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Abstract—As we are surrounded by an increased number of
mobile devices equipped with wireless links and multiple mi-
crophones, e.g., smartphones, tablets, laptops and hearing aids,
using them collaboratively for acoustic processing is a promis-
ing platform for emerging applications. These devices make up
an acoustic sensor network comprised of nodes, i.e. distributed
devices equipped with microphone arrays, communication unit
and processing unit. Algorithms for speaker separation and lo-
calization using such a network require a precise knowledge of
the nodes’ locations and orientations. To acquire this knowledge,
a recently introduced approach proposed a combined direction
of arrival (DoA) and time difference of arrival (TDoA) target
function for off-line calibration with dedicated recordings. This
paper proposes an extension of this approach to a novel online
method with two new features: First, by employing an evolution-
ary algorithm on incremental measurements, it is online and fast
enough for real-time application. Second, by using the sparse
spike representation computed in a cochlear model for TDoA
estimation, the amount of information shared between the nodes
by transmission is reduced while the accuracy is increased. The
proposed approach is able to calibrate an acoustic senor network
online during a meeting in a reverberant conference room.

Index Terms—microphone array, geometry calibration, speech-
based geometry calibration, acoustic sensor network

I. INTRODUCTION

Nowadays, we are surrounded by a number of devices with
microphones and wireless links. When these devices work
together in a collaborative way, they act as the nodes of a
wireless acoustic sensor network (WASN). For speaker track-
ing, knowledge of the spatial arrangement of the nodes is re-
quired [1]–[3]. Location information can also be beneficial in
speech enhancement and speaker separation applications [4],
[5].

As manual geometry calibration is a cumbersome task and
hardly practical in applications with either many microphones
or ad hoc configurations, automated methods of geometry cal-
ibration for acoustic nodes in WASNs are required.

Several offline approaches for localizing distributed micro-
phones have been proposed in recent years (cf. [6] and refer-
ences therein for a more detailed overview). Active approaches
use a loudspeaker in each node to play sounds in a dedicated
calibration step [7], [8]. Most passive approaches also require
a calibration phase and additional equipment [9]–[11] while a
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few only require natural speech utterances [12], [13]. Many of
these methods require long processing time and large amounts
of data sharing and are therefore not well suited for real-time
application in a WASN.

We recently presented a method for multiple speaker track-
ing in a WASN [3]. It is highly robust against reverberation
through the application of neurobiologically inspired models.
A cochlear model, based on insights from human hearing,
computes a sparse spike representation of the microphone sig-
nals. By computing the cross-correlation of these signals, the
time differences of arrival (TDoAs) and subsequently the di-
rections of arrival (DoAs) of the speech signals can be derived.
In order to compute speaker positions via triangulation, the ge-
ometry of the sensor network has to be known. This leads to
the development of our off-line method for calibration [13].
Our calibration method provided a geometry estimate with suf-
ficient accuracy for tracking. However, it is not applicable to
online processing, since it is not adequately computationally
efficient.

In this paper, we introduce an online version of our previous
approach [13] with two main improvements: First, by using
an evolutionary algorithm [14] and incremental measurements,
faster and more accurate estimates can be achieved. Second,
the amount of information shared between the nodes is reduced
by exchanging only the sparse spike representation rather than
the microphone signals themselves. The new method neither
requires a dedicated calibration step nor additional hardware. It
also works in parallel to the speaker tracking and incrementally
calibrates the geometry with increasing accuracy.

The paper is organized as follows: First, the problem is
stated. Then the novel method is described. Thereafter, an ex-
perimental study is presented to show that the accuracy of the
proposed method exceeds that of the previous off-line version.
The online capability is demonstrated in a meeting scenario,
where sufficient accuracy for tracking is achieved.1 Finally, a
short conclusion will be given.

II. PROBLEM STATEMENT

We address a conference room scenario where acoustic sensor
nodes are deployed on a table and several speakers are talking
from different positions. The task is the automated estimation
of the two dimensional geometric arrangement of G nodes pas-
sively using only speech, cf. Fig 1. The tth speech utterance
is uttered by a speaker at position st. Each node g at posi-
tion rg captures this utterance by its microphones. Define the

1Video demonstration available at https://vimeo.com/177715229
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Figure 1. Geometric relations of two nodes at rg and rh and a source at
st. The intersection of the rays with the DoAs Θt,g and Θt,h is the source
position. The distance difference corresponds to the TDoA τ̂t,(g,h).

captured signals as yg,1,t,yg,2,t . . .yg,I,t. For simplicity, it is
assumed that I , the number of microphones per node, is equal
for all nodes. The sampling rate and offset are synchronized
across the nodes by a suitable method, e.g. [15]–[17].

Both the array’s position rg ∈ R2 and orientation og ∈
[−180, 180) have to be estimated, cf. Fig 1. As the calibration
is purely acoustic, only a relative geometry with arbitrary ro-
tation and translation of the entire network can be computed,
cf. [6]. Therefore, the first node’s parameters can be set to
an arbitrary value, e.g. r1 = (0, 0)T and o1 = 0. Define the
free parameter set as the location and orientation of the nodes
2, . . . , G:

γ = (r21, r22 . . . r1G, r2G, o2 . . . oG) (1)

The goal of the proposed method is to estimate γ online from
the speech utterances. For that, two types of measurements are
inferred from the microphone signals, namely the DoAs Θt,g

at node g of the speaker at position st and the corresponding
TDoA τt,(g,h) between the pair of nodes g, h, cf. Fig 1.

III. PASSIVE ONLINE WASN CALIBRATION

A block diagram of the geometry calibration algorithm im-
plemented on the WASN is shown in Fig. 2. Two nodes, g
and h are depicted. We will describe the algorithm from the
viewpoint of node g. The same description applies to node h,
mutatis mutandis.

When a speech event occurs at position st, node g computes
its DoA Θ̂g,t. This is broadcast along with spike data zt,g, in-
ferred from the microphone signals yg,·,t, to all other nodes.
Using the spike data from the other nodes, the TDoAs τ̂g,·
are computed and again broadcast to all other nodes. There-
after, each node continuously computes geometry estimates
and broadcasts the result to all other nodes. Then all nodes
update a weighted mean of the geometry estimate.

A. DoA and TDoA computation

In this paper we use the robust DoA estimation procedure as
explained in [13] and references therein. Details are omitted
due to space constraints. In this section, we focus on the TDoA
estimation. While in [13] the generalized cross correlation with
phase transform (GCC-PHAT) procedure [18] was used for the
computation of the TDoA, here an alternative procedure is in-
troduced. First, from the microphone signals yg,1,t, . . .yg,I,t a
sparse spike representation qg,1,1,t, . . . qg,I,B,t in B frequency
bands is computed by the cochlear model [19] (also used for
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Figure 2. Distributed online computation of WASN geometry from speech.

the DoA). The spikes in all frequency bands are aggregated
to compute

zt,g =

B∑
b=1

(qg,1,b,t, qg,2,b,t, . . . , qg,I,b,t)
T . (2)

This is broadcast to the other nodes along with the estimated
DoA. As the spike representation is very sparse, the amount of
shared data to be broadcast is reduced and less bandwidth is
required for transmission. In each node, these signals are then
cross-correlated with the nodes’ own spike signals to estimate
the TDoA. The estimation is done with the arrays’ center as
reference point. The resulting TDoAs are then broadcast to
the other nodes.

B. Estimating γ: Target function
In order to blindly estimate the geometry, a target function
is formulated that reaches a minimum value at the correct
geometry γ. The key idea is to use the mathematical relation
of the DoAs and the TDoA for each pair of microphone arrays
with respect to a speaker position, cf. Fig. 1. The following
procedure is a variant of the one described in [13].

With a given geometry γ, the source at event t can be
localized by triangulation in each node using the broadcast
DoAs and TDoAs. The source position estimate ŝt,(g,h), as
viewed by the node pair g, h, is found as follows. Define
a(α) = (cosα, sinα)T as the function computing the 2D unit
vector directed towards the angle α. With this definition we
can compute the distances lt,g and lt,h between the source and
the nodes g, h by solving

r̂g + lt,ga
(
ôg + Θ̂t,g

)
= r̂h + lt,ha

(
ôh + Θ̂t,h

)
(3)

for any given γ. Now we can compute the intersection using
either distance, e.g.
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ŝt,(g,h)(γ) = r̂h + lt,ha (ôh + Θt,h) . (4)

Then the mean of the pairwise location estimates is computed:

ŝt(γ) =
2

G(G− 1)

∑
g<h

ŝt,(g,h)(γ) . (5)

Using this location estimate, we can compute the error with
respect to the TDoA τ̂t,(g,h) multiplied by the speed of sound
c. A negative distance lt,g < 0 or lt,h < 0 implies no inter-
section for a specific configuration γ. Such a configuration is
penalized with a constant εmax = 10 m.

εg,h(st,γ) =

{
ε2max no intersection(
||st − r̂h|| − ||st − r̂g|| − τ̂t,(g,h)c

)2
otherw.

(6)

Assume we have collected t utterances and calculated their
respective DoAs and TDoAs. In order to robustly estimate the
network geometry γ a subset of t0 out of the t utterances
is randomly selected, where t0 ≥ 3 is a predefined number
of utterances. Let Sk denote the kth choice of such a subset.
For this subset the mean error over all utterances t′ in Sk is
computed as

ε(Sk,γ) =
2

G(G− 1)|Sk|
∑
g<h

∑
t′∈Sk

εg,h(ŝt′(γ),γ) (7)

The geometry γ̂ best explaining the measurements can be
identified by finding the minimum value of this function.

γ̂(Sk) =
γ

argmin ε(Sk,γ) (8)

New subsets are continuously chosen from the available ut-
terances. The overall estimate is computed as an average
weighted by the reciprocal of the target function values, i.e.,

γ̂∗ =

(∑
k

1

ε(Sk, γ̂(Sk))

)−1∑
k

γ̂(Sk)

ε(Sk, γ̂(Sk))
. (9)

This subset mean provides robustness against outliers. Subsets
are computed incrementally as more speech events become
available, starting when t0 utterances have been accumulated.
To allow for slow geometry changes, (9) can be recomputed
after discarding old utterances.

C. Estimating γ: Differential evolution

The high-dimensional target function is non-continuous and
non-differentiable, cf. Fig. 3. Therefore, gradient descent is
not applicable to find the minimum as in, e.g., [20]. The pre-
vious method [13] used an exhaustive grid search to minimize
the target function value, which led to long computation times.
In order to speed up the process, different optimization strate-
gies were investigated. While simulated annealing also showed
good results, the best performing method was the differential
evolutionary algorithm [14] with binomial recombination of
the best member. It converged faster and more reliably.

A population of U candidate solutions for γ is used. They
are initialized with random values and repeatedly mutated to
form a new generation. Trial candidates are generated by mu-
tating the member with the best fitness value ε using the differ-
ence between two random members of the current generation.
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Figure 3. Cuts through the high-dimensional target function ε(Sk,γ) for an
example with G = 3, i.e., γ = (r21, r22, r31, r32, o2, o3)T . The color rep-
resents the log of the target function, red=lowest, blue=highest. The minimum
is located at γ̂∗ = (−0.78,−0.30, 0.0,−0.93, 52, 18). On the left, the po-
sition of the second node r2 is varied while keeping the other values fixed to
γ̂∗. On the right, the two orientations are varied while keeping both positions
fixed to the values of γ̂∗. The visible plateaus are due to non-intersections
penalized by εmax.

The individual values of γ are replaced by the mutated ones
according to a binomial random variable. When the fitness
value is better for the trial candidate, it replaces the current
one. Once the population converges to a set with low variance,
the optimization terminates.

IV. EXPERIMENTAL STUDY

The proposed method was investigated in several aspects using
real recordings. The influence of the parameters is evaluated.
The online application in a meeting is demonstrated. Addi-
tionally, the influence of the two key improvements is tested
in an comparative evaluation with the previous approach.

A. Setup

All experiments were undertaken in a smart conference room
at TU Dortmund university. The reverberation time was mea-
sured as T60 = 0.67 s [21]. Three circular arrays composed
of five microphones with 10 cm diameter were embedded in a
conference table. Each array was captured by a separate sound
card at 48 kHz. The sound cards were synchronized with a re-
maining jitter of 22 µs between them.

For online estimation, a meeting was recorded. Four dif-
ferent speakers talked to each other, first standing around the
table, then sitting down and later standing up again. An ad-
ditional recording was done where a single speaker stands or
sits in 19 different positions around the table.

As the geometry estimates exhibit an arbitrary rotation and
translation to the reference geometry, the calibration result is
aligned automatically before computing the errors (cf. [6]).
The error er is computed as Euclidean distance of the aligned
estimated positions to the true positions. The orientation error
eo is computed as mean over the nodes. From our previous
experiments, we know that the minimum accuracy required
for triangulation is about 10 cm and 5◦, cf. [6], [13]. All com-
putations were run on a standard PC (i7-3770 CPU, 3.3 GHz)
in multiprocessing, using two cores for each node in the basic
python implementation.2

2For additional material and source code visit
http://patrec.cs.tu-dortmund.de/pubs
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Table I
COMPARISON OF DIFFERENT PARAMETERIZATIONS

t0 U tε[s] er [cm] eo [◦]

5 10 4.5±1.1 8.2±0.1 1.6±0.2
5 20 8.8±2.4 8.3±0.2 1.7±0.2
5 30 11.8±2.6 8.3±0.2 1.6±0.3
5 40 19.5±5.1 8.3±0.3 1.8±0.4
4 10 4.1±1.0 8.5±0.1 1.5±0.2
5 10 4.5±1.1 8.2±0.1 1.6±0.2
6 10 5.3±1.2 8.1±0.1 1.7±0.2
7 10 5.7±1.3 8.0±0.1 1.7±0.1
8 10 8.2±1.6 7.9±0.1 2.0±0.1

B. Parameter evaluation

Two parameters are critical for the performance of the algo-
rithm: First, the number of utterances in the subsets t0. It
was varied between the minimal value of three and seven.
Second, the population size U for the differential evolutionary
optimization. In order to evaluate the performance of the algo-
rithm, we have chosen three figures of merit: The computation
time tε for optimizing one set of utterances Sk as well as the
mean position error er, and mean orientation error eo over the
duration of the meeting. The results averaged over 100 Monte-
Carlo runs are shown in Table I. The results are quite similar
for the different configurations, showing the robustness of the
approach. Using small population sizes U enables to compute
much more subsets Sk within the real time constraint, as less
time tε is required for each one. This improves the weighted
mean by using more random subsets. Subset sizes t0 of five
to seven perform well. As the time before the initial estimate
as well as the computation time is increased by larger t0, five
was chosen.

C. Example run

The averages above do not show the algorithm’s behavior over
time. In order to illustrate this, a typical run using t0 = 5 and
U = 10 is shown in Fig. 4. After one minute, seven speech
events are present and the algorithm achieves around 8 cm and
2◦ error. The orientation error stabilizes after two minutes at
about 1◦.

D. Method comparison

The proposed method extends the previous one [13] by two
new features. The optimization process of exhaustive search
was replaced by the differential evolution in an online fashion
and the GCC-PHAT was replaced by the new TDoA estimation
procedure. The old ‘off-line’ and the new ‘online’ algorithm
were applied with both ‘PHAT’ and ‘spikes’ options for the
distance measurement, resulting in a total of four variants.
Both the meeting and a recording of a single speaker taking
up 19 static positions were used.

As the ground truth positions are known for the second
sequence, it was possible to compute the accuracy of the TDoA
measurements. The RMS error of the iter-array distances was
10.2 cm for the spike method and 12.2 cm for the GCC-PHAT.
The error induced by the speaker elevation is around 5 cm.
This is also the amount the calibration deteriorates from the
2D assumption.

Table II
COMPARISON OF CALIBRATION METHODS ON TWO RECORDINGS

recording method error (mean / end) comp. time
er [cm] eo [◦] tε [s] time[%]

single
speaker

PHAT off-line – /8.9±0.7 – /2.1±1.2 112.2 390±13
spikes off-line – /7.3±0.8 – /2.8±1.3 105.5 366±17
PHAT online 8.8±0.2/8.8±0.2 1.0±0.3/1.2±0.4 4.9 50±03
spikes online 6.8±0.2/6.8±0.2 1.2±0.2/1.6±0.2 4.5 52±04

meeting

PHAT off-line – /9.0±1.7 – /2.1±1.3 111.1 199±09
spikes off-line – /9.7±1.4 – /1.9±1.0 103.0 184±08
PHAT online 8.9±0.7/8.6±0.7 0.9±0.4/0.7±0.4 5.4 62±01
spikes online 8.2±0.1/8.3±0.2 1.6±0.2/1.1±0.2 4.5 63±01

0

5

10

e r
[c

m
]

0 1 2 3 4 5

0

5

time [minutes]

e o
[◦

]
speech event computation calibration error

Figure 4. Online calibration. Realtime processing using the measurements
(dashed lines) to update the geometry estimate over the course of a meeting.
Position (top) and orientation (bottom) errors over time. The red line indicates
the required minimum target accuracy for spatial processing.

With the off-line version [13] the weighted mean estimate
was computed over random choices of 32 different subsets
with a size of five. The new online approach was applied to
an increasing number of utterances under realtime constraints
with t0 = 5 and U = 10. For each of the four method variants,
Table II lists the calibration errors averaged over time and at
the end of the sequence, as well as the computation times
over 100 runs. The off-line method performed worse over all.
The online method using differential evolution is more robust
and achieves the best accuracy when applied with the spikes.
It can be seen that the exhaustive search method takes much
longer to compute an individual estimate than the differential
evolution. The last column lists the computation time as a
percentage of the total recording duration. It can be seen that
the off-line method takes more than real-time to compute the
32 estimates.

V. CONCLUSION

A novel geometry calibration method was proposed. It is pas-
sive since it works with natural speech utterances only. It sur-
passes the earlier off-line version in three regards: By using
speech events incrementally, the method is now online. By in-
troducing differential evolution for TDoA-DoA optimization,
the computation time could be sufficiently reduced to allow
for real-time application. By using the sparse spike represen-
tation for TDoA estimation, the amount of shared information
could be significantly reduced without affecting the calibration
quality. The method can be used online in real-time, as shown
by the application to a recording of a meeting. The orientation
and position accuracy of around 2◦ and 8 cm are well within
the requirements for practical spatial processing applications.
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[21] H. W. Löllmann, E. Yilmaz, M. Jeub, and P. Vary, “An improved algo-
rithm for blind reverberation time estimation,” in Int. Works. on Acoustic
Echo and Noise Control, Tel Aviv, Israel, 2010.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/LSP.2017.2662065

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


