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Abstract—The problem of source separation and noise reduc-
tion using multiple microphones is addressed. The minimum
mean square error (MMSE) estimator for the multi-speaker case
is derived and a novel decomposition of this estimator is pre-
sented. The MMSE estimator is decomposed into two stages: i) a
multi-speaker linearly constrained minimum variance (LCMV)
beamformer (BF), and ii) a subsequent multi-speaker Wiener
postfilter. The first stage separates and enhances the signals of
the individual speakers by utilizing the spatial characteristics of
the speakers (as manifested by the respective acoustic transfer
functions (ATFs)) and the noise spatial correlation matrix, while
the second stage exploits the speakers’ power spectral density
matrix to reduce the residual noise at the output of the first stage.
The output vector of the multi-speaker LCMV BF is proven to be
the sufficient statistic for estimating the marginal speech signals
in both the classic sense and the Bayesian sense. The log spectral
amplitude estimator for the multi-speaker case is also derived
given the multi-speaker LCMV BF outputs. The performance
evaluation was conducted using measured ATFs and directional
noise with various signal-to-noise ratio levels. It is empirically
verified that the multi-speaker postfilters are beneficial in terms
of signal-to-interference plus noise ratio improvement when
compared with the single-speaker postfilter.

I. INTRODUCTION

Speech enhancement techniques, utilizing microphone ar-
rays, have attracted the attention of many researchers during
the last three decades, especially in the context of hands-free
communication tasks. Usually, the received speech signals are
contaminated by interfering sources, such as competing speak-
ers and noise sources. Whereas single microphone algorithms
might show satisfactory results in noise reduction, they have
been found to perform poorly in the presence of one or more
competing speakers, as they cannot exploit the spatial diversity
exploited by multi-microphone algorithms.

A generalization of the minimum variance distortionless
response (MVDR) beamformer (BF), which deals with mul-
tiple linear constraints, is the linearly constrained minimum
variance (LCMV) BF [1], [2]. The LCMV BF can be applied
to construct a beam-pattern, satisfying multiple constraints
for a set of directions, while minimizing the output noise
power. In [3], [4], the authors proved that the LCMV has
an equivalent generalized sidelobe canceller (GSC) structure,
which decouples the constraining and minimization operations,
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as well. In [5], the LCMV was reformulated based on the
acoustic transfer functions (ATFs) (or its respective relative
transfer functions (RTFs)), rather than based on the delay
of the direct-paths. The authors also presented a method
to estimate the RTFs, based on the generalized eigenvalue
decomposition (GEVD) of the power spectral density (PSD)
matrices of the received signals and the stationary noise.

The use of a postfilter is often beneficial to improve the
noise reduction performance, especially in nondirectional and
nonstationary noise environments [6]. In [7], [8], the authors
show that the minimum mean square error (MMSE) estimator
of a single speech signal can be equivalently decomposed into
two stages, an MVDR-BF and a postfilter. The MVDR-BF
exploits the spatial diversity to preserve a distortionless re-
sponse while minimizing the output noise power. The postfilter
is a single-channel Wiener filter [9] that reduces the residual
noise at the output of the MVDR-BF by using the PSD of the
anechoic speech and the residual noise. Usually, the desired
speech PSD is not known in advance. However, in stationary
noise environments, the noise PSD can be estimated using
speech-absent segments.

Many papers adopted the aforementioned decomposition
(i.e., MVDR-BF followed by a single channel postfilter) and
proposed various methods to estimate its parameters. In [10],
the author presented a practical estimation of the postfilter,
based on the entries of the estimated PSD matrix of the
observations. This postfilter is only suitable for spatially white
noise fields. In [11], the technique was generalized to deal with
an arbitrary noise fields, using prior knowledge of the spatial
coherence matrix of the noise. In [12], the noise PSD and the
speech PSD at the output of the BF were estimated separately,
circumventing the overestimation problem encountered in [11].
In [6], [13], [14], a postfilter dealing with nonstationary noise
sources was proposed. The authors derived an estimator for the
speech presence probability used for estimating the noise PSD
at the output of the BF stage. The optimally modified log spec-
tral amplitude (OMLSA) estimator [15] was used as a postfilter
using the a priori SNR at the output of the BF. The a priori
SNR was recursively estimated using the decision-directed
approach [16]. In our previous work [17], the aforementioned
decomposition was utilized to jointly suppress reverberation
and noise for single-speaker scenarios. The reverberation and
the noise were suppressed both in the BF stage and in the
postfiltering stage.

In [18], the authors proved that the output of the MVDR-
BF is a sufficient statistic for estimating a single speech signal
from multichannel inputs in the presence of additive Gaussian
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noise. Hence, any MMSE estimator necessarily includes an
initial MVDR-BF stage. Furthermore, using this result, the au-
thors were able to generalize the spectral amplitude (SA) [16]
and the log spectral amplitude (LSA) [19] estimators to the
multichannel case. The SA and LSA estimators are known to
be very effective in enhancing noisy speech and significantly
improving its quality. The original SA and LSA estimators
were derived for the single-channel and single-speaker case.
Since the MVDR-BF maps the multichannel input to a single
output, the authors in [18] show that the SA and the LSA
estimators can be applied at the MVDR output.

The aim of this paper is to extend the above results
to the multiple-speakers case that is commonly encountered
in cocktail party scenarios [20], [21]. One possibility is to
estimate each desired speaker individually by applying the
aforementioned single-speaker approach and by considering
the other speakers plus ambient noise as interference (as done
for example in [22]). In this work, we take a different path,
and design a beamformer to simultaneously extract multiple
desired speakers. We propose to solve this task by applying
the multichannel MMSE estimator of the desired speakers.

Inspired by the decomposition for the single-speaker case
presented in e.g. [9], we show that the multichannel Wiener
filter (MCWF) can be decomposed into a multi-speaker LCMV
BF, followed by a multi-speaker Wiener postfilter. The output
of the first stage is a vector which dimensions equal to the
number of desired speakers, with each element dominated
by a single speech source plus unavoidable residual noise.
The multi-speaker Wiener postfilter is a square matrix that
minimizes the residual noise at the output signals of the BF
stage. In the current work, the output signals of the multi-
speaker LCMV BF are proven to be the sufficient statistic (in
both the classical and the Bayesian sense) of our estimation
problem. The next step is the derivation of an LSA estimator
for the multichannel and multi-speaker case. Since the LSA
is a Bayesian estimator, the LSA may use only the sufficient
statistic rather than all microphone signals. Using the LCMV
BF outputs, the marginal sufficient statistic for estimating each
speaker signal is defined. The LSA estimator is then derived
for each speaker separately, however using all the LCMV
BF outputs. The multi-speaker PSD matrix, required for the
various proposed estimators, is estimated using a modified
decision-directed approach.

The MCWF in the multi-source case was already analyzed
in [23] and decomposed into two separable components. The
first component, was proved in [24] to be a sufficient statistic
(in the classical sense) for estimating concurrent speech signals
from the multichannel inputs in the presence of additive
Gaussian noise. However, unlike the decomposition in [7], [8]
and the new decomposition proposed in this article, the two
components in [23] do not constitute a standard spatial filter
followed by standard Wiener filter. The proposed decomposi-
tion demonstrates several important advantages, most notably
the ability to substitute the Wiener posfiltering stage by the
LSA estimator, which is advantageous in speech processing.

This paper is organized as follows. In Sec. II, the multichan-
nel and multi-speaker problem is formulated. In Sec. III, the
decomposition of the MCWF into the multi-speaker LCMV

BF followed by a multi-speaker Wiener postfilter is presented.
In Sec. III-D, the output of the multi-speaker LCMV BF is
proven to be sufficient statistic for estimating any nonlinear
function of the sources. In Sec. IV, the SA and LSA estimators
for the multi-speaker and multichannel case are derived. In
Sec. V, some practical considerations are given; the multi-
speaker LCMV BF is implemented using the GSC approach;
and the PSD matrix of the speech signals is estimated using
the decision-directed approach. In Sec. VI, the performance of
the proposed algorithms is evaluated. Section VII is dedicated
to concluding remarks.

II. PROBLEM FORMULATION

The source separation and enhancement problem is formu-
lated in the short-time Fourier transform (STFT) domain with `
denoting the frame index and k denoting the frequency index.
Assume that the sound of J coherent speakers are captured by
N microphones. The i-th microphone signal can be expressed
as

Yi(`, k) =

J∑
j=1

Xi,j(`, k) + Vi(`, k), i = 1, 2, . . . , N (1)

where Xi,j(`, k) denotes the speech signal of the jth speaker
as received by the ith microphone and Vi(`, k) denotes the
ambient and sensor noise.

We also assume that the observed speech, as received by
the ith microphone, can be approximated in the STFT domain
as a multiplication of an anechoic speech signal Sj(`, k) with
a time-invariant ATF Gi,j(k) (i.e., assuming a static scenario)
relating the speaker position and the ith microphone, i.e.

Xi,j(`, k) = Gi,j(k)Sj(`, k). (2)

The N microphone signals can be stacked in a vector form

y(`, k) =
[
Y1(`, k) Y2(`, k) . . . YN (`, k)

]T
=

J∑
j=1

xj(`, k) + v(`, k)

=
J∑
j=1

gj(k)Sj(`, k) + v(`, k)

= G(k)s(`, k) + v(`, k), (3)

where

xj(`, k) =
[
X1,j(`, k) X2,j(`, k) · · · XN,j(`, k)

]T
v(`, k) =

[
V1(`, k) V2(`, k) · · · VN (`, k)

]T

gj(k) =
[
G1,j(k) G2,j(k) · · · GN,j(k)

]T
G(k) =

[
g1(k) g2(k) · · · gJ(k)

]
s(`, k) =

[
S1(`, k) S2(`, k) · · · SJ(`, k)

]T
.

The probability density function (p.d.f.) of the observed data
given the anechoic speech signal is modelled as a complex-
Gaussian

f(y(`, k)|s(`, k); G(k),Φv(k)) =

NC (y(`, k); G(k)s(`, k),Φv(k)) , (4)
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where Φv(k) = E{v(`, k)vH(`, k)} is the PSD matrix of the
ambient noise and NC (·; ·, ·) denotes the complex Gaussian
probability

NC (x;µ,Φ) =
1

πN det (Φ)
exp

(
(x− µ)

H
Φ−1 (x− µ)

)
,

(5)
where x is a Gaussian random vector, µ is its mean and Φ
is its PSD matrix. The p.d.f. of the anechoic speech signals is
modelled by:

f(s(`, k); Φs(`, k)) = NC (s(`, k); 0,Φs(`, k)) (6)

where Φs(`, k) = E{s(`, k)sH(`, k)} is the PSD matrix of the
multiple speakers.

The aim of this work is to provide an optimal (in the MMSE
sense) multichannel estimate of a filtered version of the J
speaker signals

sF(`, k) =[
F1(k)S1(`, k) F2(k)S2(`, k) · · · FJ(k)SJ(`, k)

]T
.
(7)

For example, when using Fj(k) = G1,j(k) (as proposed
in [25]), we aim at estimating the speech of the jth speaker
as received by the first microphone,

sF(`, k) =
[
X1,1(`, k) X1,2(`, k) · · · X1,J(`, k)

]T
.

(8)
In the rest of the paper, the general case in (7) is assumed.

The well-known MMSE estimate of sF(`, k) given the
microphone signals is given by [24, Eq. 7.34]

argmin
ŝF

E
{
‖ŝF(y(`, k))− sF(`, k)‖2

}
= E {sF(`, k)|y(`, k)} . (9)

The next section is dedicated to the derivation of the MMSE
estimator of sF(`, k).

III. OPTIMAL MULTICHANNEL NOISE REDUCTION AND
SPEAKER SEPARATION

In this section we first describe the optimal MMSE estimator
of the filtered signal sF(`, k). In the following, whenever
applicable, the frequency index k and the time index ` are
omitted for brevity. To simplify the derivation, we first rewrite
the received signal model (3) in terms of the filtered signal

y =
J∑
j=1

gj
Fj

FjSj + v

=
J∑
j=1

g̃j SF,j + v

= G̃sF + v, (10)

where g̃j ≡ gj/Fj are the normalized ATFs, SF,j ≡ FjSj are
the filtered speech signals and G̃ =

[
g̃1 g̃2 · · · g̃J

]
.

In Sec. III-A, the proposed decomposition of the MMSE
estimator is presented. Later, in Sec. III-B and Sec. III-C, the
two components are discussed.

A. MMSE Estimator and its Decomposition

Since sF and y are assumed to be zero-mean complex-
Gaussian random variables, the MMSE estimator of sF is given
by the MCWF [24, Eq. (7.167)]:

ŝMCWF = E{sFy
H} × E{yyH}−1 y

= ΦsFG̃
H ×

[
G̃ΦsFG̃

H + Φv

]−1

y, (11)

where ΦsF is the PSD matrix of sF.
Using the Woodbury identity [26] and some algebraic steps

(as shown in [23, Eq. (6.181)]), ŝMCWF can be expressed as

ŝMCWF =
(
I + ΦsFG̃

HΦ−1
v G̃

)−1

ΦsF × G̃HΦ−1
v y, (12)

Assuming that A and B are invertible matrices, the follow-
ing identity (adapted from [26, Eq. (167)]) may be used:

(I + AB)
−1

A = A
(
A + B−1

)−1
B−1. (13)

Identifying A = ΦsF and B = G̃HΦ−1
v G̃, and applying the

above identity to the right-hand side of (12) we obtain:

ŝLCMV+MCWPF = ΦsF

(
ΦsF +

(
G̃HΦ−1

v G̃
)−1

)−1

︸ ︷︷ ︸
HH

WPF

×
(
G̃HΦ−1

v G̃
)−1

G̃HΦ−1
v︸ ︷︷ ︸

HH
LCMV

y, (14)

where HLCMV is an N × J matrix which denotes the multi-
speaker LCMV BF, and HWPF is an J × J symmetric matrix
which denotes the multi-speaker Wiener postfilter that is
applied to HH

LCMVy.
For the decomposition to be valid, B = G̃HΦ−1

v G̃ needs
to be invertible. This requirement is satisfied only when i) the
noise PSD matrix is of full rank, and ii) the column rank of
G equals J , which is true when N ≥ J and the RTFs are
linearly independent.

The proposed decomposition (14) provides some benefits
over the direct implementation (12): i) the filters of the
proposed decomposition are well-known and their behaviour
in the presence of estimations errors, as well as methods to
increase their robustness are well understood, ii) in a static
scenario, the LCMV BF is time-invariant, iii) the LCMV
output signal vector can be used to estimate the speaker
PSD matrix as shown in Sec. V-B, iv) the LCMV BF can
be efficiently implemented using GSC structure as shown in
Sec V-A, and v) the multi-speaker LSA estimator can be
derived using the LCMV BF outputs as derived in Sec. IV.
The attenuation of these single-channel filters can be further
restricted to mitigate musical noise as discussed in Sec. IV.

Alternative decompositions of (12) exists. According to [23,
Eq. (6.182)], the MCWF can be decomposed into J MVDR
BFs, each steered to the jth speaker while minimizing the
power of the other J − 1 speakers and the noise, and a
subsequent optimal single-channel Wiener filter. It should
be noted that even in a static scenarios, the MVDR BFs
are time-varying due to the non-stationarity of the J − 1
speakers, and that all MVDR BFs are different from each
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other. In the proposed decomposition, only one (multiple
output) LCMV BF is applied, which significantly reduces the
computational complexity. Moreover, as the resulting LCMV
BF is time-invariant, the computational complexity is even
further reduced, and the resulting scheme becomes more robust
to unknown environment.

B. The Multi-speaker LCMV BF Criterion

The multi-speaker LCMV HLCMV, defined in (14), can be
also obtained by solving the following optimization criterion

HLCMV = argmin
H

Tr
[
HHΦvH

]
subject to HHG̃ = I, (15)

where Tr [·] denotes the trace operation. According to this
criterion, the multiple speech signals are undistorted (under the
definition with Fj) while the noise is minimized. The output
of the multi-speaker LCMV is given by

ŝLCMV ≡ HH
LCMVy = sF + vRE, (16)

where vRE ≡ HH
LCMVv denotes the residual noise signal vector

of length J . The solution of the criterion in (15) can be
obtained by applying the method of Lagrange multipliers.
Denote Λ as a J × J constraint matrix. The total expression
to be minimized is

Tr
[
HHΦvH

]
− Tr

[
ΛH
(
HHG̃− I

)]
. (17)

Setting to zero the first-order derivative with respect to H
yields

∂

∂H

(
Tr
[
HHΦvH

]
− Tr

[
ΛH
(
HHG̃− I

)])
= 2ΦvH− G̃ΛH = 0. (18)

Using the constraint HHG̃ = I, we obtain the solution for Λ
and consequently

HLCMV = Φ−1
v G̃

(
G̃HΦ−1

v G̃
)−1

I. (19)

Note that each column of the multi-speaker LCMV is a
standard LCMV [1], [2] steered towards one of the speakers
while cancelling all other J − 1 speakers. Hence, each of the
outputs of HLCMV should be dominated by solely one speaker.
In the next section we prove that ŝLCMV is the sufficient statistic
(both in the classic sense and in the Bayesian sense) for
estimating sF from the microphone signals y.

C. Multi-Speaker Wiener Postfilter

The multi-speaker Wiener postfilter HWPF can be cast as the
multi-speaker MMSE estimator of sF given the multi-speaker
LCMV outputs ŝLCMV defined in (16)

ŝLCMV+SCWPF = E{sF |̂sLCMV} = HH
WPFŝLCMV. (20)

Let us first define the residual noise power at the output of
the multi-speaker LCMV BF as

Φv,RE ≡ E
{
vREvH

RE

}
= HH

LCMVΦvHLCMV =
(
G̃HΦ−1

v G̃
)−1

. (21)

HH
LCMV

Y1
-

Y2
-

Y3
-qqq

YN -

HH
WPF

ŜLCMV,1--

ŜLCMV,2--

ŜLCMV,3-- qqq
ŜLCMV,J--

ŜLCMV+MCWPF,1-

ŜLCMV+MCWPF,2-

ŜLCMV+MCWPF,3- qqq
ŜLCMV+MCWPF,J-

Suff.Stat.
Fig. 1: Block diagram of the proposed decomposition.

Using this definition, the multi-speaker Wiener postfilter
in (14) can be rewritten as:

HWPF = ΦsF (ΦsF + Φv,RE)
−1
. (22)

Note that HWPF is a multi-speaker postfilter that further
enhances the speakers in the MMSE sense, but may sacrifice
the separation capabilities and may distort the speech signals
(equivalent to the single-microphone postfilter that reduces the
mean square error (MSE) but distorts the desired speaker at
the output of an MVDR beamformer [18]).

D. Sufficient Statistic

In this section, the term T (y) ≡ ŝLCMV in (16) is shown to
be sufficient statistic for estimating sF from the measurements
y, in both the classic sense and the Bayesian sense.

Following [24, Eq. (3.55)], the signal vector G̃HΦ−1
v y

comprises all information required to obtained a maximum
likelihood estimate of sF, i.e. the signal vector G̃HΦ−1

v y is
a sufficient statistic in the classical sense. Since G̃HΦ−1

v y

is multiplied by the invertible matrix
(
G̃HΦ−1

v G̃
)−1

, the
LCMV output ŝLCMV is also a sufficient statistic in the classical
sense.

According to [27, Theorem 2.14], the sufficiency in the
classical sense also implies Bayesian sufficiency

f(sF|y) = f(sF|T (y)), (23)

i.e., the p.d.f. of sF given y equals to the p.d.f. of sF given
T (y). The last result implies that the MMSE estimator of
any (nonlinear) function of sF given the measurements y can
utilize the sufficient statistic T (y) rather than the original
measurements. Let ρ (sF) be a function of sF, then the latter
argument can be justified using (23) by the following deriva-
tion:

E{ρ (sF) |y} =

∫
· · ·
∫

ρ (sF) f(sF|y) dSF,1 · · · dSF,J

=

∫
· · ·
∫

ρ (sF) f(sF|T (y)) dSF,1 · · · dSF,J

= E{ρ (sF) |T (y)}. (24)

A block diagram of the proposed decomposition is depicted
in Figure 1, where ŜLCMV,j and ŜLCMV+MCWPF,j denote the jth
element of ŝLCMV and ŝLCMV+MCWPF, respectively.
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IV. MULTI-SPEAKER LSA ESTIMATOR

In this section, the multi-speaker LSA estimator [19] is
derived. Note, that the SA estimator [16] can be similarly
derived. In this work we focus on the LSA estimator, since it is
a more common estimator in speech enhancement applications.

In Sec. III-D, ŝLCMV was proven to be the sufficient statistic
for estimating any function of sF. Accordingly, denoting the
amplitude of the jth filtered speaker as Aj ≡ |SF,j |, the multi-
speaker LSA estimator of SF,j can be defined by

ÂLSA,j = exp (E {log (Aj) |̂sLCMV}) . (25)

Since ŝLCMV is a J-dimensional column vector, the LSA
estimator cannot be straightforwardly derived by following the
original derivation in [19]. In the following, instead of jointly
estimating the individual speakers, we aim at estimating only
the jth speaker from the sufficient statistic in (16). Note that
according to [23, Eq. (6.182)], the estimate of the jth speech
signal (that is obtained using the MMSE estimator that jointly
estimates the individual speech signals) is identical to the
MMSE estimator that provides an estimate of the jth speech
signal while treating the other speech signals plus the additive
noise as interference. For that, we further reduce ŝLCMV to
construct the marginal sufficient statistic for estimating the jth
speaker. To derive an MMSE estimator of a nonlinear function
of the jth speaker, we may decompose the output vector of
the LCMV beamformer by recasting (16) as a summation of
a desired speaker and a combination of other speakers and
additive noise:

ŝLCMV = ij SF,j + zj̄ (26)

where ij is the jth column of the identity matrix I and

zj̄ ≡ (I− Diag [ij ]) sF + vRE. (27)

Assuming that the speakers are statistically independent, the
terms on the right-hand side of (26) are also statistically
independent. Thus, according to [18, Eq. (12)], the sufficient
statistic for estimating Sj,F from ŝLCMV is

Tj (y) = Tj (ŝLCMV) ≡ wH
j ŝLCMV, (28)

where wj is the MVDR-BF steered towards the jth speaker
while minimizing the power of zj̄

wj =
Σ−1
j̄

ij

iT
jΣ
−1
j̄

ij
, (29)

with

Σj̄ ≡ E
{

zj̄z
H
j̄

}
= (I− Diag [ij ]) ΦsF (I− Diag [ij ])

T
+ Φv,RE. (30)

Similarly to (26), the sufficient statistic Tj (ŝLCMV) can be
represented as

Tj (ŝLCMV) = SF,j + Z̄RE,j , (31)

where Z̄RE,j ≡ wH
j zj̄ is the residual interference with variance

equal to E
{∣∣Z̄RE,j

∣∣2} =
(
iT
jΣ
−1
j̄

ij

)−1

. Utilizing the single-
channel model in (31), the multi-speaker LSA estimator can

now be stated. Denoting Rj ≡ |Tj (ŝLCMV)|, the multi-speaker
LSA estimator can be stated as [19]:

ÂLSA,j = exp (E {log (Aj) |Tj (ŝLCMV)}) = HLSA,jRj , (32)

where

HLSA,j = max

(
ξj

1 + ξj
exp

(
1

2

∫ ∞
νj

e−t

t
dt

)
, Hmin

)
(33)

and νj , ξj and γj are defined by

νj =
ξj

1 + ξj
γj , (34a)

ξj =
φSF,j(

iT
jΣ
−1
j̄

ij

)−1 , (34b)

and γj =
R2
j(

iT
jΣ
−1
j̄

ij

)−1 , (34c)

where the PSD φSF,j is the jth element of Diag[ΦsF ]. Prac-
tically, to minimize speech distortion and to mitigate musical
noise [28], the LSA filter in (33) is lower-bounded by a time-
and-frequency-dependent gain Hmin. Since both HLCMV and
wj are distortionless beamformers, the lower-bound is only
applied at the LSA stage.

Finally, the LSA estimate of the jth speaker’s signal using
the multichannel readings is given by

ŜLCMV+MCLSA,j = HLSA,jTj (ŝLCMV) . (35)

Using (28) and (35), the LSA estimators of all speakers can
be constructed as

ŝLCMV+MCLSA =
[
ŜLCMV+MCLSA,1 ... ŜLCMV+MCLSA,J

]
.

(36)
The estimator of all desired speakers can be stated in matrix
form

ŝLCMV+MCLSA = HH
LSAŝLCMV, (37)

where

HLSA = Q Diag
[
HLSA,1 ... HLSA,J

]
(38)

and
Q =

[
w1 ... wJ

]
. (39)

Note that in this implementation, three stages are eventually
executed: i) multi-speaker LCMV BF, ii) J concatenated BFs
Q, and iii) J LSA filters HLSA,j .

To better compare the performance of the multichannel
Wiener postfilter in (22) and the multi-speaker LSA postfilter
in (37), it is proposed to use the lower-bound Hmin also with
HWPF as well, the multi-speaker Wiener postfilter in (22) can
be alternatively implemented similarly to the LSA in (37)-(39)
as

HWPF = Q Diag
[
HWPF,1 ... HWPF,J

]
, (40)

where

HWPF,j = max

(
ξj

1 + ξj
, Hmin

)
. (41)
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V. PRACTICAL CONSIDERATIONS

We have shown that for any estimator of sF (e.g. the
MCWF and LSA postfilter estimators), the sufficient statistic
sLCMV can be precalculated using the multi-speaker LCMV
BF. To reduce the computational burden, a GSC version of
the multi-speaker LCMV BF can be used. Such GSC version
is derived in Sec. V-A. Since the PSD matrix of the speakers
ΦsF is usually unknown in advance, a decision-directed based
estimation of ΦsF is proposed in Sec. V-B. In Sec. V-C,
Tj (ŝLCMV) is calculated using the GSC structure as well to
avoid inversion of matrices with low condition-number.

A. GSC implementation of the Multi-Speaker LCMV BF

A GSC structure [25], [29] may be used to efficiently imple-
ment the LCMV beamformer. In our case, there is a significant
advantage in implementing HLCMV in a GSC structure, since
an inversion of an (N − J) × (N − J) matrix is required
rather than an inversion of an N × N matrix in the original
closed-form LCMV implementation (19). By following the
GSC formulation, the multi-speaker LCMV beamformer can
be written as

HLCMV = H0 −BHNC, (42)

where H0 is the fixed multi-speaker beamformer that satisfies
the constraint set:

HH
0 G̃ = I. (43)

It can be verified that the following definition of H0

H0 = G̃
(
G̃HG̃

)−1

, (44)

is a proper fixed BF.1 The matrix B, usually referred to as
a blocking matrix, is an N × (N − J) matrix orthogonal to
steering vectors of the speakers such that

BHG̃ = 0. (45)

Discussion about various methods for constructing a sparse
blocking matrix can be found in [30].

The filter matrix HNC is the noise canceller that is respon-
sible for mitigating the residual noise at the outputs of H0.
The closed-form solution for the noise canceller is obtained by
minimizing the total noise power at the outputs and is given
by

HNC = argmin
H

Tr
[
(H0 −BH)

H
Φv (H0 −BH)

]
=
[
BHΦvB

]−1
BΦvH0. (46)

Note that, since B is usually designed as an N × (N − J)
matrix, BHΦvB is an (N − J)× (N − J) matrix.

1According to our experience, it is recommended to ensure the invertibility
of G̃HG̃ by applying regularization to G̃HG̃ in the brackets of (44), yielding

H0 = G̃
(
G̃HG̃+ εI

)−1
. In our experiments, we set ε = 10−4 λmax,

where λmax denotes the maximum eigenvalue of G̃HG̃. This way, the
condition number of the inverted matrix is constrained to be lower than 104.

B. Decision-Directed Based Estimation of ΦsF

Assuming statistical independence between the speakers,
ΦsF can be modelled as a diagonal matrix. To maintain this
structure, only the diagonal elements of ΦsF are estimated and
the off-diagonal elements are substituted by zero elements.

In this paper, we adopt the decision-directed approach
proposed in [16] (see also [31] and [17]). According to this
approach, an estimation of φSF,j is obtained by weighting
estimates of φSF,j from the previous and the current frames,
i.e.

φ̂SF,j = βr

∣∣∣ŜLCMV+MCWPF,j(`− 1)
∣∣∣2

+ (1− βr) max

{∣∣∣ŜLCMV,j(`)
∣∣∣2 − φV,RE,j , 0

}
, (47)

where 0 ≤ βr < 1 is a weighting factor and the PSD φV,RE,j
is the jth element of the diagonal of Φv,RE. For the LSA
estimator, ŝLCMV+MCWPF may be substituted by ŝLCMV+MCLSA,

C. Calculation of wj using GSC

The calculation of wj defined in (29) requires the inversion
of the matrix Σj̄ defined in (30). When the power of the speech
signals (excluding the jth speaker) is higher than the noise
power, it is likely that the matrix Σj̄ has a high condition-
number since the elements of the jth column and the jth row
of the term (I− Diag [ij ]) ΦsF (I− Diag [ij ])

T are all zeros.
Therefore, instead of using (29), it is recommended that wj

will be calculated using the GSC structure [25].
The filter vector wj is actually the MVDR-BF that can be

obtained by solving the following optimization criterion

wj = argmin
w

wHΣj̄w s.t. wHij = 1. (48)

Following the GSC formulation, wj can be written as

wj = ij −Dj̄dj , (49)

where ij is used as the fixed BF that satisfies the constraint
(since iH

j ij = 1), Dj̄ is the BM that blocks the vector ij (i.e.,
DT
j̄
ij = 0) and dj is the noise canceller

dj =
(
DT
j̄Σj̄Dj̄

)−1

DT
j̄Σj̄ij . (50)

Note that the multiplication by Dj̄ and DT
j̄

in (50) actually
deletes the jth column and jth row of Σj̄ , and thus DT

j̄
Σj̄Dj̄

is invertible even when the power of the speech signals
(excluding the jth speaker) is higher than the noise power.
The matrix Dj̄ can be set as the identity matrix without the
jth column

Dj̄ =
[

i1 ... ij−1 ij+1 ... iJ
]
, (51)

since for each i 6= j, iT
i ij = 0.
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VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
estimators, and compare them to other classical postfiltering
approaches. In Sec.VI-A, the setup of the experiments is
elaborated. The performance evaluation is divided into two
main parts. First, the separation ability of the multichannel
LCMV and the multichannel Wiener postfilter is investigated
in Sec. VI-B. Although satisfying the constraint of the LCMV-
BF should result in perfect separation of the speakers, some
leakage may occur in the presence of estimation errors. In
addition, the multichannel WF postfilter may also cause some
leakage between the speakers. Secondly, the estimators under
test are described in Sec. VI-C, and are evaluated in terms of
the segmental output SNR in Sec. VI-D.

A. Setup

The received microphone signals were constructed by con-
volving clean speech signals and measured room impulse
responses (RIRs) recorded in our acoustic lab [32]. The lab
dimensions are [6; 6; 2.4] meters and it is equipped with
dedicated panels to control the reverberation level. In our
setup, the lab reverberation time was set to either T60 = 0.16 s
or T60 = 0.36 s. We used four speakers positions at a distance
of 2 meters in front of an eight-microphone linear array at
various angles. The inter-distances between the microphones
were [3, 3, 3, 8, 3, 3, 3] cm. Each experiment includes four
sentences, each 4–8 seconds long, two by a male and two by a
female. The speakers were positioned at −90◦,−45◦, 0◦ and
90◦ relative to the array.

The noise signal vector v was a summation of two compo-
nents: i) directional stationary noise vdir that is computed by
convolving a noise signal from the NOISEX-92 database [33]
with RIRs for a speaker located at 45◦ relative to the array at
a distance of 2 m, and ii) mutually uncorrelated sensor noise
vsen ,i.e.,

v = vdir + vsen. (52)

The level of the sensor noise was 10 dB lower than the
directional noise i.e.

10 log10

∑
k,` ‖vdir(`, k)‖2∑
k,` ‖vsen(`, k)‖2

= 10, (53)

where ‖ · ‖ is the Euclidean norm. The noise signal v was
added to the speech signals with various input signal-to-noise
ratio (SNR) levels

iSNR = 10 log10

∑
k,`,j ‖xj(`, k)‖2∑
k,` ‖v(`, k)‖2

. (54)

An illustration of the geometric setup is given in Fig. 2.
The sampling frequency of the speech signals was set to

16 kHz. The frame length of the STFT was 32 ms with 8 ms
between successive time frames (i.e., 512 samples per segment
with 25% overlap). To mitigate cyclic convolution artifacts,
each segment was zero padded with 512 samples (256 samples
before the segment and 256 samples after) such that the length
of the discrete Fourier transforms equals 1024. The noise PSD
matrix Φv, which is non-diagonal, was estimated using time-
segments in which all speakers are inactive.

90◦

45◦

0◦

−45◦

−90◦

Speaker #4 Male

Noise Source

Speaker #3 Female

Speaker #2 Female

Speaker #1 Male

2 m

Fig. 2: Geometric setup.

Finally, we set Fj = G1,j , indicating that the desired signals
are the noiseless replicas of the reverberant speakers at the first
microphone, arbitrarily chosen to be the reference microphone.
Each RTF g̃j of the various speakers was estimated by the least
squares (LS) technique proposed in [25]. For the estimation,
time-segments where only one speaker is active were used. To
analyze the sensitivity w.r.t. RTF estimation errors due to the
additive noise v, we have estimated the RTFs from the noisy
signal y, and from the noiseless signal G̃s. In this work, a so-
called sparse blocking matrix for multiple speakers was used
as proposed in [30].

B. Separation Ability

First, the separation ability (i.e., the leakage level) of HLCMV
and HWPF is examined with a representative case where
iSNR = 10 dB. Only 4 × 10 signals were tested, i.e., 10
experiments each with 4 concurrent speakers (uttered by 8
microphones). To examine the contributions of the desired
speakers alone, the following output signals were evaluated:

1. uLCMV,j = HH
LCMVxj ; (55a)

2. uWPF,j = HH
WPFijX1,j ; (55b)

3. uLCMV+MCWPF.j = HH
WPFH

H
LCMVxj . (55c)

Ideally, for uLCMV,j , we expect to measure the undistorted
X1,j at the jth output while all other outputs should be zero
(since ideally uLCMV = ijX1,j). Practically, for estimated
RTFs, there might be an undesired leakage. In (55b), an oracle
LCMV was used to only test the contribution of the MCWF
postfilter. In (55c), the outputs of the full multichannel Wiener
filter is calculated using the HLCMV constructed by estimated
RTFs (and thus a leakage is inevitable).

For the purpose of examining the separation ability, we
define the following measure, denoted blocking ability ratios
(BARs):

BARBF(j, i) =
∑
`

10 log10

∑
k

∣∣[uBF,j ]i
∣∣2∑

k |X1,j(`, k)|2
, (56)

where, BF ∈ {LCMV,WF,LCMV+MCWPF} and [uBF,j ]i is
the i-th element of vector uBF,j . When i = j BAR measures
the distortion of the desired speaker. Ideally, it is expected that
HLCMV will introduce no attenuation (i.e., BARLCMV(i, i) =
0 dB) and full blockage (BARLCMV(j, i) = −∞ dB for j 6= i).

First, the results for BARLCMV(j, i) are presented for T60 =
0.36 in Table I and for T60 = 0.16 in Table II, where in each
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TABLE I: BARLCMV(j, i) for T60 = 0.36 using RTFs estimated
from the noisy signals (top) and using RTFs estimated from noiseless
signals (down).

Output

Speaker i = 1 i = 2 i = 3 i = 4

j = 1 0.59 -7.04 -8.33 -7.70
j = 2 -8.50 0.37 -9.43 -7.07
j = 3 -9.03 -6.63 1.12 -6.04
j = 4 -8.09 -7.55 -7.85 0.64

Output

Speaker i = 1 i = 2 i = 3 i = 4

j = 1 -0.61 -11.35 -11.88 -11.22
j = 2 -10.92 -0.61 -12.43 -9.88
j = 3 -11.90 -10.40 -0.48 -9.88
j = 4 -9.26 -10.85 -10.64 -0.02

table the RTFs were estimated using: i) signals with a noise
level of iSNR = 10 dB, and ii) noiseless signals. In both cases
we use time-segments where only the speaker of interest is
active. For i = j, the results are depicted in boldface. It can be
verified that BARLCMV(j, i) elements are close to 0 dB for i =
j (diagonal elements). As for i 6= j (off diagonal elements),
it can be generally verified that using RTFs estimated from
noiseless signals, the blocking ability is better than in the case
where the RTFs were estimated from noisy signals. Likewise,
the blocking ability for T60 = 0.16 is better than T60 = 0.36,
since short systems are better described by the RTFs.

Table III depicts the results for BARWPF(j, i) for T60 =
0.36 and using RTFs estimated from 10 dB noisy signals. The
results for BARWPF(j, i) exhibit distortion around −3 dB for
i = j and inevitable small leakage, approximately −16 dB,
for i 6= j. By comparing Tables I and III, it can be concluded
that the leakage resulting from the LCMV stage dominates the
leakage resulting from the multi-speaker postfiltering stage.

Table IV depicts the results for BARLCMV+MCWPF(j, i)
for T60 = 0.36 and using RTFs estimated from 10 dB
noisy signals. Comparing between BARLCMV+MCWPF(j, i) and
BARLCMV(j, i) in the same conditions, i.e. Tables I and IV, it
can be verified that HWF reduces the leakage caused by the
LCMV stage. Ideally, the LCMV beamformer should entirely
block the interference sources at each output, i.e. each output
should be dominated by only one source. In real-life scenarios,
due to inevitable estimation errors, leakage of the interference
sources is unavoidable. In these cases, HWF may further
enhance the LCMV beamformer outputs and consequently
increase the blocking ability ratio.

C. Noise Reduction: Estimators Under Investigation
In the following sections, we present a comparison of

the noise reduction capabilities of various single- and multi-
speaker estimators. We evaluated and compared the following
five estimators:

1) The multi-speaker LCMV BF:

ŝLCMV = HH
LCMVy.

The multi-speaker LCMV BF is implemented using the
GSC structure, as presented in Sec. V-A.

TABLE II: BARLCMV(j, i) for T60 = 0.16 using RTFs estimated
from the noisy signals (top) and using RTFs estimated from noiseless
signals (down).

Output

Speaker i = 1 i = 2 i = 3 i = 4

j = 1 0.71 -10.79 -11.36 -8.36
j = 2 -9.92 0.34 -9.53 -6.90
j = 3 -9.48 -9.44 0.88 -6.90
j = 4 -10.64 -11.44 -10.69 0.12

Output

Speaker i = 1 i = 2 i = 3 i = 4

j = 1 -0.72 -14.86 -14.74 -11.55
j = 2 -12.28 -0.37 -13.00 -7.94
j = 3 -13.03 -14.61 -1.13 -10.58
j = 4 -11.91 -15.71 -12.66 -0.59

TABLE III: BARWPF(j, i) for T60 = 0.36 and using RTFs estimated
from the noisy signals.

Output

Speaker i = 1 i = 2 i = 3 i = 4

j = 1 -2.87 -14.88 -19.35 -17.53
j = 2 -15.38 -3.34 -19.30 -16.60
j = 3 -17.09 -14.73 -4.23 -16.34
j = 4 -15.23 -16.80 -18.33 -3.44

2) The multi-speaker LCMV BF when only the reverberant
speech was used as an input (i.e., the noiseless signals)
such that the separation performance of the LCMV BF
can be examined:

ŝLCMV-NL = HH
LCMV

J∑
j=1

xj = HH
LCMVG s.

Note that the LCMV filters are computed assuming that
the noise is present.

3) The multi-speaker LCMV followed by the distortionless
spatial filter Q as defined in (39):

ŝLCMV+Q = QHHH
LCMVy.

4) The multi-speaker LCMV BF followed by a single-
channel Wiener postfilter which is applied to each out-
put:

ŝLCMV+SCWPF = HH
SCWPFŝLCMV, (57)

where HSCWPF ≡ Diag
[
HSCWPF,1 ... HSCWPF,J

]
,

HSCWPF,j was evaluated similarly to HWPF,j in (41), with
the single-channel a priori SNRs ξj =

φSj,F
φV,RE,j

.

TABLE IV: BARLCMV+MCWPF(j, i) for T60 = 0.36 and using RTFs
estimated from the noisy signals.

Output

Speaker i = 1 i = 2 i = 3 i = 4

j = 1 -2.93 -14.28 -18.50 -16.49
j = 2 -14.79 -3.41 -18.24 -15.18
j = 3 -16.31 -13.75 -4.19 -15.25
j = 4 -13.70 -15.47 -16.94 -3.40
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The PSD φSF,j was estimated using the (single-
channel) decision-directed approach in (47) where
ŜLCMV+MCWPF,j was replaced by ŜLCMV+SCWPF,j .

5) The multi-speaker LCMV beamformer followed by the
multi-speaker Wiener postfilter:

ŝLCMV+MCWPF = HH
WPFŝLCMV.

The multi-speaker Wiener postfilter HWPF was calcu-
lated using (40).

6) The LCMV BF with single-channel LSA postfilter:

ŝLCMV+SCLSA = HH
SCLSAŝLCMV, (58)

where HSCLSA ≡ Diag
[
HSCLSA,1 ... HSCLSA,J

]
,

HSCLSA,j was evaluated similarly to HLSA,j in (33),
with the single-channel a priori and a posteriori SNRs

ξj =
φSj,F
φV,RE,j

and γj =
|ŜLCMV,j|2
φV,RE,j

. The PSD φSF,j was
estimated using the (single-channel) decision-directed
approach in (47) where ŜLCMV+MCWPF,j was replaced by
ŜLCMV+SCLSA,j .

7) The LCMV BF with the multi-speaker LSA estimator
from (37):

ŝLCMV+MCLSA = HH
LSAŝLCMV. (59)

D. Interference and Noise Reduction Results

The aforementioned estimators were compared in terms
of output segmental signal-to-interference plus noise ratio
(SINR). The output segmental SINR was aggregated for all
speakers and for all time-frequency bins and is defined as

oSINRBF =
∑
`

10 log10

∑
k ‖sF(`, k)‖2∑

k ‖ŝBF(`, k)− sF(`, k)‖2
, (60)

where

BF ∈
{

LCMV,LCMV+Q,LCMV+SCWPF,

LCMV+MCWPF,LCMV+SCLSA,LCMV+MCLSA
}
.

In addition, the input SINR was calculated, i.e., the
SINR in (60) where ŝBF(`, k) is substituted by Y1(`, k) ×[

1 1 1 1
]T

. All measurements were computed by aver-
aging the output segmental SINR results obtained using 4×50
sentences, i.e., 50 experiments for each scenario where each
experiment consists of 4 concurrent speakers (uttered by 8
microphones). The weighting factor βr was set to 0.99. The
lower-bound gain Hmin was set to 0.1.

In Tables V and VI, the output segmental SINR results
are presented for T60 = 0.16 sec and T60 = 0.36 sec.
The best results are depicted in boldface font. The separation
ability of the LCMV BF can be examined from the results
of the LCMV BF that is applied to the noiseless signals.
Generally, an improvement of 11 dB is obtained compared
to the oSINR of the unprocessed signal. The performance of
the standard LCMV BF depends on the input SNR and is
generally lower than the performance of the LCMV BFs with
the postfilter. Additionally, the performance of LCMV+Q is
generally higher than the performance of the standard LCMV
BF but lower than the performance of the LCMV BFs with the

TABLE V: oSINR for the various estimators (T60 = 0.16 s)

iSNR

Method 0 dB 5 dB 10 dB 15 dB

Unprocessed -13.64 -10.86 -9.03 -7.87
LCMV-NL -1.77 0.18 3.45 5.16
LCMV -9.95 -7.16 -1.96 1.64
LCMV+Q -4.188 -2.18 0.80 2.86
LCMV+SCWPF -1.64 0.68 3.61 4.87
LCMV+MCWPF 0.48 2.91 4.85 5.48
LCMV+SCLSA -1.77 0.54 3.49 4.79
LCMV+MCLSA 0.11 2.80 4.80 5.42

TABLE VI: oSINR for the various estimators (T60 = 0.36 s)

iSNR

Method 0 dB 5 dB 10 dB 15 dB

Unprocessed -13.78 -11.00 -9.16 -7.98
LCMV-NL -1.90 0.00 2.78 4.39
LCMV -11.89 -8.53 -3.29 0.42
LCMV+Q -4.04 -2.48 0.05 2.00
LCMV+SCWPF -1.68 0.55 3.05 4.24
LCMV+MCWPF 0.52 2.94 4.64 5.18
LCMV+SCLSA -1.80 0.43 2.93 4.13
LCMV+MCLSA -0.03 2.69 4.55 5.12

postfilter. It can be verified that the proposed multi-speaker al-
gorithms (LCMV+MCWPF and LCMV+MCLSA) outperform
their single-speaker counterparts (namely, LCMV+SCWPF
and LCMV+SCLSA).

Example sonograms of the various output signals for input
SNR of 15 dB and T60 = 0.36 s are depicted in Fig. 3.
Figure 3a depicts X1,1, the reverberant signal of speaker 1
(positioned at −90◦), as received by the reference micro-
phone. Figure 3b depicts

∑
j X1,j , the reverberant signals

of all speakers as concurrently received by the reference
microphone, while Fig. 3c depicts Y1, the total received
signal (including the noise). Figure 3d depicts ŜLC,1, the first
component of the multi-speaker LCMV output, corresponding
to the first speaker. Likewise, Figures 3e, 3f, 3g and 3h depict
the outputs ŜLCMV+SCWPF,1, ŜLCMV+MCWPF,1, ŜLCMV+SCLSA,1

and ŜLCMV+MCLSA,1, respectively.
The separation ability of the multi-speaker LCMV can be

seen in Fig. 3d. However, the LCMV exhibits poor noise
reduction. The postfilter outputs, i.e., Figures. 3e, 3f, 3g
and 3h, exhibit better noise reduction than the LCMV output.
Beyond that, using careful examination, it can be seen that the
multi-speaker postfilters reduce more noise than the single-
speaker postfilters (i.e., Fig. 3f relative to Fig. 3e and Fig. 3h
relative to Fig. 3g).

Audio examples are available in our website.2 By listening
to these examples, it is evident that the proposed multi-
speaker estimators produces the highest noise reduction, when
compared with the baseline single-speaker estimators.

VII. CONCLUSIONS

In the current paper, the MMSE estimator of several concur-
rent speech signals in noisy environment was decomposed into
multichannel LCMV beamformer followed by multichannel

2http://www.eng.biu.ac.il/gannot/speech-enhancement/
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(a) Reverberant speech of speaker #1.
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(b) Reverberant speech of all concurrent speakers.
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(c) Input signal of microphone #1.
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(d) LCMV output.
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(e) LCMV followed by single-channel Wiener filter.
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(f) LCMV followed by the multispeaker Wiener postfilter.
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(g) LCMV followed by single-channel LSA.
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(h) LCMV followed by multi-speaker LSA.

Fig. 3: Spectrograms with T60 = 0.36 s and input SNR of 15 dB.
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Wiener postfilter. The output of the multichannel LCMV
beamformer was proved to be the sufficient statistic of the
measurements for estimating the speech signals. Also the
multi-speaker LSA estimator was derived. The algorithms
were tested in a room with a reverberation time of 0.16 s
and 0.36 s for several signal-to-noise levels of directional
noise. In terms of output SNR the proposed multi-speaker
algorithms significantly outperform competing single-channel
postfiltering algorithms.
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