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Abstract—The problem of single source localization with ad
hoc microphone networks in noisy and reverberant enclosures is
addressed in this paper. A training set is formed by prerecorded
measurements collected in advance, and consists of a limited
number of labelled measurements, attached with corresponding
positions, and a larger number of unlabelled measurements from
unknown locations. Further information about the enclosure
characteristics or the microphone positions is not required. We
propose a Bayesian inference approach for estimating a function
that maps measurement-based features to the corresponding
positions. The signals measured by the microphones represent
different viewpoints, which are combined in a unified statistical
framework. For this purpose, the mapping function is modelled
by a Gaussian process with a covariance function that encapsu-
lates both the connections between pairs of microphones and the
relations among the samples in the training set. The parameters
of the process are estimated by optimizing a maximum likelihood
(ML) criterion. In addition, a recursive adaptation mechanism
is derived, where the new streaming measurements are used to
update the model. Performance is demonstrated for both simu-
lated data and real-life recordings in a variety of reverberation
and noise levels.

Index Terms—sound source localization, relative transfer func-
tion (RTF), acoustic manifold, Gaussian process, maximum
likelihood (ML).

I. INTRODUCTION

Acoustic source localization is an essential component in
various audio applications, such as: automated camera steering
and teleconferencing systems [1], speaker separation [2] and
robot audition [3]–[5]. Thus, the localization problem has
attracted a significant research attention, and a large variety of
localization methods were proposed during the last decades.
The main challenge facing the research community is how to
perform robust localization in adverse conditions, namely, in
the presence of background noise and reverberations, which
are the main causes for performance degradation of localiza-
tion algorithms.

Broadly, traditional localization methods can be divided
into three main categories: methods based on maximization
of the steered response power (SRP) of a beamformer output,
high-resolution spectral estimation techniques, and dual-stage
approaches relying on a time difference of arrival (TDOA)
estimation. In the first category, the position is estimated
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directly from the measured signals after being filtered and
summed together. Commonly, the maximum likelihood (ML)
criterion is applied, which in the case of a single source,
culminates in inspecting the output power of a beamformer
steered to different locations and in searching the points
where it receives its maximum value [6]. The second category
consists of high resolution methods, such as multiple signal
classification (MUSIC) [7] and estimation of signal parameters
via rotational invariance (ESPRIT) [8] algorithms, that are
based on the spectral analysis of the correlation matrix of
the measured signals. Subspace methods can also be applied
using spherical harmonics [9]–[11]. In the third category, a
dual stage approach is applied. In the first stage, the TDOAs of
different pairs of microphones are estimated and collected. The
different TDOA readings correspond to single-sided hyper-
bolic hyperplanes (in 3D) representing possible positions. The
intersection of these hyperplanes yields the estimated position.
In these types of approaches the quality of the localization
greatly depends on the quality of the TDOA estimation in
the first stage. The classical method for TDOA estimation,
which assumes a reverberant-free model, is the generalized
cross-correlation (GCC) algorithm introduced in the landmark
paper by Knapp and Carter [12]. Many improvements of the
GCC method for the reverberant case were proposed, e.g.
in [13]–[17]. Among these methods for TDOA estimation
in reverberant conditions, there are subspace methods based
on adaptive eigenvalue decomposition [18] and generalized
eigenvalue decomposition [19]. Of special importance is the
SRP-phase transform (SRP-PHAT) algorithm proposed in [20].
This method is related to both the first and the third categories,
since it combines in a single step the features of a steered-
beamformer with those of the phase transform weighting of
the GCC algorithm.

Most of the traditional localization approaches are based
on physical models and rely on certain assumptions regarding
the propagation model and the statistics of the signals and
the noise. However, real-world scenarios, characterized by
complex reflection patterns, can be described by intricate
models, which are difficult to estimate. Recently, there is
a growing interest in learning-based localization approaches,
which attempt to learn the characteristics of the acoustic
environment directly from the data, in contrast to using a
predefined physical model. Typically, these approaches assume
that a training set of prerecorded measurements is given in
advance. Supervised methods utilize microphone measure-
ments of sources from known locations, while unsupervised
approaches solely utilize the measurements, without knowing
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their exact source positions.
Learning-based approaches were proposed for both mi-

crophone array localization and binaural localization. In the
binaural hearing context, Deleforge and Horaud have proposed
a probabilistic piecewise affine regression model that infers the
localization-to-interaural data mapping and its inverse [21].
They have extended this approach to the case of multiple
sources using the variational Expectation Maximization (EM)
framework [22], [23]. In [24], another approach was presented
based on a Gaussian Mixture Model (GMM), which was used
to learn the azimuth-dependent distribution of the binaural
feature space. In [25], a binaural localization method was
proposed by assessing the mutual information between each
of the spatial cues and the corresponding source location.
In [26], GCC-based feature vectors were extracted and used
for training a multilayer perceptron neural network that outputs
the source direction of arrival (DOA). A method for DOA
estimation of multiple sources was presented in [27], using an
EM clustering approach. A localization method for a source
located behind an obstacle that blocks the direct propagation
path was presented in [28]. The algorithm uses co-sparse data
analysis based on the physical model of the wave propagation.
The model was extended in [29] to the case where the physical
properties of the enclosure are not known in advance.

Talmon et al. [30] introduced a supervised method based
on manifold learning, aiming at recovering the fundamental
controlling parameter of the acoustic impulse response (AIR),
which coincides with the source position in a static environ-
ment. The method was applied to a single microphone system
with a white Gaussian noise (WGN) input [31]. In [32] we
adopted the paradigm of [31] and adapted it to a speech
source, using a dual-microphone system with a power spectral
density (PSD)-based feature vector. Another approach for
semi-supervised source localization with a single microphone
pair, based on a regularized optimization in a reproducing
kernel Hilbert space (RKHS), was recently presented in [33].

In this paper, we consider a setup consisting of multiple
nodes, where each node comprises a pair of microphones.
No additional assumptions, particularly on their specific (un-
known) locations, are made. We anticipate that such an exten-
sion of the setup, comparising much more spatial information,
is both practical and may lead to improved accuracy of
localization tasks. In our recent work [34], we reformulated
the optimization problem presented in [33] using a Bayesian
inference approach for the single node case. Following [35],
[36], the mapping function between the acoustic samples
and their corresponding source positions, was modelled as a
Gaussian process with a covariance function that was built
based on a certain kernel function. This Bayesian framework
serves as a corner stone for extending the single node setup
to a network of multiple nodes. Here as well, we utilize a set
of prerecorded measurements for identifying unique patterns
and geometrical structures, which characterize the acoustic
samples in a given enclosure. The gist of the algorithm is
the definition of a Gaussian process with a new covariance
function that merges the different viewpoints presented by
the different nodes. In addition, this statistical framework
allows for the rigorous estimation of the model parameters

as an integral part of the optimization procedure, through an
appropriate ML criterion. Moreover, a recursive version is
derived, where the new samples acquired during the test stage
are utilized for updating the covariance of the process.

The paper is organized as follows. In Section II, we for-
mulate the problem in a general noisy and reverberant envi-
ronment. We discuss the existence of an acoustic manifold for
each node and present the statistical model. A manifold-based
Gaussian process is presented in Section III, and the relations
between the nodes are defined. These definitions are unified by
the multiple-manifold Gaussian process (MMGP) presented in
Section III, which combines together the information from all
the nodes. Based on this model a Bayesian estimator is derived
in Section V. We present a recursive adaptation mechanism,
and describe how to estimate the model parameters using an
ML criterion. In Section VI, we demonstrate the algorithm
performance by an extensive simulation study, and real-life
recordings. Section VII concludes the paper.

II. PROBLEM FORMULATION

A single source is located in a reverberant enclosure at
position q = [qx, qy, qz]T . Consider an ad hoc network with
microphones distributed in the enclosure. We assume that
the microphones are arranged in M nodes, where each node
consists of a pair of microphones positioned side-by-side (up
to half a meter distance). The source produces an unknown
speech signal s(t), which is measured by all the microphones.
The signal received by the ith microphone of the mth pair, is
given by:

ymi (t) = ami (t,q) ∗ s(t) + umi (t) m = 1, . . . ,M ; i = 1, 2
(1)

where ami (t,q) is the acoustic impulse response (AIR) relating
the source at position q and the ith microphone in the mth
node, and umi (t) is an additive noise signal, which contami-
nates the corresponding measured signal. Linear convolution
is denoted by ∗.

Clearly, the information required for localization is embed-
ded in the AIR and is independent of the source signal. Thus,
from each pair of measurements we extract a feature vector hm

that depends solely on the two AIRs of the corresponding node
and is independent of the non-stationary source signal. More
specifically, we use a feature vector based on relative transfer
function (RTF) estimates [37] in a certain frequency band,
which is commonly used in acoustic array processing [37],
[38]. Please refer to Appendix A for further details about the
RTF and its estimation. The RTFs are typically represented in
a high-dimensional space with a large number of coefficients
to allow for the full description of the acoustic paths, which
represent a complex reflection pattern. The observation that
the RTFs are controlled by a small set of parameters, such as
room dimensions, reverberation time, location of the source
and the sensors etc., gives rise to the assumption that they are
confined to a low dimensional manifold. In [39] and [33], we
have shown that the RTFs of a certain node have a distinct
structure. Hence, they are not uniformly distributed in the
entire space, but rather pertain to a manifold Mm of much
lower dimensions.
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We define the function fma : Mm → R a ∈ {x, y, z}
which maps an RTF sample hm associated with the mth node
to the corresponding x, y or z coordinate of the source position
fma (hm). In the following derivation the three coordinates
are estimated individually. Further justification for a separate
treatment for each coordinate is discussed in Section VI-C.
Since the same estimation is used for each coordinate, the axis
notation is omitted henceforth. Let pmi ≡ fm(hm

i ) denote the
position evaluated by the function fm for the RTF sample hm

i ,
where i is a sample index referring to a certain position. In this
notation, the superscript denotes association to a certain node,
and the subscript denotes association to a certain position
index. Note that although the position of the source does not
depend on the specific node, the notation pmi is used to express
that the mapping is obtained from the measurements of the
mth node.

The mth RTF represents the reflection pattern originating
from the source and received by the mth node. Assuming
that the different nodes are scattered over the room area, they
experience a distinct reflection pattern, which differs from
that experienced by other nodes. Each RTF hm represents a
different view point on the same acoustic event of a source
speaking at some location in the enclosure. A particular node
may have an accurate view of certain regions in the room and
yet lacking on others. For example, closer distances are better
viewed, while remote positions are not well distinguished.
The view point of each node is reflected by the manifold
Mm whose structure represents the relations between different
RTFs, as they are inspected by that node. Combining the
information from the different nodes may therefore increase
the spatial separation and improve the ability to accurately
locate the source. The central issue is then how to fuse the
information provided by each of the M nodes to achieve this
goal.

Let h =
[
[h1]T , . . . , [hM ]T

]T
denote the aggregated RTF

(aRTF), which is a concatenation of the RTF vectors from
every node. We define the scalar function f : ∪Mm=1Mm → R
which attaches an aRTF sample hi with the corresponding x,
y or z coordinate of the source position pi ≡ f(hi). In the
first step, we discuss each node and its mapping function fm,
and then we combine the different views in the definition of
the function f .

In a fixed acoustic environment, the function fm that relates
hm
i to its position pmi (which is a scalar since it represents

the x, y or z coordinate of the position), is deterministic, in
the sense that a certain reflection pattern expressed by the
mth RTF is exclusively associated with a certain position.
However, even when all the environmental parameters are
fixed and known, there is no simple model that links a given
RTF sample to its position. Hence, we use the statistical model
presented in [34]. An RTF hm

i is assumed to be sampled from
the manifold Mm. The RTF sample hm

i is related by the
function fm to the corresponding position pmi . We assume
that pm follows a Gaussian process, as will be described in
Section III. A nomenclature listing the different symbols and
their meanings is given in Table I.

The estimation is semi-supervised and is based on a training
set of aRTF samples associated with various source positions,

measured in advance. However, the microphone positions may
be unknown since they are not required for the estimation.
The training set consists of two subsets: a small subset of
aRTF samples with ‘labels’, i.e. with known source positions,
and a large subset of aRTF samples without labels, i.e.,
with unknown source locations. The first subset consists of
nL labelled samples, denoted by HL = {hi}nL

i=1, and their
associated measured positions {p̄i}nL

i=1. The labelled positions
are marked by bars since they may slightly differ from the
actual positions due to imperfections in the measurements.
Note also that though all three coordinates of the position
are measured for each labelled sample, PL is defined as a
collection of scalars (associated with a certain coordinate)
rather than vectors, since the same derivation applies sepa-
rately to each coordinate. The second subset consists of nU
unlabelled samples, denoted by HU = {hi}nD

i=nL+1, where
nD = nL + nU . The entire training set consists of nD aRTF
samples and is denoted by HD = HL ∪HU . In the test stage,
we receive a new set HT = {hi}ni=nD+1 of nT new aRTF
samples from unknown locations, where n = nD + nT . The
entire set, including both the training and the test samples, is
denoted by H = HD ∪HT .

hm
i an RTF sample of the mth node associated with position pi

hi an aggregated RTF (aRTF) sample associated with position pi,
consisting of RTFs of all M nodes

pmi a position associated with hm
i , drawn from the Gaussian process

pm of the mth node
pi a position associated with hi, drawn from the Gaussian process

p
Mm the manifold associated with RTFs of the mth node

TABLE I: Nomenclature

III. MANIFOLD-BASED GAUSSIAN PROCESS

We first present the statistical model for each node individ-
ually, and then discuss the relations between different nodes.
Finally, we define the function f that combines the data from
all the nodes in a way that respects both the intra-relations
within each node and the inter-relations between the different
nodes.

We assume that pm follows a Gaussian process, i.e. any
finite set of positions associated with RTFs of the mth node,
are jointly distributed Gaussian variables. The Gaussian pro-
cess is a convenient choice since it is entirely defined by
its second order statistics, and is widely used for regression
problems [40]. We use a zero-mean Gaussian process for
simplicity. By setting the origin to the middle of the enclosure
of interest, the zero-mean assumption reflects that all possible
source positions are distributed around the origin. The co-
variance function is a pairwise affinity measure between two
RTF samples. We suggest to use a manifold-based covariance
function, in which the relation between two RTFs is not only a
function of the current samples, but also uses the information
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from the entire available set of RTF samples:

cov(pmr , p
m
l ) ≡

nD∑
i=1

km(hm
r ,h

m
i )km(hm

l ,h
m
i )

= 2km(hm
r ,h

m
l ) +

nD∑
i=1
i6=l,r

km(hm
r ,h

m
i )km(hm

l ,h
m
i ) (2)

where l and r represent ascription to certain positions, and km
is a standard pairwise function km :Mm×Mm −→ R, often
termed “kernel function”. The equality in (2) holds for kernels
that satisfy: km(hm

i ,h
m
j ) = 1 for i = j. A common choice is

to use a Gaussian kernel, with a scaling factor εm:

km(hm
i ,h

m
j ) = exp

{
−
‖hm

i − hm
j ‖2

εm

}
. (3)

The definition of the covariance in (2), induces a new type of
manifold-based kernel k̃m:

k̃m(hm
r ,h

m
l ) ≡ cov(pmr , p

m
l ) (4)

In [34] we adopted the manifold-based kernel proposed by
Sindhwani et al. [36]. Here, we propose another type of kernel,
which is more convenient for estimating the model hyperpa-
rameters and for deriving a recursive adaptation mechanism.
A similar kernel was used to define a graph-based diffusion
filter in [41], and was applied in a patch-based de-noising
algorithm in [42]. The Euclidean distance between the high-
dimensional RTFs, used in the standard kernel km(hm

r ,h
m
l ),

does not properly reflect their distance with respect to the
manifoldMm [39]. The new kernel k̃m(hm

r ,h
m
l ) is based on

{km(hm
l ,h

m
i )}ni=1 and {km(hm

r ,h
m
i )}ni=1, which represent

the relations between each sample to all the training samples.
The covariance in (2) between hm

l and hm
r is evaluated by

the correlation between all the inspected relations, namely
between {k(hm

l ,h
m
i )}ni=1 and {k(hm

r ,h
m
i )}ni=1. In this for-

mulation, the covariance is determined according to the extent
of correspondence between the mutual relations of hm

l and
hm
r to other samples on the manifold. When both samples

have similar relations to other samples, it indicates that they
are closely related, and the value of k̃(hm

r ,h
m
l ) increases

respectively.
We also define the relation between the functions of differ-

ent nodes q and w, evaluated for two RTF samples associated
with different source positions. Namely, we define the relation
between pqr and pwl for 1 ≤ l, r ≤ nD. We assume that pqr and
pwl are jointly distributed Gaussian variables and that their
covariance is defined by:

cov(pqr, p
w
l ) ≡ k̃qw(hq

r,h
w
l ) =

nD∑
i=1

kq(hq
r,h

q
i )kw(hw

l ,h
w
i ).

(5)
It is important to note that when examining the relation

between functions evaluated for different nodes, we cannot
directly compute the distance between the corresponding RTF
samples since they represent different views. In (5), we ex-
amine the intra-relations {kq(hq

r,h
q
i )}ni=1 in the qth manifold

and the intra-relations {kw(hw
r ,h

w
i )}ni=1 in the wth manifold.

The inter-relations between hq
r and hw

l are evaluated by the

correlation between the relations formed on each manifold
individually. The covariance defined in (5) emphasizes sim-
ilar relations observed by both nodes, and discard relations
observed by only one of the nodes. An illustration of the inter-
relation between the two manifolds is illustrated in Fig. 1. Note
that the single node relation (2) can be considered as a special
case of the multi-node relation (5).

Fig. 1: An illustration of the covarience computation for RTF
samples of different nodes q and w

IV. MULTI-NODE DATA FUSION

So far, we have presented the statistical model and defined
a Gaussian process pmi for each node. In addition, we have de-
fined the covariance of each individual process of a particular
node (2) and the cross-covariance between two processes of
two different nodes (5). Our goal is to unify these definitions
under one statistical umbrella which combines the information
provided by the different pairs and establishes a foundation for
deriving a Bayesian estimator for the source position.

A. Multiple-Manifold Gaussian Process

To fuse the different perspectives presented by the different
nodes, we define the multiple-manifold Gaussian process
(MMGP) p as the mean of the Gaussian processes of all the
nodes, i.e. each position pi drawn from the process is given
by:

pi =
1

M

(
p1i + p2i + . . .+ pMi

)
. (6)

Due to the assumption that the processes are jointly Gaussian,
the process p is also Gaussian with zero-mean and covariance
function given by:

cov(pr, pl) =
1

M2
cov

(
M∑
q=1

pqr,
M∑

w=1

pwl

)

=
1

M2

M∑
q,w=1

cov(pqr, p
w
l ). (7)
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Using the definitions of (2) and (5) we obtain the covariance
for pr and pl:

cov(pr, pl) ≡ k̃(hr,hl)

=
1

M2

nD∑
i=1

M∑
q,w=1

kq(hq
r,h

q
i )kw(hw

l ,h
w
i ). (8)

Here, the covariance, evaluated for two samples from the
process p, is determined using all M2 relations between the
different nodes and by averaging over all the samples in
HD. Regarding computational complexity, note that due to
symmetry, some terms in (8) are equal when q and w are
swapped, and that k(hi,hj) = 1 for i = j. The covariance
in (8), consists of all inter-relations between the different
nodes, enhancing observations which are common to pairs of
nodes, and ignoring relations that appear in only one node.
Through the lens of kernel-based learning, k̃(hr,hl) can be
considered as a composition of kernels, which, in addition to
connections acquired in each node separately, incorporates the
extra spatial information in the mutual relationship between
RTFs of different nodes. This formulation represents a robust
measurement of correlation by utilizing multiple view-points
of the same acoustic scene, aiming to improve the localization
capabilities.

The resulting Gaussian process is zero-mean with covari-
ance function k̃:

p ∼ GP(0, k̃). (9)

Accordingly, the random vector pH = [p1, . . . , pn]T , which
consists of n samples from the process p, has a multivariate
Gaussian distribution, i.e.,

pH ∼ N (0n, Σ̃H) (10)

where 0n is an n × 1 vector of all zeros and Σ̃H is the
covariance matrix with elements k̃(hi,hj), hi,hj ∈ H . Note
that the covariance matrix Σ̃H can be expressed in terms of the
covariance matrices of all the individual nodes Km

H , defined
by the standard kernel (Km

H)ij = km(hm
i ,h

m
j ) of (3):

Σ̃H =
1

M2

M∑
q,w=1

Kq
HKw

H . (11)

In this representation, the covariance matrix for any finite set
of samples from the process is computed by a sum of all
pairwise multiplications between the covariance matrices of
each of the nodes.
B. Alternating Diffusion Interpretation

Before we proceed to the derivation of the estimation
procedure, which is based on these definitions, we present an
alternative interpretation using a geometrical perspective from
the field of diffusion maps [43]. Specifically, we provide an
interpretation for the definitions of the covariance functions
in (5) and (8). As discussed above, every node represents
a different view point, which is realized by the structure
of the associated manifold Mm. We can create a discrete
representation of the mth manifold by a graph Gm in which
the vertices represent the RTF samples of the mth node and the
weights connecting between them are stored in the matrix Km

H .

This way, we obtain M graphs with matching vertices that are
associated with the same positions, but with different weighted
edges determined by the distances between the samples within
each separate node. In [44], the authors defined an alternating
diffusion operator, which constitutes a combined graph Gqw,
where the weight matrix is given by Kqw

H ≡ Kq
HKw

H . They
have shown that the Markov process defined on the resulting
graph extracts the underlying source of variability common to
the two graphs q and w (related to the microphone nodes q
and w).

In our case, an RTF is closely related to its associated
position, however it may be influenced by other factors as
well, such as estimation errors and noise. We assume that
the interferences introduced by a particular node differ from
the ones introduced by the other nodes. When measuring the
correlation between two nodes, we would like to emphasize
the common source of variability, namely the source position,
and to suppress artifacts and interferences, which are node-
specific effects. By multiplying the kernels of each two nodes
as indicated in (11), we average out incoherent node-specific
variables and remain only with the common variable, which
is the position of the source. This perspective provides a
justification to the averaging over different nodes as well
as over different samples, constituting a robust measure of
correlation between samples in terms of the physical proximity
between the corresponding source positions.

V. BAYESIAN INFERENCE WITH MULTIPLE-MANIFOLD
GAUSSIAN PROCESS

In the previous section we presented the MMGP p that
relates aRTF samples to the corresponding source positions.
We have shown that the covariance of the process depends
on both the internal relations within the same manifold (same
node) and the pairwise connections between different mani-
folds (different nodes). Note that the covariance function of
the process (8) is based only on the aRTF samples in HD,
and does not take into account the labellings. The information
implied by the labelled samples HL and their associated labels
PL is used to update our prior belief about the behaviour of
the process p, and to derive its posterior distribution. The pairs
{hi, p̄i}nL

i=1 serve as anchor points utilized for interpolating
a realization of the process p, while the Gaussian process
assumption in (9) is designed to ensure the smoothness of
the solution.

A. Localization with Multiple-Manifold Gaussian Process

Following the statistical model stated in Section II, we
assume that the measured positions PL = {p̄i}nL

i=1 of the
labelled set arise from a noisy observation model, given by:

p̄i = pi + ηi; i = 1, . . . , nL (12)

where ηi ∼ N (0, σ2) i = 1, . . . , nL are i.i.d. Gaussian noises,
independent of pi. The noise in (12) reflects uncertainties
due to imperfect measurements of the source positions while
acquiring the labelled set. Note that since the Gaussian vari-
ables pi and ηi are independent, they are jointly Gaussian.
Consequently, pi and p̄i are also jointly Gaussian. We define
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the likelihood of the process p based on the probability of the
labelled examples:

Pr(PL|p,HL) =
1√

2πσ2
exp

{
− 1

2σ2

nL∑
i=1

(p̄i − pi)2
}
. (13)

To perform localization, we are interested in estimating the
position of a new test sample ht ∈ HT of an unknown
source from an unknown location. The estimation is based
on the posterior probability Pr(pt ≡ f(ht)|PL, HL). Accord-
ing to (10) and (13), the function value at the test point
pt and the concatenation of all labelled training positions
pL = vec{PL} ≡ [p̄1, . . . , p̄nL

]T are jointly Gaussian, with:[
pL

pt

] ∣∣∣∣HL ∼ N
(

0nL+1,

[
Σ̃L + σ2InL

Σ̃Lt

Σ̃T
Lt Σ̃t

])
(14)

where Σ̃L is an nL × nL covariance matrix defined over the
function values at the labelled samples HL, Σ̃Lt is an nL× 1
covariance vector between the function values at HL and pt,
Σ̃t is the variance of pt, and InL

is the nL×nL identity matrix.
This implies that the conditional distribution Pr(pt|PL, HL) is
a multivariate Gaussian with µcond mean and σ2

cond variance
given by:

µcond = Σ̃T
Lt

(
Σ̃L + σ2InL

)−1
pL

σ2
cond = Σ̃t − Σ̃T

Lt

(
Σ̃L + σ2InL

)−1
Σ̃Lt. (15)

Hence, the maximum a posteriori probability (MAP) estimator
of pt, which coincides with the minimum mean squared error
(MMSE) estimator in the Gaussian case, is given by:

p̂t = µcond = Σ̃T
Ltp̃L (16)

where p̃L ≡ ΓLpL is a vector of weights which are indepen-

dent of the current test sample, and ΓL =
(
Σ̃L + σ2InL

)−1
.

Note that the estimator in (16) is obtained as a linear com-
bination of the kernel k̃ evaluated for the test sample ht and
each of the labelled samples HL, weighted by the entries of
p̃L. Note that the posterior is defined only with respect to the
labelled samples, hence the covariance terms are calculated
based solely on the labelled samples HL, without taking into
account the samples in the set HU as was defined in general in
the previous section. Although the unlabelled samples do not
appear explicitly in (16), they take role in the computation of
the correlation terms as implied by (8). In fact, the unlabelled
samples are essential both for obtaining a more accurate
computation of the weights p̃L, and for better quantifying
the relations between the current test sample and each of
the labelled samples. The variance of the estimator is given
by σ2

cond in (15). It can be seen that the posterior variance
σ2

cond is smaller than the prior variance Σ̃t, indicating that the
labelled examples reduce the uncertainty in the behaviour of
the Gaussian process. The variance of the estimator is smaller
for test samples which are close to a large number of labelled
samples, increasing the second term in (15), and therefore
decreasing the overall variance. The estimation is more reliable
in regions where the labelled samples are dense, and becomes
more uncertain in sparse regions.

B. Recursive Algorithm

In this section, we develop a recursive version for the
estimator in (16). The Gaussian process is adapted by the
information provided by new (streaming) RTF samples, in the
test stage. Any new RTF sample ht can be considered as an
additional unlabelled sample, hence, can be used to update
the covariance terms in (2) and (5). Considering also the new
sample, the covariance is given by an average of nD+1 kernel
values for all the training set and the current test sample.
Accordingly, the covariance in (8) for two labelled samples
1 ≤ l, r ≤ nL, is updated by:

k̃∗(hr,hl) =
1

M2

M∑
q,w=1

(
nD∑
i=1

kq(hq
r,h

q
i )kw(hw

l ,h
w
i )︸ ︷︷ ︸

training

+ kq(hq
r,h

q
t )kw(hw

l ,h
w
t )︸ ︷︷ ︸

new test sample

)

= k̃(hr,hl) +
1

M2

(
M∑
q=1

kq(hq
r,h

q
t )

)(
M∑

w=1

kw(hw
l ,h

w
t )

)
(17)

where ∗ stands for an updated term. Similarly, for kernels
satisfying km(hm

i ,h
m
j ) = 1 for i = j, the covariance in (8),

when measured between the new test sample ht and a labelled
sample hl, 1 ≤ l ≤ nL, is given by:

k̃∗(ht,hl) = k̃(ht,hl) +
1

M

M∑
q=1

kq(hq
l ,h

q
t ) (18)

According to (17) and (18), the updated forms of the covari-
ance matrix Σ̃L and of the covariance vector Σ̃Lt, are given
by:

Σ̃∗L = Σ̃L +
1

M2
kLtk

T
Lt

Σ̃∗Lt = Σ̃Lt +
1

M
kLt (19)

where kLt =
[∑M

q=1 kq(hq
1,h

q
t ), . . . ,

∑M
q=1 kq(hq

nL
,hq

t )
]T

.
Using the Woodbury matrix identity [45] and (19), we obtain

the adaptation rule for ΓL =
(
Σ̃L + σ2InL

)−1
:

Γ∗L =

(
Γ−1L +

1

M2
kLtk

T
Lt

)−1
= ΓL −

ΓLkLtk
T
LtΓL

M2 + kT
LtΓLkLt

(20)

Hence, the updated weights are p̃∗L = Γ∗LpL, and the esti-
mated position is given by:

p̂t = Σ̃∗TLt p̃∗L. (21)

C. Learning the Hyperparameters

The zero-mean Gaussian process model is fully specified by
its covariance function. Thus, the predictions obtained by this
model depend on the chosen covariance function. In practice,
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we use a parametric family of functions, i.e. a Gaussian kernel
as in (3) with a scaling-parameter εm. The values of the
parameters {εm}Mm=1 can be inferred from the data by op-
timizing the likelihood function of the labelled samples. From
the distribution defined in (14), the log-likelihood function of
the labelled samples get the form of a multivariate Gaussian
distribution, given by:

L = ln Pr(pL|HL; Θ) = −1

2
pT
L

(
Σ̃L + σ2InL

)−1
pL

− 1

2
ln
∣∣∣Σ̃L + σ2InL

∣∣∣− nL
2

ln(2π), (22)

where Θ denotes the set of model parameters. In (22), the
first term measures how well the parameters fit the given
labelled samples, and the second term reflects the model
complexity, which is evaluated through the determinant of the
covariance matrix. The optimization requires the computation
of the gradients of the log-likelihood function with respect to
each of the parameters. The partial derivative with respect to
εm can be generally expressed by (see [40] Chapter 5):

∂L

∂εm
= −1

2
trace

{
ΓL

∂Σ̃L

∂εm

}
+

1

2
pT
LΓL

∂Σ̃L

∂εm
ΓLpL

=
1

2
trace

{[
(ΓLpL)(ΓLpL)T − ΓL

] ∂Σ̃L

∂εm

}
(23)

where the partial derivative of Σ̃L in (23) with respect to each
εm, is given by:

M2 ∂Σ̃L

∂εm
=
∂
(∑M

q,w=1 Kq
LKw

L

)
∂εm

=
∂Km

L

∂εm

(
M∑
q=1

Kq
L

)
+

(
M∑
q=1

Kq
L

)
∂Km

L

∂εm
(24)

where ∂Km
L

∂εw
is an nL×nL matrix with (i, j)th entry given by

‖hi−hj‖2
ε2m

exp
{
−‖hi−hj‖2

εm

}
.

Similarly, we can also estimate the optimal value for the
variance σ2 of the observation noise. The partial derivative
with respect to σ2 has similar form to (23):

∂L

∂σ2
=

1

2
trace

{
(ΓLpL)(ΓLpL)T − ΓL

}
. (25)

Based on (23), (24) and (25), Eq. (22) can be optimized using
an efficient gradient-based optimization algorithm. It should
be noted that the parameter values are optimized through the
likelihood of the labelled set, hence, optimality for the test
samples cannot be guaranteed. This optimization can serve
as an initialization for the parameter values, which may then
be fine-tuned by other prevailing methods, such as cross-
validation. A flow diagram of the entire algorithm is illustrated
in Fig. 2.

D. Computational Complexity

In this section we analyse the computational complexity
of the proposed method. The major factors that influence
the complexity of the implementation are: the number of

training samples nD = nL + nU , the number of nodes M ,
the window length N , the number of frequency bins D,
and the number of time frames for each measurement T .
For simplicity, we equally weight multiplications, divisions,
additions, subtractions and exponentiations. We list the number
of operations required for each step in the algorithm. Note that
the operations in training phase are performed in advance only
once, while the operations in the test phase are performed for
each test sample.
Training Phase:

1) RTF estimation: The estimation of each RTF requires
O
(
N2 log2(N)T

)
operations. We estimate the RTF for

each training measurement with respect to each node,
hence the estimation of all the training RTF samples
requires O

(
N2 log2(N)TMnD

)
operations.

2) Covariance estimation: The estimation of the position in
the test phase by either (16) or (21), depends on ΓL =
(ΣL + σ2InL

)−1, which can be computed in advance.
First, we need to evaluate the kernel km(hm

i ,h
m
j ) for all

1 ≤ i ≤ nL, 1 ≤ j ≤ nD, 1 ≤ m ≤M , which requires
O (DMnLnD) operations. Second, we need to evaluate
the kernel k̃(hi,hj) in (8) for all 1 ≤ i, j ≤ nL, which
requires O

(
M2nDn

2
L

)
operations. The inversion of the

matrix ΣL + σ2InL
requires O

(
n3L
)

operations.
Hence, the total number of operations in the training phase is
given by:

CMPtr = O
(
N2 log2(N)TMnD +DMnLnD

+M2n2LnD + n3L

)
(26)

Test Phase:
1) RTF estimation: The estimation of the test RTFs with

respect to each node requires O
(
N2 log2(N)TM

)
op-

erations.
2) Covariance estimation: In order to compute the covari-

ance between the test sample and the labelled samples
ΣLt, we first need to evaluate the kernel km(hm

i ,h
m
t )

for all 1 ≤ i ≤ nD, 1 ≤ m ≤ M , which requires
O (DMnD) operations. Next, we need to evaluate the
kernel k̃(ht,hi) in (8) for all 1 ≤ i ≤ nL, which
requires O

(
M2nLnD

)
.

3) Adaptation: The adaptation of ΓL in (20) requires
O
(
n2L
)

operations.
4) Position Estimation: The estimation of the position by

either (16) or (21) requires O
(
n2L
)

operations.
Hence, the total number of operations in the test phase is given
by:

CMPts = O
(
N2 log2(N)TM +DMnD +M2nLnD + n2L

)
(27)

It should be noted that in both the training and the test
stages, the complexity is dominated by the RTF estima-
tion, i.e. CMPtr ≈ O

(
N2 log2(N)TMnD

)
and CMPts ≈

O
(
N2 log2(N)TM

)
. This part can be replaced if different

acoustic features are used instead of RTFs. For demonstration,
let: nL = 36, nU = 100, M = 5, N = 2048, D =
291 T = 150 (corresponding to 5s long signals). Using a
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Fig. 2: A flow diagram of the proposed algorithm. The algorithm consists of a training phase (the upper part) and a test phase
(the lower part). In the training phase we estimate the RTFs for the training set, compute the covarince matrix of the labelled
samples, and optimaize the model parameters. In the test phase, we estimate the aRTF for the current sample, compute the
covarince between the current sample and the labelled set, update the covarince terms, and estimate the position.

Matlab implementation on a standard PC (CPU Intel Core2
Quad 3.7 GHz, RAM 8 GB) the training phase takes on
average 67.21s. The test phase takes on average 0.51s per
a single test sample of 5s. For comparison, the SRP-PHAT
implementation [46] on the same PC takes 0.44s per test
sample of 5s.

VI. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of the
proposed method for localization of a single source in noisy
and reverberant conditions. We focus on localization in both
the x and the y coordinates of the source position, for a fixed
height of the source. Further discussion on localization in all
three coordinates appears in Section VI-C. The performance is
evaluated using both simulated data and real-life recordings.
The simulation is used to give a wide comparison of the
effect of different noise and reverberation levels. However,
the examination of real recordings is of great importance,
since the simulation may not faithfully represent the physical
phenomena encountered in real-life scenarios.

A. Simulation Results

We simulated a 5.2 × 6.2 × 3.5m room with different
reverberation levels, using an efficient implementation [47] of
the image method [48]. Six pairs of microphones are located
around the room. The source positions were confined to a
2 × 2m squared region, at 0.5m distance from one of the
room walls. The training set consisted of nL = 36 labelled
samples creating a grid with a resolution of 40cm. In addition,
there were nU = 100 unlabelled measurements from unknown

locations in the same region. The room setup and the positions
of the training set are illustrated in Fig. 3. For each position,
we simulated a source uttering a WGN signal for the labelled
points and a speech signal for the unlabelled points. The
algorithm was tested on nT = 200 measurements of unknown
sources from unknown locations with unique speech signals.
All the measurements were 5s long, and were contaminated
by additive WGN. For each point, the cross PSD (CPSD) and
the PSD were estimated with Welch’s method with 0.128s
windows and 75% overlap, and were utilized for estimating the
RTF in (30) for 2048 frequency bins. The RTF vector consisted
of D = 291 frequency bins corresponding approximately to
100 − 2400Hz, in which most of the speech components are
concentrated (for details please refer to Appendix A).

For the proposed method we used (21) to update the
model according to the current test sample, i.e. for each test
point the correlation was obtained by an average of nD + 1
points (the entire training set and the current test point). For
comparison, we also examined the performance of two other
algorithms which, although based on manifold considerations,
heuristically fuse the data from the nodes. Both algorithms rely
on the manifold-based Gaussian process regression described
in [34]. The first approach (‘Mean’ in the graph) simply
averages the estimates obtained by each single node separately.
The second algorithm (‘Kernel-Mult’ in the graph) uses a
Gaussian process with a covariance function that is given by
the product of the individual kernels of the single nodes (3).
For a Gaussian kernel, using the product between the kernels
of the different nodes is identical to using the aRTF as an
input to the kernel, i.e.

k(hi,hj) = k(h1
i ,h

1
j ) · k(h2

i ,h
2
j ) · · · k(hM

i ,h
M
j ) (28)
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Fig. 3: The simulated room setup. The blue x-marks denote
the microphones, the red asterisks denote the labelled samples
and the blue dots denote the unlabelled samples.

since multiplying the kernels results in the summation of
the squared distances, which equals the distance between the
corresponding aRTFs. This means that the algorithm regards
the aRTF as a one long feature vector, and is indifferent to the
fact that the measurements are aggregated by different nodes.
In contrast, the proposed method individually refers to each
node and its associated RTF. As a baseline, we also compared
the results with a modified version of the SRP-PHAT algo-
rithm [46]. Note that, opposed to the learning-based methods,
the SRP-PHAT algorithm requires the knowledge of the exact
microphone positions.

The root mean square errors (RMSEs) attained by all four
algorithms are compared in two scenarios. In the first scenario,
various reverberation levels are examined while the signal to
noise ratio (SNR) is set to 25dB in both the training and the
test phases. In the second scenario, the SNR is varying while
the reverberation time is set to 700ms. In the second scenario,
the training set is generated with a fixed SNR of 20dB. All
the results are summarised in Fig. 4.

It can be observed that the reverberation level has a direct
influence on the performance, and all four algorithms exhibit
degraded performance as reverberation increases. Regarding
noise, it can be seen that the SNR level does not have
a clear impact on the performance. From the comparison
between the algorithms it is indicated that the proposed method
outperforms the other learning-based algorithms and obtains
a significantly smaller error. The SRP-PHAT has comparable
results for low reverberation levels, yet it is inferior for high
reverberation levels. In addition, the proposed method obtains
a smaller error compared to the SRP-PHAT for all noise levels,
in high reverberation conditions.

We also examined the algorithm performance in several
non-trivial test cases, to better understand its performance and
to quantify its robustness. We do not present the results for
the other training-based approaches, which were shown to be
inferior to the proposed method. However, we present also the
results of the SRP-PHAT algorithm, when the comparison to
the proposed method is meaningful. First, we examined the
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Fig. 4: The RMSE (a) for various reverberation times (SNR
is set to 25dB), and (b) for various noise levels (reverberation
time is set to 700ms). The proposed method (’MMGP’) is
compared with two other training-based approaches based
on [34] (’Mean’ and ’Kernel-Mult’) and to the SRP-PHAT
algorithm [46].

reliance upon the direct path information compared with the
reverberant information. The training set was generated using
full AIRs, which consists of reflections of all orders, at a fixed
reverberation level of 700ms. We examined the error obtained
in the test phase for various reflection orders of the AIRs,
at the same reverberation level. Figure 5 depicts the RMSE
as a function of the reflection order for the proposed method
and for the SRP-PHAT algorithm. It can be observed that the
errors obtained by the two algorithms represent two opposite
trends. The SRP-PHAT algorithm relies on the direct-path
information, hence, its performance degrades as the reflection
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Fig. 5: The RMSE received for various reflection orders of the
AIR, for reverberation time set to 700ms. For the proposed
method the training was performed with AIRs with maximum
reflection order.

order increases. Conversely, the proposed method relies on the
full reflection pattern captured by the receptive RTF, hence, it
performs better in high reflection order.

Moreover, we examined a scenario in which the test posi-
tions are outside the specified training region. In Fig. 6, we
present two cases of a slight deviation from the designated
region of up to 0.1m, and a large deviation from the designated
region of up to 1m. Figures 6(a),(c) depict the test positions for
each case, and Figs. 6(b),(d) depict the true y coordinate and
the estimated y coordinate for each case. We observe that the
estimated position is limited to the designated region, and that
in the case of deviation, the estimated position is close to either
of the borders of the region. We conclude that the algorithm
does not perform extrapolation, however it does make coherent
decisions within the defined region.

In addition, we examined the influence of changes in the
microphone positions and orientations. The first change was
a movement of the nodes after training. In the test phase
we randomly shifted the microphones in each node in both
the x and the y coordinates. For each node, each coordinate
was shifted by an independent random Gaussian variable
with variance σ2

x or σ2
y . The RMSE obtained for each total

shifting variance σ2
xy ≡ σ2

x + σ2
y is depicted in Fig. 7(a). The

second change regarded the orientation of the microphones.
In all other simulations, the microphones were assumed to be
omnidirectional, whereas in this simulation we used micro-
phones with cardioid directivity pattern. In both the training
and the test phases the microphones were uniformly oriented
between zero degrees and a certain maximum orientation
angle. The RMSE obtained for each maximum orientation
angle is depicted in Fig. 7(b). It can be seen that both the
proposed method and the SRP-PHAT algorithm are influenced
by changes in the microphone positions and orientations. The
influence of these changes on both methods is comparable,

and the proposed method maintains the advantage over the
SRP-PHAT algorithm.

B. Real Recordings

The algorithm performance was also tested using real
recordings carried out in the speech and acoustic lab of Bar-
Ilan University. This is a 6×6×2.4m room controllable rever-
beration time, utilizing 60 interchangeable panels covering the
room facets. The measurement equipment consists of an RME
Hammerfall HDSPe MADI sound-card and an Andiamo.mc
(for Microphone pre-amplification and digitization (A/D)). As
sources we used Fostex 6301BX loudspeakers, which have a
rather flat response in the frequency range 80Hz-13kHz. The
signals were measured by 6 AKG type CK-32 omnidirectional
microphones, which were placed in pairs with internal distance
of 0.2m. The reverberation level was set to T60 = 620ms,
which was determined by changing the panels configuration.
An illustration of the room layout is depicted in Fig. 8(a),
and a photograph of the room and the experimental setup is
presented in Fig. 8(b).

The source position was confined to a 2.8 × 2.1m area
located near the room entrance. In this region, we generated
nL = 20 equally-spaced labelled samples with resolution of
0.7m. Additional nU = 50 unlabelled measurements, were
generated in this region in random positions. The algorithm
performance was examined on 25 test samples also generated
in random positions, in the defined region. For generating the
labelled samples a chirp signal was used, while for generating
both the unlabelled samples and the test samples we used 75
different speech signals of both males and females drawn from
the TIMIT database. All the measurements were 10s long,
and were carried out with a sampling frequency of 48kHz
and a resolution of 24-bits. The measured signals were then
downsampled to 16kHz to reflect the frequency content of the
TIMIT signals. The RTF estimation was performed similarly
to the way it was defined in the simulation part.

We examine two different types of noise sources: air-
conditioner noise and babble noise, which is simultaneously
played from 3 loudspeakers located in the room. The RMSEs
obtained for different SNR levels, when the reverberation is
fixed to T60 = 620ms, are depicted in Fig. 9(a). We observe
that the proposed algorithm outperforms the other methods,
and obtains a smaller error for both noise types. It can also be
observed that the results obtained based on the lab recordings
exhibit the same trends as the results based on the simulated
data.

We also applied the recursive adaptation process presented
in Section V-B. The positions of the 25 test samples were
estimated sequentially, where in each time step, the current
sample was treated as an additional unlabelled sample, and was
used to update the covariance of the MMGP according to (20)
and (21). The samples in the test set were initially ordered
according to their physical adjacency, so that neighbouring
samples were added in a sequential manner. We used the same
set of samples, and repeated the sequential adaptation, when
applied to different orders of the samples in the set, by mixing
the order of neighbouring samples. In addition, we averaged
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Fig. 6: The test positions for deviations of up to (a) 0.1m and (c) 1m (the blue x-marks denote the microphones, the red
asterisks denote the labelled samples, the blue dots denote the unlabelled samples, and the green dots denote the test samples).
The true and the estimated y-coordinate for deviations of up to (b) 0.1m and (d) 1m. Reverberation time is set to 400ms.

the error for sets of 5 consecutive time steps. Both averages are
essential for the sake of generality to ensure that the results are
neither tailored to a specific ordering of the samples in the set,
nor reflect the quality of a particular sample. Figure 10 depicts
the average RMSE. We observe a monotonic decrease in the
error as more samples are added to the computation of the
covariance function in a recursive manner. These results also
emphasize the importance of the semi-supervised approach,
i.e. the significant role that unlabelled samples have in the
estimation process.

Another examination was carried out to inspect the ef-
fectiveness of the parameter optimization through the ML
criterion of the labelled samples, as presented in Section V-C.
In Fig. 11, we present the error of the estimated test positions

obtained for different values of ε1 in the range between
100−1000, while the other parameters remain fixed. It can be
observed that the optimal value is around 500. For comparison,
we followed the proposed optimization using gradient decent
starting from an initial value of 100. We obtain that the optimal
value for ε1 is 514, which resembles the empirical value that
optimized the performance on the test samples as implied by
Fig. 11. This indicates that the parameter values, obtained
through an optimization over the labelled samples, yields, in
practice, plausible results for estimating the unknown positions
of the test samples.

Finally, we investigated the effect of changes in the envi-
ronmental conditions between the training and the test stages.
Training-based approaches are often criticized for being im-
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Fig. 7: The RMSE received for (a) node movements during
test phase and for (b) microphones with cardioid pattern with
different randomization of the orientation level. Reverberation
time is set to 400ms.

practical, since identical conditions in both the training and
the test phases cannot be guaranteed (e.g. door and windows
may be opened or closed, people may move in the room
etc.). We examined two types of changes: the door of the
room changed from closed (during training) to open (during
test) and slight changes in the panel configuration (decreasing
the room reverberation time by about 5%). We repeated the
measurements of 20 test samples in both scenarios (the training
samples are left unchanged), and compared the results obtained
under these conditions to the nominal results, where there
is no change in the environmental conditions between the
training set and the test set. This comparison is summarized
in Table II, which presents the RMSEs in all the defined
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Fig. 8: (a) The room layout: the microphone positions are
marked by blue ‘x’ marks, and the positions of the labelled
samples are marked by red circles. (b) a photograph of the
room.

scenarios. It can be seen that either opening the door or
changing the panel configuration does not have a significant
impact on the localization results of the proposed method,
which indicates that the algorithm is robust to slight changes
that are likely to occur in practical scenarios. Note that the
results of the SRP-PHAT algorithm are slightly improved
under these changes due to the reduction in the reverberation
level.

C. Discussion

In this section we discuss several practical aspects of the
proposed method. We first discuss the implementation of the
method for localization in all three coordinates x, y and z. Ex-
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perimental results demonstrate the mapping of the RTFs to the
x and y coordinates of the source position, for a fixed height.
Note that the RTFs used in the proposed algorithm, consist
of reflections impinging on the array also from non-horizontal
directions. Therefore, a full localization in all directions is
feasible. In this case, one has to perform training in the vertical
axis as well, and to form a 3D training region. An additional
variability in the z coordinate increases the computational
complexity and may influence the quality of the localization
results. Another possibility is to form a unique training set for
each speaker (and therefore for a fixed height), and circumvent
localization in the z coordinate. To form a speaker-specific
training set, one needs to acquire a small number of labelled
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Fig. 11: The RMSE obtained for different values of the kernel
scaling parameter ε1.

Nominal Door Panel

MMGP 0.465 0.493 0.506

SRP-PHAT 0.540 0.516 0.531

TABLE II: Comparison between the RMSE obtained in the
case where the training and the test sets are generated exactly
with the same conditions (first column) and when the test
is generated under some environmental changes: open door
(second column) or changes in the panel configuration (third
column).

samples in advance. Unlabelled measurements can be collected
during run-time, and can be utilized to update the initial model,
using the adaptation process presented in Section. V-B.

A second issue requiring further discussion is the fact that
the estimation of each coordinate is performed separately.
Here, we assume that variations of the RTFs reflect an in-
dependent movement of the source in either direction. We use
this independence assumption to simplify the derived mapping.
It is important to note that the same covariance terms are used
in (16) or in (21) for the estimation in either axis, implying
a direct connection between the estimators. The fact that both
estimators rely on the same covariance terms, goes hand in
hand with the assumption that similar RTFs are associated with
close positions in both coordinates. In general, the converse
does not hold, namely, when two RTFs are associated with
remote positions, there can still be proximity in one coordinate
and remoteness in the other coordinate.

Third, it is important to note that the proposed method is
derived for and applied to a localization of a single source. In
the case of multiple sources, the method is applicable when
the RTFs of each of the sources can be estimated separately.
Several works on RTF estimation for multiple sources have
been published recently [49], [50], with applications also to
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multi-source localization [51], [52].

VII. CONCLUSIONS

In this paper, a novel mathematical approach was developed
to fuse the information acquired in a multi-node scenario.
This approach, when applied to source localization in ad
hoc networks of distributed microphones, deviates from the
common practice in the field since it is devised in a semi-
supervised manner based on a data-driven model rather than on
mathematically predefined relationships. A Gaussian process is
used for modelling the unknown relation between the acoustic
measurements and the corresponding source positions. The
prerecorded training measurements provide useful information
about the characteristics of the acoustic environment, and are
used to define the covariance of the Gaussian process by aver-
aging over both the different nodes and the different relations
to other available acoustic samples. As for the practical aspect,
the method produces satisfactory results in challenging adverse
conditions including high reverberation and noise levels, with
no need for microphone calibration (the algorithm is blind
to their positions). The experimental results based on real lab
recordings further emphasize the applicability of the algorithm
and its ability to successfully locate the source in involved
scenarios with possibly natural variations between the training
and the test phases. Moreover, the gradual improvement in
the performance, as demonstrated in the sequential application
of the algorithm, verify the relevance of the information
manifested in unlabelled training recordings to the localization
task.

APPENDIX A

We consider the relative impulse response hm(t,q), which
satisfies: am2 (t,q) = hm(t,q)∗am1 (t,q). The AIR is typically
very long and complicated since it consists of the direct
path between the source and the relevant microphone, and
the various reflections from the different surfaces and ob-
jects in the enclosure. Thus, the relative impulse response
also has a complex high-dimensional nature. However, in
a static environment, where the acoustic conditions and the
microphone positions are fixed, the only parameter that dis-
tinguishes between the different AIRs is the source position.
For convenience, we work in the frequency domain, and use
the relative transfer function (RTF) Hm(k,q), which is the
Fourier transform of the relative impulse response hm(t,q),
where k is the frequency index. Accordingly, the mth RTF is
given by the ratio between the two acoustic transfer func-
tions (ATFs) of the two microphones in the mth pair, i.e.
Hm(k,q) = Am

2 (k,q)/Am
1 (k,q), where Am

i (k,q) is the ATF
of the respective AIR ami (t,q). Assuming uncorrelated noise,
the mth RTF can be computed using the PSD and CPSD of
the measured signals and the noise at the mth pair:

Hm(k,q) =
Sm
y2y1

(k,q)

Sm
y1y1

(k,q)− Sm
u1u1

(k)
=

Sss(k)Am
2 (k,q)Am∗

1 (k,q)

Sss(k)|Am
1 (k,q)|2

=
Am

2 (k,q)

Am
1 (k,q)

(29)

where Sm
y2y1

(k,q) is the CPSD between ym1 (t) and ym2 (t),
Sm
y1y1

(k,q) is the PSD of ym1 (t), Sm
u1u1

(k) is the PSD of the
noise um1 (t) in the first microphone, and Sss(k) is the PSD
of the source s(t). We use a biased estimator of the RTF,
neglecting the noise PSD in the denominator of (29):

Ĥm(k,q) ≡
Ŝm
y2y1

(k,q)

Ŝm
y1y1

(k,q)
. (30)

where Ŝm
y2y1

(k,q) and Ŝm
y1y1

(k,q) are estimated
based on the measured signals. Let hm(q) =
[Ĥm(k1,q), . . . , Ĥm(kD,q)]T , be a concatenation of
RTF estimates of the mth node in D frequency bins. Due
to the symmetry of the Fourier transform for real valued
functions, only the first half of the transform is considered.
In addition, we consider only those frequency bins where
the speech components are most likely to be present, to
avoid poor estimates of (30) in frequencies where the speech
components are absent. For the sake of clarity, the position
index is omitted throughout the paper.
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