xperia Z, iPad
Air 2, and Samsung Gallaxy S4 (the devices are similar
to those analyzed in Appendix A). The nominal sampling
frequency of all the devices was configured to 44.1 kHz, the

Fig. 7: Laboratory setup. Reverberation level in the room was
adjusted to T60 ≈ 200 msec.

Fig. 8: Convergence processes of θ̂θθ4. The upper panel presents
the convergence of α̂αα4, and in the lower panel the convergence
of τ̂ττ4 is shown.

signal to interference ratio (SIR) was set to 0 dB, and the
signal to noise ratio (SNR) was set to 10 dB. A picture of the
laboratory setup is shown in Fig. 7.

The SRO and the TDOA were estimated by applying the
RBI to the received signals. The first signal, acquired by the
iPhone 5, was set to be the reference and {θθθm}4m=2 were
estimated w.r.t. it. As an example, we depict the convergence
processes for α̂4 and τ̂4 in Fig. 8. The SROs estimation
procedure resulted in the following SROs estimates: α̂2 =
−13.6, α̂3 = 9.91, α̂4 = 30.49 PPM, upon convergence.
These values can be compared to the SROs evaluated for the
respective devices in Appendix A. As easily deduced, the SRO
estimates here are different from those presented in Table II.
The cause for this inconsistency is the fact that, in general,
by optimizing (23) only the absolute value of the SRO can be
recovered. Additionally, in our specific case, the accuracy of
the optimization in Appendix A was set to 2.5 PPM.

Resynchronization of the network was achieved by ap-
plying (20) with θθθ2, θθθ3, and θθθ4 to the second, third, and
fourth signals, respectively. The LCMV performance in an
asynchronous versus a re-synchronized network is shown in
Fig. 9. As can be readily observed, the re-synchronized LCMV
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Fig. 9: Linearly constrained minimum variance beamformer in
a real wireless acoustic sensor network and a re-synchronized
wireless acoustic sensor network - performance summary.

Fig. 10: Coherence level between the signals before and after
resynchronization. Mic 1 is connected to iPhone, Mic 2 is
connected to Sony Ericsson Xperia Z, Mic 2 is connected to
iPad Air 2, and Mic 4 is connected to Samsung Gallaxy S4.

outperforms the asynchronous one in terms of all parameters.
The superior performance of the re-synchronized LCMV can
be understood by observing the coherence function between
the microphones signals before and after resynchronization,
as depicted in Fig. 10. As shown, the resynchronization
dramatically increases the coherence level in a frequency range
up to 6000 Hz, while above this frequency we still observe a
drop in the coherence level. This may be attributed to a fast
and small variation of the SROs between the signals that we
failed to compensate. An additional reason for the drop in the
coherence at a higher frequency band may be a lower level of
sd(t), si(t), and v(t) on that frequency band.

V. SUMMARY

The challenge of resynchronizing the data acquisition pro-
cesses in a WASN was addressed. The SRO was precisely

Fig. 11: Apparatuses for comparative sampling rate offset
estimation between two devices.

modeled as a time scaling and its equivalence to the Doppler
effect was shown. The applicability of a wideband correlation
processor for estimating the SRO, even in a reverberant and
multiple source environment, was shown. An explicit expres-
sion of the ambiguity function, which in our case involves
time scaling of the received signals, was derived by applying
truncated band-limited interpolation. We then proposed the
RBI algorithm for recursive SRO estimation.

The performance of the RBI algorithm was compared to
that of alternative SRO estimation algorithms. The alternative
SRO estimation algorithms operate in the STFT domain and
assume a constant SRO during the observation time. The RBI
algorithm estimates the SRO in the time domain in a sequential
manner. This circumvents the assumption of a constant SRO
during the observation period, and enables time-varying SRO
tracking.

APPENDIX A
SAMPLING RATE OFFSET MAGNITUDE IN REAL WIRELESS

ACOUSTIC SENSOR NETWORKS

In this section, we describe the evaluation of the expected
SRO magnitude in a practical WASN, when the sampling of
the microphone signal in each node was implemented by using
a typical data acquisition device, such as a laptop computer,
smart-phone, or tablet.

To facilitate the evaluation, we established the following
experimental setup, as depicted in Fig. 11. Two microphones
were placed in close proximity to each other and 10 cm
away from a simple PC loudspeaker. The setup was arranged
on a desk in a normal office room. A narrow-band pilot
signal was played through the loudspeaker and captured by
the microphones. Each microphone was connected to an
independent recording device. The devices were configured
to a nominal sampling frequency of fns = 44.1 kHz and
the signal generator was set to generate a single tone with
a frequency of f0 = 4 KHz.

Let x1[n], and x2[n] be the discrete-time signals recorded
by the first and the second device, respectively. We expect a
frequency shift between x1[n] and x2[n] because of lack of
synchronization between the devices. In order to estimate the
frequency shift between the signals, we maximized the well-
known, narrow-band cross ambiguity function (CAF), defined
by [34]:

CAF(τ, k) =
NT∑
n=1

x1[n]x
∗
2[n+ τ ]e−i2π

kn
N , (23)

where NT is the length of the signals in samples. We were
interested in τ̂ , k̂ such that

τ̂ , k̂ = argmax
τ,k

{CAF (τ, k)} . (24)
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Fig. 12: Instance of the cross ambiguity function. The peak is
obtained for a sampling rate offset of 17.5 PPM.

Let us define the frequency shift between the acquired signals
as fdif

4
= k̂fns /N . It is well known that, in free-field appli-

cations, τ̂ and fdif are the maximum likelihood estimators of
the TDOA and the frequency shift between x1[n] and x2[n],
respectively [35]. As demonstrated in Sec. II-B, τ̂ cannot serve
as an estimator for the DISS between the first and the second
device. Moreover, the selected pilot signal may result in an
ambiguous TDOA estimator because of its periodicity. In our
case, τ is a nuisance parameter, as we were not interested in
estimating the DISS in this experiment. However, k̂ can be
considered an unbiased SRO estimate between the devices.
In the scope of our study, the CAF was calculated for every
pair of devices as suggested by (23), while (24) was solved
by a straightforward exhaustive grid search. The resolution of
the search along the k axis was set such that the respective
resolution of fdif was 0.01 Hz, which is equivalent to 2.5 PPM
in this experiment, where PPM = 10−6. The search across the
τ axis was limited to a single period of the pilot signal, with
a resolution of a single sample.

A single instance of the CAF is depicted in Fig. 12,
while the resulting SROs for all the considered devices are
presented in Table II. In the table, fdif is estimated by
using the above described procedure. The absolute value
of the SRO between each pair of devices is calculated
based on the respective fdif, using the following rela-
tions: |SRO| = |fns − fns (f0 + fdif)/f0| Hz, |SRO| = 1 ×
106 |1− f0/(f0 + fdif)| PPM, and the time-scaling factor α =
f0/(f0 + fdif).

The results are presented in Table II. We deduce that the
SRO in practical WASNs is indeed inevitable in most cases,
while in a typical case one should expect an SRO of several
tens of PPMs between each pair of independent devices. It
is worth noting that an SRO of several tens of PPMs will
significantly degrade the performance of any coherent array
processing technique. For example, the effect of an SRO of
10 PPM on the minimum variance distortionless response
(MVDR) beamformer was demonstrated in [24]. It was shown
that in such scenarios the response of the beamformer is

TABLE II: Estimated absolute value of the sampling rate offset
between the considered devices

Devices fdif |SRO| |SRO| α

[Hz] [Hz] [PPM]

iPhone 5 - Galaxy S4 0.12 1.32 30 0.999970
iPhone 5 - iPhone 6 0 0 0 1
Lenovo T60 - Galaxy S4 0.03 0.33 7.5 0.999993
Lenovo T60 - Lenovo T420 0.05 0.55 12.5 0.999998
iPhone 5 - Lenovo T420 0.12 1.32 30 0.999970
iPhone 5 - LG Optimus 0.20 2.20 50 0.999950
iPhone 5 - Nexus 4 0.19 2.09 47.5 0.999953
iPhone 5 - Phone 4 0 0 0 1
iPhone 5 - iPad Air 0.03 0.33 7.5 0.999993
iPhone 5 - Sony Experia 0.07 0.77 17.5 0.999983

entirely smeared within less than 5 sec.
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