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Abstract—The reverberation power spectral density
(PSD) is often required for dereverberation and noise
reduction algorithms. In this work, we compare two
maximum likelihood (ML) estimators of the reverberation
PSD in a noisy environment. In the first estimator, the
direct path is first blocked. Then, the ML criterion for
estimating the reverberation PSD is stated according to
the probability density function (p.d.f.) of the blocking
matrix (BM) outputs. In the second estimator, the speech
component is not blocked. Since the anechoic speech PSD
is usually unknown in advance, it is estimated as well. To
compare the expected mean square error (MSE) between
the two ML estimators of the reverberation PSD, the
Cramér-Rao Bounds (CRBs) for the two ML estimators are
derived. We show that the CRB for the joint reverberation
and speech PSD estimator is lower than the CRB for
estimating the reverberation PSD from the BM outputs.
Experimental results show that the MSE of the two
estimators indeed obeys the CRB curves. Experimental
results of multi-microphone dereverberation and noise
reduction algorithm show the benefits of using the ML
estimators in comparison with another baseline estimators.

I. INTRODUCTION

Reverberation and ambient noise may degrade the
quality and intelligibility of the signals captured by
the microphones of mobile devices, smart TVs and
audio conferencing systems. While intelligibility does
not degrade by early reflections, it can be significantly
degraded by late reflections (i.e., reverberation) due
to overlap masking effects [1]. The estimation of the
reverberation power spectral density (PSD) is a much
more challenging task than the estimation of the ambient
noise PSD, since it is highly non-stationary and since
speech-absence periods cannot be utilized.

Both single- and multi-microphone techniques have
been proposed to reduce reverberation (see [2], [3] and
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the references therein), while many of these techniques
require an estimate of the reverberation PSD (e.g. [4]). A
statistical model of reverberant signals usually depends
on the PSD of the anechoic speech component. Since the
anechoic speech PSD is changing rapidly across time and
is unknown in advance, the anechoic speech PSD should
be either ignored or estimated as well. In our previous
work [4], a multi-microphone minimum mean square
error (MMSE) estimator of the early speech component
was implemented as a minimum variance distortionless
response (MVDR) beamformer followed by a postfilter.
The reverberation and the ambient noise were treated by
both the MVDR stage and the postfiltering stage. The
ambient noise PSD matrix was assumed to be known.
The most difficult task was to provide an accurate esti-
mate of the reverberation PSD that is required for both
stages. The reverberation PSD was estimated by averag-
ing the marginal reverberation levels at the microphones,
obtained using the single-channel estimator proposed
in [5]. The postfilter was calculated using the decision-
directed approach [6]. The speech PSD was not estimated
explicitly. In the sequel, multichannel estimators of the
speech, noise or reverberation PSDs are discussed.

In [7], the authors proposed an estimator for the noise
PSD matrix assuming a non-reverberant scenario and
time-varying noise level. A normalized version of the
noise PSD matrix was estimated, using the most recent
speech-absent segments. Next, for the speech-present
segments, only the level of the noise was estimated.
The authors proposed to estimate the level of the noise
from signals at the output of a blocking matrix (BM),
which blocks the speech signals. Since the speech signal
is blocked, the PSD matrix of the BM outputs comprises
only noise components. A closed-form maximum likeli-
hood (ML) estimator of the noise level was proposed
w.r.t. the probability density function (p.d.f.) of the
BM outputs. This estimator may be applied also for
reverberation assuming that the observed signals do not
contain additive noise.

In [8], [9], a reverberant and noisy environment was
addressed. The reverberation was modelled as a diffuse
sound field with time-varying level and the noise PSD
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matrix was assumed to be known. In this work, the
authors proposed to estimate the time-varying level of the
reverberation from the signals at the output of a BM. The
authors defined an error matrix using the PSD matrix of
the BM outputs. The elements of the error matrix were
assumed to be zero-mean Gaussian variables. The best
fitting value for the reverberation PSD was estimated by
minimizing the Frobenius norm of the error matrix.

Recently, in [10], an estimator for the reverberation
PSD in a noisy environment was proposed. First, the
received signals are filtered by a BM to block the ane-
choic speech. Then, the likelihood of the reverberation
PSD, given the signals at the output of the BM, is
maximized. Due to the complexity of the p.d.f., a closed-
form solution cannot be derived. Instead, an iterative
Newton’s method for maximizing the ML was used. For
the application of the Newton’s iterations, the first- and
second-order derivatives of the log-likelihood are calcu-
lated in closed-form. However, since the BM processes
the data and reduces the number of available signals,
applying the ML at the output of the BM is prone to
sub-optimality.

In [11], the dereverberation task for hearing aids
applications was addressed, assuming a noise-free en-
vironment. The reverberation component was similarly
modeled as in [8]. The authors propose not to block the
speech signal but to rather estimate its PSD as well. A
closed-form solution for the maximum likelihood esti-
mators (MLEs) of the time-varying reverberation PSD
and the anechoic speech PSD is then presented based
on an expression derived in [12]. The MLE was derived
under the assumption that the speech component and the
reverberant component are zero-mean Gaussian vectors,
with rank-1 PSD matrix for the speech component and
full-rank PSD matrix for the reverberant component.

More recently, in [13], an optimal estimator in the ML
sense for the reverberation PSD in noisy environment
was proposed without using a blocking stage. Instead,
the reverberation and the anechoic speech PSD levels
were jointly estimated. Similarly to [10], a closed-form
solution cannot be derived. Thus, an iterative Newton’s
method for maximizing the ML was used. For the
application of Newton’s iterations, the first- and second-
order derivatives of the log-likelihood were calculated
in closed-form. It is unclear whether the preliminarily
blocking stage used in [10] degrades or enhances the
accuracy of the reverberation estimation. It is therefore
interesting to compare the two MLEs, i.e. the MLE of
the reverberant PSD without using the BM [13] and the
MLE which uses the BM [10].

A common way to analyze an MLE is by examining
its Cramér-Rao Bound (CRB), since the mean square

error (MSE) of an MLE asymptotically achieves the
CRB. By careful examination of the CRB expression,
one can reveal factors that may decrease the MSE of the
MLE. In [14], the authors derive the CRB expressions for
the MLE of the reverberant and speech PSDs proposed
in [11], [12]. The authors show that the CRB expression
for the reverberation PSD is independent of the speech
component. It should be emphasized that this result is
valid only for the noiseless case. In [15], the authors
show that the MLE derived in [11], which circumvents
the blocking of the desired speech, has a lower MSE
than the MLE derived in [8], which uses the BM.

In the current paper, the CRB for the estimator in [10]
that uses the blocking stage, and the CRB for the joint
estimator in [13] that circumvents the blocking stage are
derived and compared. Although the estimators are based
on different signal models, they both provide an exact
solution in the ML sense given the considered signal
model. The ML estimator is commonly used in the signal
processing community as it is mathematically rigorous.
Moreover, the CRB is a reliable tool for checking the
estimation error of the ML estimator. The comparison
between these two estimators is interesting from both
practical and theoretical points of view as it provides
new insights into the pros and cons of using a blocking
stage, which is used in various noise reduction and
dereverberation algorithms (see references [7]–[10]).

The paper is organized as follows. In Section II,
the reverberant and noisy signal model is formulated.
In Section III, the two ML estimators are derived and
summarized. In Section IV, the two CRB expressions are
derived and compared. Section V presents the simulation
study by calculating the MSE of the two MLEs and their
respective CRB and demonstrates the dereverberation
and noise reduction capabilities of an algorithm that
uses these estimators. Finally, conclusions are drawn in
Section VI and the work is summarized.

II. PROBLEM FORMULATION

We consider N microphone observations consisting of
reverberant speech and additive noise. The reverberant
speech can be split into two components, the direct and
reverberation parts:

Yi(m, k) = Xi(m, k) +Ri(m, k) + Vi(m, k), (1)

where Yi(m, k) denotes the ith microphone observation
in time-index m and frequency bin index k, Xi(m, k) de-
notes the direct speech component, Ri(m, k) denotes the
reverberation and Vi(m, k) denotes the ambient noise.
Here Xi(m, k) is modeled as a multiplication between
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the anechoic speech and the direct transfer function
(DTF)

Xi(m, k) = Gd,i(k)S(m, k), (2)

where Gd,i(k) is the DTF and S(m, k) is the desired
anechoic speech.

The N microphone signals are concatenated in the
vector

y(m, k) = x(m, k) + r(m, k) + v(m, k) (3)

where

y(m, k) =
[
Y1(m, k) Y2(m, k) . . . YN (m, k)

]T
x(m, k) =

[
X1(m, k) X2(m, k) . . . XN (m, k)

]T
= gd(k)S(m, k)

gd(k) =
[
Gd,1(k) Gd,2(k) . . . Gd,N (k)

]T
r(m, k) =

[
R1(m, k) R2(m, k) . . . RN (m, k)

]T
v(m, k) =

[
V1(m, k) V2(m, k) . . . VN (m, k)

]T
.

The speech signal is modeled as a Gaussian process
with S(m, k) ∼ N (0, φS(m, k)) where φS(m, k) is the
speech PSD. The reverberation and the noise components
are assumed to be uncorrelated and may be modelled by
zero-mean multivariate Gaussian probability. The PSD
matrix of the noise Φv(k) = E

{
v(m, k)vH(m, k)

}
is assumed to be time-invariant and known in advance
or can be accurately estimated during speech-absent
periods. The PSD matrix of the reverberation is time-
varying, since the reverberation originates from the
speech source. However, the spatial characteristic of the
reverberation is assumed to be time-invariant, as long
as the speaker and microphone positions do not change.
Therefore, it is reasonable to model the PSD matrix of
the reverberation as a time-invariant matrix with time-
varying levels. Hence, the p.d.f. of the reverberant signal
vector is modelled as:

r(m, k) ∼ N (0, φR(m, k) Γ(k)) , (4)

where Γ(k) is the time-invariant spatial coherence matrix
of the reverberation and φR(m, k) is the temporal level
of the reverberation. In the current work, we assume
that the reverberation can be modelled using a spatially
homogenous and spherically isotropic sound field (as
in many previous works [4], [16]–[19]). Under this
assumption, and assuming omnidirectional microphones
and a known microphone array geometry, the spatial
coherence is uniquely defined as

Γij(k) = sinc
(

2πk

K

Di,j
Tsc

)
, (5)

where sinc(x) = sin(x)/x, K is the number of frequency
bins, Di,j is the inter-distance between microphones i
and j, Ts is the sampling time and c is the sound velocity.
The goal in this work is to compare two ML estimators
of φR(m, k), given the measurements y(m, k), with the
other parameters gd(k), Γ(k), and Φv(k) known. As the
speech PSD φS(m, k) is naturally unavailable, φS(m, k)
should be estimated or eliminated. One alternative is to
simultaneously estimate the variance of the reverberation
and the speech. Another alternative is to first block the
speech signal using a standard BM, and then estimate
the reverberation variance alone. The main goal of the
paper is to analytically compare two ML estimators of
the reverberation power. The main contributions of the
paper are 1) to describe the ML estimators with and
without using the blocking matrix; 2) to derivate the
CRBs of each estimator; 3) to analytical compare these
CRBs; 4) to discuss the considerations for choosing an
appropriate estimator for a given scenario; and in partic-
ular 5) to analytically study the influence of applying the
blocking stage on the estimation error. This result may
also be applicable to other algorithms that use a blocking
matrix.

In the following sections we first derive the MLE
(Section III) and then derive and compare their respective
CRBs (Section IV).

III. PRESENTATION OF THE TWO MAXIMUM

LIKELIHOOD SCHEMES

First, the joint MLE of both the reverberation and the
anechoic speech PSDs is derived. Second, the MLE is
derived for the reverberant PSD alone, while the speech
signal is blocked. In the following, whenever applicable,
the frequency index k and the time index m are omitted
for brevity.

A. Joint estimation of reverberation and speech PSDs

The PSD is foreseen to be smooth over time. It is
therefore proposed to estimate φS and φR using a set of
successive segments by concatenating several snapshots,
assumed to be i.i.d. Denote ȳ as a vector of M i.i.d. past
snapshots of y,

ȳ(m) ≡
[

yT(m−M + 1) . . . yT(m)
]T
. (6)
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Collecting all definitions, the p.d.f. of microphone sig-
nals ȳ is

f (ȳ(m)) =

m∏
m̃=m−M+1

1

πN |Φy|
exp

(
yH(m̃)Φ−1

y y(m̃)
)

=

(
1

πN |Φy|

)M
exp

(
m∑

m̃=m−M+1

yH(m̃)Φ−1
y y(m̃)

)

=

(
1

πN |Φy|

)M
exp

(
Tr
[
Φ−1

y M Rȳ(m)
])

=

(
1

πN |Φy|
exp

(
Tr
[
Φ−1

y Rȳ(m)
]))M

, (7)

where Φy is the PSD matrix of the observed signals that
is assumed to be fixed during the entire segment and is
defined as

Φy = φSgdg
H
d + φR Γ + Φv (8)

and

Rȳ(m) ≡ 1

M

m∑
m̃=m−M+1

y(m̃)yH(m̃). (9)

The MLE aims at finding the most likely parameter set
φ =

[
φR φS

]T w.r.t. the p.d.f. of ȳ(m), i.e.,

φML,ȳ = argmax
φ

log f (ȳ(m); φ) . (10)

Since there is no closed-form solution to φML,ȳ, the
Newton’s method may be applied to derive an iterative
search (c.f. [20])

φ(`+1) = φ(`) −H−1
(
φ(`)

)
d
(
φ(`)

)
, (11)

where d (φ) is the first-order derivative of the log-
likelihood with respect to φ, and H (φ) is the corre-
sponding Hessian matrix, i.e.,

d (φ) ≡ ∂ log f (ȳ(m); φ)

∂φ
,

H (φ) ≡ ∂2 log f (ȳ(m); φ)

∂φ∂φT
. (12)

The first-order derivative d (φ) is a 2-dimensional vector

d (φ) ≡
[
DR (φ) DS (φ)

]T
, (13)

with elements

Di (φ) = M Tr
[(

Φ−1
y Rȳ(m)− I

)
Φ−1

y

∂Φy

∂φi

]
, (14)

where i ∈ {R,S}, ∂Φy(m)
∂φR

= Γ, ∂Φy

∂φS
= gdg

H
d . The

Hessian is a 2× 2 matrix:

H (φ) ≡
[
HRR (φ) HSR (φ)
HRS (φ) HSS (φ)

]
. (15)

Algorithm 1: Multi-microphone reverberation and
speech PSD estimation in a noisy environment.
for all time frames and frequency bins m, k do

Compute Rȳ(m) using (9).
Initialize by φ(0) = 0.
if (d1 (0) < 0) & (d2 (0) < 0) then

φML,ȳ
R = φML,ȳ

S = ε
else

for ` = 0 to L− 1 do
Compute Φ

(`)
y using (8)

Calculate φ(`+1) using (11).
Bound φ(`+1) to the range [ε, Z].

end
end
φML,ȳ = φ(L)

end

Applying a second derivative to DR (φ) and DS (φ)
yields the elements of H (φ):

Hij (φ) = −M Tr
[
Φ−1

y

∂Φy

∂φj
Φ−1

y Rȳ(m)Φ−1
y

∂Φy

∂φi
+

(
Φ−1

y Rȳ(m)− I
)
Φ−1

y

∂Φy

∂φj
Φ−1

y

∂Φy

∂φi

]
, (16)

where i, j ∈ {R,S}.
In order to apply the Newton’s method, the following

practical considerations has to been taken into account:

1) The PSDs of the reverberation and the speech are
always positive. Thus, the Newton’s method may
be initialized with φ(0) = 0.

2) In cases where the first-order derivatives d (φ) in
φ = [0, 0]T are negative, the maximum point is
probably located in the third quadrant (i.e., φS < 0
and φR < 0). In such a case, the ML estimates
of φML,ȳ

R and φML,ȳ
S can be set to be zero without

executing the Newton’s method. However, to avoid
dividing by zero, the reverberation and speech
levels can be set to some small positive value ε.

3) To avoid illegal PSD level estimates, the parameter
set φ(`) may be confined to be in the range
[ε, Z] where Z ≡ 1

N yHy − 1
N Tr [Φv(k)] is the

a posteriori level of the entire reverberant speech
component.

The joint ML estimation of φ is summarized in Algo-
rithm 1. Additional technical details can be found in [13].

For a noiseless case (which can be determined by
evaluating Tr [Φv]), a closed-form solution for φR is
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available [11, Eq. 7a]:

φML,ȳ
R =

1

N − 1
Tr
[(

Γ−1 − Γ−1gdg
H
d Γ−1

gH
d Γ−1gd

)
Rȳ(m)

]
.

(17)

B. Estimation of the reverberation PSD using a BM

In this section, the speech component is first blocked,
and then an MLE of the reverberation PSD is derived.
The speech signal is blocked using a standard blocking
matrix, satisfying BHgd = 0. A sparse option for the
blocking matrix is (see e.g. [4], [21])

B =


−G∗

d,2

G∗
d,1
−G∗

d,3

G∗
d,1

. . . −G∗
d,N

G∗
d,1

1 0 . . . 0
0 1 . . . 0
...

...
. . . 0

0 0 . . . 1

 . (18)

The output of the blocking matrix is given by

u = BH y = BH (r + v) . (19)

The p.d.f. of a set of M i.i.d. snapshots ū(m) (where
ū(m) is similarly defined as (6)) is given by

f(ū(m)) =

(
1

πN |Φu|
exp

(
Tr
[
Φ−1

u Rū(m)
]))M

,

(20)
where

Φu(m) = BH (φR Γ + ΦV ) B (21)

and

Rū(m) =
1

M

m∑
m̃=m−M+1

u(m̃)uH(m̃) = BHRȳ(m)B.

(22)
Under this model, the MLE of φR aims at finding the

most likely φR w.r.t. the p.d.f. of ū(m), i. e.,

φML,ū
R = argmax

φR

log f (ū(m); φR) . (23)

Similar to the previous estimator, there is no closed-form
solution for φML,ū

R . Newton’s method may be used to
derive an iterative search (c.f. [20])

φ
(`+1)
R = φ

(`)
R −

D
(
φ

(`)
R

)
H
(
φ

(`)
R

) , (24)

where D (φR) and H (φR) are the first- and second-order
derivatives

D (φR) ≡ ∂ log f (ū(m); φR)

∂φR
, (25)

H (φR) ≡ ∂2 log f (ū(m); φR)

∂φ2
R

. (26)

Algorithm 2: Multi-microphone reverberation PSD
estimation.
for all time frames and frequency bins m, k do

Compute Rū(m) using (22).
if D (0) < 0 then

φML,ū
R = ε

else
Initialize by φ(0)

R = 0.
for ` = 0 to L− 1 do

Compute Φ
(`)
u using (21)

Calculate φ(`+1)
R using (24).

Bound φ(`+1)
R to the range [ε, Z].

end
φML,ū
R = φ

(L)
R

end
end

The first-order derivative equals to

D (φR) = M Tr
[ (

Φ−1
u Rū(m)− I

)
Φ−1

u

∂Φu

∂φR

]
, (27)

where ∂Φu

∂φR
= BHΓB. The second-order derivative

equals to

H (φR) = −M Tr
[
Φ−1

u

∂Φu

∂φR
Φ−1

u Rū(m)Φ−1
u

∂Φu

∂φR
+

(
Φ−1

u Rū(m)− I
)
Φ−1

u

∂Φu

∂φR
Φ−1

u

∂Φu

∂φR

]
. (28)

Similar practical considerations to the described in the
previous section can be applied to the estimator which
uses the BM. The MLE of φR which uses the BM is
summarized in Algorithm 2. Additional technical details
can be found in [10].

For the noiseless case, a closed-form solution for φR
is available [7, Eq. 7]:

φML,ū
R =

1

N − 1
Tr
[(

BHΓB
)−1

Rū(m)
]
. (29)

Interestingly, the estimators in (17) and in (29) are
mathematically identical. In Appendix A, the following
identity is proved

Γ−1 − Γ−1gdg
H
d Γ−1

gH
d Γ−1gd

= B
(
BHΓB

)−1
BH. (30)

Substituting the above identity in (17) and using the
cyclic property of the trace operation on B yields the
estimator in (29). Hence, in the absence of noise the
two ML estimators are identical.
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IV. CRB ANALYSIS OF THE ML ESTIMATORS

In the following section, the CRBs of the estimators
summarized in Section III are derived and compared. By
comparing the CRBs, some insights about the estimators
may be deduced.

A. CRB Derivation for the Joint Estimator

In the following section, the CRB for φR under the
joint estimator of the reverberation and speech PSDs
is derived. To derive the CRB, the Fisher information
matrix (FIM) of φML,ȳ is first derived. The FIM of φR
and φS w.r.t. the p.d.f. of ȳ can be decomposed as

Iȳ =

(
IȳRR IȳSR
IȳRS IȳSS

)
, (31)

where Iȳij is the Fisher information of φi and φj (where
i, j ∈ {R,S}). The CRB for φR is obtained by inverting
the FIM and taking the corresponding component:

CRBȳ
φR

=
{(

Iȳ
)−1
}

11
=

IȳSS
IȳRRIȳSS − IȳRSIȳSR

. (32)

Both φR and φS are components of the PSD matrix
Φy. The Fisher information of two parameters associated
with a PSD matrix of a Gaussian vector is given by [22],
[12] , [23]:

Iȳij = M Tr
[
Φ−1

y

∂Φy

∂φi
Φ−1

y

∂Φy

∂φj

]
, (33)

where M is the number of snapshots. Substituting the
derivatives ∂Φy

∂φR
and ∂Φy

∂φS
in (33) yields the expressions

for the elements of the FIM:

IȳRR = M Tr
[
Φ−1

y ΓΦ−1
y Γ

]
, (34a)

IȳSS = M Tr
[
Φ−1

y gdg
H
d Φ−1

y gdg
H
d

]
, (34b)

IȳRS = I ȳ
SR = M Tr

[
Φ−1

y ΓΦ−1
y gdg

H
d

]
. (34c)

To continue the derivation, Φ−1
y is calculated using the

matrix-inversion Lemma:

Φ−1
y = Ψ−1 −Ψ−1gdg

H
d Ψ−1 1

φ−1
S + gH

d Ψ−1gd
, (35)

where
Ψ ≡ φR Γ + Φv. (36)

Substituting (35) in (34) and employing some algebraic
steps, the following results are obtained:

IȳRR = M

(
γ0 −

2γ3

γ1 + φ−1
S

+
γ2

2(
γ1 + φ−1

S

)2
)

(37a)

IȳSS =
Mγ2

1

φ2
S

(
γ1 + φ−1

S

)2 (37b)

IȳSR =
Mγ2

φ2
S

(
γ1 + φ−1

S

)2 , (37c)

where

γ0 = Tr
[
Ψ−1ΓΨ−1Γ

]
(38a)

γ1 = gH
d Ψ−1gd (38b)

γ2 = gH
d Ψ−1ΓΨ−1gd (38c)

γ3 = gH
d Ψ−1ΓΨ−1ΓΨ−1gd. (38d)

Finally, substituting the results from (38) in (32) yields
the final expression for the CRB:

CRBȳ
φR

(φS) =
1

M

1

γ0 − 2γ3γ1 + γ2
2

γ2
1

+ 2δ
γ2
1(φSγ1+1)

, (39)

where δ ≡ γ3γ1 − γ2
2 .

For the noiseless case the definitions in (38) are
simplified to:

γ0 = Nφ−2
R (40a)

γ1 = φ−1
R gH

d Γ−1gd (40b)

γ2 = φ−2
R gH

d Γ−1gd (40c)

γ3 = φ−3
R gH

d Γ−1gd. (40d)

The expression for the CRB becomes simpler and iden-
tical to the CRB derived in [14, Eq. 12]:

CRBȳ
φR

=
1

M

φ2
R

N − 1
. (41)

B. CRB for the estimator with BM

In the following section, the FIM and the CRB of φR
w.r.t. the p.d.f. of ū is derived. Similarly to (33), the
Fisher-information of φR equals

IūRR = M Tr
[
Φ−1

u

∂Φu

∂φR
Φ−1

u

∂Φu

∂φR

]
, (42)

and the corresponding CRB is given by

CRBū
φR

=
(
IūRR
)−1

. (43)

Using (21), one can notice that Φ−1
u =

(
BHΨB

)−1.
Substituting it in (42), the FIM now reads:

IūRR = M Tr
[ (

BHΨB
)−1

BHΓB
(
BHΨB

)−1
BHΓB

]
.

(44)

To derive the expression for the CRB, the following
identity presented in (30) may be used (the identity is
proved in Appendix A):

B
(
BHΨB

)−1
BH = Ψ−1 − Ψ−1gdg

H
d Ψ−1

gH
d Ψ−1gd

. (45)

Using the cyclic property of the trace operation, the
Fisher-information from (44) may be written as

IūRR = MTr
[
B
(
BHΨB

)−1
BHΓB

(
BHΨB

)−1
BHΓ

]
.

(46)
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Substituting the identity from (30) in (46), and using
the definitions in (38), the Fisher information can be
obtained as

IūRR = M

(
γ0 − 2

γ3

γ1
+
γ2

2

γ2
1

)
. (47)

Finally, employing the definition of the CRB in (43)
yields the expression for the CRB:

CRBū
φR

=
1

M

1

γ0 − 2γ3γ1 + γ2
2

γ2
1

. (48)

Note that the expressions of the CRBs in (39) and
(48) are similar besides the additional component in
the denominator of (39), namely 2δ

γ2
1(φSγ1+1) . For the

noiseless case, it can be shown that CRBū
φR

is identical
to CRBȳ

φR
in (41).

C. Comparison of the CRBs

In the following section, the CRBs in (39) and (48)
are compared, to determine which of which provides the
more accurate estimate in the minimum MSE sense.

Although CRBū
φR

is independent of φS and
CRBȳ

φR
(φS) depends on φS , the CRBs may be evaluated

as a function of φS .
The following observations can be made w.r.t. CRBū

φR

and CRBȳ
φR

(φS):

1) Compared to CRBū
φR

, CRBȳ
φR

(φS) has an addi-
tional component in the denominator that is equal
to 2δ

γ2
1(φSγ1+1) .

Since γ1 is positive1 and φS is positive, the sign
of the additional component depends only on δ. In
Appendix B, it is proven that δ ≥ 0. Accordingly,
it can be concluded that CRBȳ

φR
(φS) is always

smaller than CRBū
φR

.
2) The additional component 2δ

γ2
1(φSγ1+1) is inversely

proportional to φS . Hence, it can be deduced
that CRBȳ

φR
(φS) is monotonically increasing

as a function of φS . Moreover, the limit of
CRBȳ

φR
(φS) as φS goes to infinity is

lim
φs→∞

CRBȳ
φR

(φS) = CRBū
φR
. (49)

Finally, an illustration of CRBȳ
φR

(φS) and CRBū
φR

as
a function of φS is depicted in Fig. 1.

Some relevant conclusions from the behavior of the
CRBs can be drawn:
• Since, theoretically, CRBȳ

φR
(φS) ≤ CRBū

φR
con-

sistently, the ML estimation of φR without the

1Ψ consists of PSD matrices and therefore is a positive-definite
matrix. Thus, according to (38b), γ1 is always positive.

-

6
CRB

CRBū
φR

φS0

CRBȳ
φR

(φS)

Fig. 1. Illustration of CRBȳ
φR

(φS) and CRBū
φR

as a function of
φS .

blocking operation has, asymptotically, a lower
MSE than the ML estimation of φR with the block-
ing operation.

• When the signal to reverberation plus noise ra-
tio (SRNR) decreases (i.e. φS becomes smaller),
the performance difference increases. This proba-
bly occurs since low levels of speech renders the
blocking operation unnecessary. However, in high
SRNR cases, the blocking operation becomes more
effective.

• In case where φS = 0 (i.e. the blocking action
is entirely unnecessary), the CRB for the joint
estimator is simplified to

CRBȳ
φR

(φS = 0) =
1

M

1(
γ0 − 2γ3γ1 + γ2

2

γ2
1

)
+ 2δ

γ2
1

.

(50)
Thus, even in cases where the blocking operation is
unnecessary, if δ equals zero the CRBs are equal.

• In Appendix B, it is shown that δ equals zero
when: 1) the ambient noise level equals zero, or
2) the spatial fields of the ambient noise and the
reverberation are identical. In such cases both CRBs
are identical.

• For large inter-microphone distances and/or high
frequencies, the reverberant sound field tends to be
spatially white. If the ambient noise is also spatially
white, it can be shown that both CRBs are identical.

V. PERFORMANCE EVALUATION

In this section, an experimental comparison between
the reverberation PSD estimators in Sections III-A and
III-B is presented. First, a Monte-Carlo experiment was
carried out, to investigate and confirm the theoretical
results of the paper. Secondly, the reverberation PSD was
estimated from real reverberant and noisy signals using
the ML estimator and other competing estimators. The
average log-error between the estimated reverberation
PSDs and the oracle reverberation PSDs is presented.
Thirdly, a dereverberation and noise reduction algorithm
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was applied using estimates of the two estimators (and
some other competing estimators). The output signal
was compared with the direct-path signals in terms of
perceptual evaluation of speech quality (PESQ) score and
log-spectral distance (LSD) result.

A. CRB Comparison Using Monte-Carlo Simulations

This section provides several Monte-Carlo simulations
to demonstrate the theoretical results obtained in the
previous sections.

In each simulation, the influence of only one parame-
ter is examined while the other parameters remain fixed.
N microphone signals were synthetically created with
M i.i.d. snapshots. Pure-tone signals with frequency
f = 800 Hz were used throughout this section. A
uniform linear array was simulated. The DTF gd was
assumed to be a pure delay system

Gd,i = exp (−ι2πfτ · i) , (51)

where ι =
√
−1 and τ is the time difference of

arrival (TDOA) between two neighboring microphones.
The TDOA depends on the direction of arrival (DOA),
τ = d cos(θ)

c , where θ is the angle of arrival (from
0◦ to 180◦), d is the inter-microphones distance and
c is the sound velocity (c = 340 m

sec ). The spatial
coherence matrix Γ was set as a diffused noise field,
Γij = sinc (2πfd|i− j|/c). The noise PSD matrix was
set as Φv = φV I, where I denotes the identity matrix.
The values of the nominal parameter set are presented
in Table I.

In each simulation, 2000 Monte-Carlo experiments
were executed. In each experiment, φR was estimated
according to Algorithm 1 and 2. The MSE of the
reverberation PSD was computed.

Four measurements were calculated: 1) the theoretical
CRB in (39) refers to the joint ML estimator which
circumvents the application of the blocking operation;
2) the MSE of the estimates using Algorithm 1; 3) the
theoretical CRB in (48) refers to the ML estimator which
use the blocking operation; 4) the MSE of the estimates
using Algorithm 2. In the following sections, the four
measurements are presented vs. the values of M , φS ,
φR, φV , N , d, θ and f .

1) CRBs and MSEs as a function of the number of
snapshots M : Figure 2 shows the CRBs and the MSEs
of the reverberation level estimates as a function of the
snapshots number M . The snapshots number varies from
5 to 500 snapshots (it should be noted that since in prac-
tice the reverberation is highly time-varying, this high
number of snapshot can only be used in this artificial
experiment). It can be verified that the theoretical CRBs

Parameter Nominal value

Snapshot number M 100
Microphone number N 4
Speech PSD φS 0.5
Rev. PSD φR 0.5
Noise PSD φV 0.5
Inter-microphone distance d 0.06 m
Frequency f 800 Hz
Direction of arrival 90◦

Iterations number L 10
TABLE I

NOMINAL PARAMETER-SET FOR THE SIMULATED EXPERIMENTS.
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Fig. 2. The CRBs and the MSEs of the reverberation level estimates
of the two MLE schemes as a function of the number of snapshots
M .

curves match well with the MSE curves, especially when
the number of snapshots is large. In a low number of
snapshots, the MSEs curves are even lower than the
CRBs curves. This result may be attributed to the lower
and upper delimitations described in Algorithm 1 and 2.
As expected, the CRBs and MSEs curves decrease as the
number of snapshots increase.

2) CRBs and MSEs as a function of φS: In the second
experiment, the oracle φS was set to various values, such
that the SRNR varies from −20 dB to 15 dB where
SRNR ≡ 10 log

(
φS

φR+φV

)
. Figure 3 shows the CRBs

and the MSEs of the reverberation level estimates as
a function of the SRNR. It can be verified that the
theoretical CRBs curves match with the MSE curves and
follow the theoretical contours depicted in Fig. 1. In low
SRNR there is a difference between the CRBs while in
high SRNR the CRBs are identical.

3) CRBs and MSEs as a function of φR: In the third
experiment, the oracle φR was set to various values,
such that the signal-to-reverberant ratio (SRR) varies
from −20 dB to +20 dB, where SRR ≡ 10 log

(
φS

φR

)
.

The signal-to-noise ratio (SNR) is 0 dB, where SNR ≡
10 log

(
φS

φV

)
. Figure 4 shows the CRBs and the MSEs
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Fig. 3. The CRBs and the MSEs of the reverberation level estimates
of the two MLE schemes as a function of the SRNR.
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Fig. 4. The CRBs and the MSEs of the reverberation level estimates
of the two MLE schemes as a function of the SRR.

of the reverberation level estimates as a function of the
SRR. In the middle range, the MSE curves match the
CRB curves. In high φR values (i.e., low SRR), the MSE
of both estimators are higher than the CRB curves. In
low φR values (i.e., high SRR), the MSEs are smaller
than the CRBs. These effects often occur when the oracle
value of desired parameter is very small or very large
relative to the other parameters. We have no theoretical
explanation for these effects.

In Fig. 5, the difference between CRBū
φR

and CRBȳ
φR

,

D ≡ CRBū
φR
− CRBȳ

φR
, (52)

is presented as a function of φS and φR. It can be verified
that as long φS decreases or φR increases the difference
becomes higher.

4) CRBs and MSEs as a function of φV : In the
fourth experiment, the noise power φV was set to various
values, such that the SNR varies from −10 dB to
+30 dB. The SRR is 0 dB. Figure 6 shows the CRBs
and the MSEs of the reverberation PSD estimates as a
function of the SNR.
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Fig. 5. The difference between the CRBs, D (52), as a function of
φS and φR.
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Fig. 6. The CRBs and the MSEs of the reverberation level estimates
of the two MLE schemes as a function of the SNR with L = 10.

In high φV values (i.e., low SNR), both the MSEs
are lower than the CRB curves. In the middle range,
the MSE curves match the CRB curves. In low φV
values (i.e., high SNR), the MSEs are much higher than
the CRB curves. Moreover, the MSE for Algorithm 2
outperforms the MSE of Algorithm 1. The CRB curves
in high SNR case are identical as shown in (41). Ap-
parently, in high SNR cases, the parameters update rule
converges slowly [24], especially when two parameters
are estimated. Therefore, it is worthwhile to increase the
iteration number L in such cases. Figure 7 shows the
CRBs and the MSEs of the reverberation PSD estimates
as a function of the SNR where L = 20 iterations of
the Newton search were applied (Nominally, L = 10
iterations were applied). It can be verified that the MSEs
are now well matched with the CRBs.

5) CRBs and MSEs as a function of the microphone
number N : In the fifth experiment, the microphone
number is varied from 2 microphones to 20. Figure 8
shows the CRBs and the MSEs of the reverberation PSD
estimates as a function of N .

The MSEs and CRBs curves are decreased as the
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Fig. 7. The CRBs and the MSEs of the reverberation level estimates
of the two MLE schemes as a function of the SNR with L = 20.
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Fig. 8. The CRBs and the MSEs of the reverberation level estimates
of the two MLE schemes as a function of N .

microphone number is increased. Conceptually, as long
as the amount of data is increased the MSE is decreased.
Moreover, since the blocking stage blocks only one
dimension, the difference between the CRB curves is
decreased as long as the dimensions number of the data
is increased. There is a difference between the estimators
when 3− 7 microphones are used.

6) CRBs and MSEs as a function of the inter-
microphones distance d: In the sixth experiment, four
microphones was taken. The microphone inter distance
d was set to the range 0.01−0.2 m. Figure 9 depicts the
CRBs and the MSEs of the reverberation PSD estimates
as a function of d. There is a noticeable difference
between the estimators only in the range 0.03− 0.12 m.
Generally, the MSEs and the CRBs are decreases as d
increases. At large inter-microphone distances the diffuse
field behaves as a spatially white noise field. In our case,
the fields of the reverberation and the ambient noise are
therefore identical. As was mentioned in Sec. IV-C, the
CRBs are identical in this case.

7) CRBs and MSEs as a function of the DOA: In the
seventh experiment, various directions of arrivals were
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Fig. 9. The CRBs and the MSEs of the reverberation level estimates
of the two MLE schemes as a function of d.
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Fig. 10. The CRBs and the MSEs of the reverberation level estimates
of the two MLE schemes as a function of θ.

examined. The angle of arrival θ was set in the range
1◦−180◦. Figure 10 depicts the CRBs and the MSEs of
the reverberation PSD estimates as a function of θ. It can
be observed that the estimator without blocking achieves
a lower CRB and MSE compared to the estimator with
blocking for all the directions of arrival. Interestingly, in
endfire scenarios, the CRBs and the MSEs decreases.

8) CRBs and MSEs as a function of the frequency f :
In the sixth experiment, the frequency was set in the
range 0− 4000 Hz. Figure 11 shows the CRBs and the
MSEs of the reverberation PSD estimates as a function
of f . There is a difference between the estimators in the
frequency range 400−1300 Hz. The MSEs decreases as
the frequency increases. At high frequencies the diffuse
field resembles a spatially white noise field. As the
reverberation and ambient noise fields are identical, also
the CRBs are identical.

B. Performance Evaluation with Measured Room Im-
pulse Responses

The performance of the two MLEs is now examined
using real reverberant and noisy signals. As in [13],
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Fig. 11. The CRBs and the MSEs of the reverberation level estimates
of the two MLE schemes as a function of f .

the performance of the two estimators is evaluated by:
1) examining the log-error between the estimated value
of φML

R and the true reverberation PSD, obtained by
convolving the anechoic speech signal with the late
component of the acoustic impulse response; and 2)
utilizing the estimated PSD levels φML

R in a speech
dereverberation and noise reduction task.

1) Experimental setup: The experiments consist of
reverberant signals plus directional noise with various
SNR levels. Spatially white (sensor) noise was also
added, with power 20 dB lower than the directional noise
power. Anechoic speech signals were convolved by room
impulse responses (RIRs), downloaded from an open-
source database recorded in our lab. Details about the
database and RIRs identification method can be found
in [25]. Reverberation time was set by adjusting the
room panels, and was measured to be approximately
T60 = 0.61 s. The SRR was measured to be approxi-
mately −5 dB. The spatial PSD matrix Φv was estimated
using periods in which the desired speech source was
inactive. An oracle voice activity detector was used for
this task. The loudspeaker was positioned in front of
a four microphone linear array, such that the steering
vector was set to gd =

[
1 1 1 1

]T. The inter-
distances between the microphones were [3, 8, 3] cm.
The sampling frequency was 16 kHz, the frame length of
the short-time Fourier transform (STFT) was 32 ms with
8 ms between successive time-frames (i.e., 75% overlap).
We have also set ε = 10−10. The number of iterations
was set to L = 10. In cases where the a posteriori SNR
1

N
yHy

φV
was at least 60 dB, the high-SNR estimator (17)

was used. All measures were computed by averaging the
results obtained using 50 sentences, 4–8 s long, evenly
distributed between female and male speakers.

Practically, due to the non-stationarity of the signals,
we have substituted the sliding window averaging (9) by
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Fig. 12. Log-errors of the two ML reverberation PSD level estimators
in comparison with Braun2013 [8] and Lefkimmiatis2006 [26]. The
upper part of each bar represents the underestimation error, while the
lower part represents the overestimation error.

recursive averaging that was used also in our previous
work [13], i.e.,

Ry(m) = αRy(m− 1) + (1− α) y(m)yH(m), (53)

where 0 ≤ α < 1 is a smoothing factor. The smoothing
factor α was set to 0.7, i.e. only few frames are involved
in the smoothing. In each time-index m, Ry(m) in (53)
was used for estimating φS(m) and φR(m).

2) Accuracy of the ML estimator: The performance
of the two ML estimators was compared to other two
existing estimators in terms of log-errors between the
estimated PSD and the oracle PSD: 1) the estimator
in [8], denoted henceforth as Braun2013; 2) the estimator
in [26]2, denoted henceforth as Lefkimmiatis2006.

In Fig. 12, the results for several SNR levels are
depicted.

The mean log-errors between the estimated PSD levels
and the oracle PSD levels are presented. In order to
calculate the oracle PSD levels, the anechoic speech
was filtered with the reverberation tails of the RIRs.
The reverberation tails were set to start 2 ms after the
arrival time of the direct-path. To reduce the variance
of the oracle PSD, the mean value of the oracle PSDs
over all microphones was computed. The result bars
are split to distinguish between underestimation errors
and overestimation errors. It is evident that the joint
estimator outperforms the other three competing esti-
mators in terms of overall log-errors for −2 dB, 3 dB,
8 dB and 13 dB SNR values. For the higher SNR of

2Note that the algorithm in [26] aims to estimate the noise variance
given the received signals PSD matrix while the noise coherence
matrix is assumed to be known. In our implementation, we treat the
reverberation as an additive noise, and we estimate its level while
we subtract the ambient noise PSD matrix from the received signals
PSD matrix.
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Fig. 13. Occurrence of the various SRNRs in the time-frequency
bins
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Fig. 14. Mean log-errors of the two ML late reverberation PSD
estimators vs. the SRNR axis.

13 dB, Lefkimmiatis2006 and Braun2013 outperform the
proposed ML estimators.

We also examined the mean log-errors between the
estimated PSD levels and the oracle PSD levels for
various values of SRNR. We computed the true SRNR
for each time-frequency bin and calculated the mean
log-errors for each SRNR separately. In Fig. 13 the
occurrence of the various SRNRs in the time-frequency
bins is presented. It can be seen that the most common
SRNRs are found in the range -10 dB to 0 dB. In
Fig. 14, the mean log-errors results are presented vs. the
SRNR level for the blocking based ML estimator and
the non-blocking based ML estimator. It can be seen that
for low SRNR the joint ML estimator outperforms the
blocking-ML estimator, but for high SRNR the blocking-
ML estimator becomes better. It can be deduced that
for most highly occurring SRNRs the joint estimator
outperforms blocking-ML estimator. This result is inline
with the trends presented in the theoretical derivation
in Section IV-C. In Fig. 15, the mean log-errors results
are presented vs. the SRNR level for Braun2013 and
Lefkimmiatis2006.

3) Dereverberation performance: The performance of
the proposed estimator was also examined by utiliz-
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Fig. 15. Mean log-errors of Braun2013 and Lefkimmiatis2006 vs.
the SRNR axis.

ing the estimated PSDs in a joint dereverberation and
noise reduction task. The estimated PSDs were used
to compute the multi-channel Wiener filter presented
in [4]. The multichannel Wiener filter (MCWF) was
designed to jointly suppress the power of the total
interference (e.g. the reverberation and the noise) by
deriving the MMSE estimator of the direct path. The
MCWF was implemented by a two-stage approach: a
minimum variance distortionless response beamformer
followed by a corresponding post filter. The performance
of the dereverberation algorithm was evaluated in terms
of two objective measures, commonly used in the speech
enhancement community, namely PESQ [27] and LSD.
The clean reference for evaluation in all cases was the
anechoic speech signal filtered by only the direct path
of the RIR.

In Tables II and III, the performance measures for
several input SNR levels are depicted. The joint estimator
outperforms all competing estimators with respect to the
LSD measures while the estimator that uses the blocking
outperforms all competing estimators with respect to
the PESQ measures.The PESQ seems to mainly reflect
reverberation reduction rather than speech distortion. The
estimator that uses the blocking slightly overestimates
the reverberation level and hence results in more rever-
beration reduction. The dereverberation and noise reduc-
tion results are given for a specific case just to present
a usage of the reverberation power. The differences
between the performance of the two variants are indeed
small. Note that the oracle PSD of the reverberation level
does not yield a significantly better result either.

VI. CONCLUSIONS

In this work, two ML estimators of the reverberation
PSD level in a noisy environment were compared. The
first one jointly estimates the reverberation and the
anechoic speech PSDs. The second one first blocks the
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SNR -2 dB 3 dB 8 dB 13 dB

Unprocessed 1.33 1.53 1.74 1.86
Oracle φR 1.91 2.04 2.11 2.15

Braun2013 [8] 1.78 1.96 2.07 2.13
Lefkimmiatis2006 [26] 1.81 1.98 2.08 2.13
ML with blocking 1.91 2.06 2.14 2.17
ML without blocking 1.83 1.97 2.06 2.12

TABLE II
PESQ SCORES FOR THE MCWF [4] USING VARIOUS ESTIMATORS.

SNR -2 dB 3 dB 8 dB 13 dB

Unprocessed 9.42 8.08 6.91 6.14
Oracle φR 5.93 5.47 5.17 4.95

Braun2013 [8] 6.27 5.65 5.30 5.10
Lefkimmiatis2006 [26] 6.10 5.58 5.27 5.08
ML with blocking 6.13 5.55 5.20 4.98
ML without blocking 6.09 5.51 5.19 4.96

TABLE III
LSD SCORES FOR THE MCWF [4] USING VARIOUS ESTIMATORS.

speech component and then estimates the reverberation
level PSD using the outputs of the blocking matrix. The
CRB expressions associated with the two ML estimators
were derived and compared. The CRB associated with
the joint estimator is proven to be lower than the CRB
associated with the estimator that uses the blocking
stage. An experimental study computed the MSE curves
of the two estimators vs. the various problem param-
eters. Monte-Carlo simulations shows that the MSE is
congruous with the CRB curves. The ML estimators
were applied to real recordings in order to estimate the
reverberation PSD levels. The estimated levels were uti-
lized to implement a recently proposed dereverberation
and noise reduction algorithm. The obtained results are
presented and compared with the results of obtained by
other competing algorithms from the literature.

APPENDIX A

In this appendix, the following identity is proven:

B
(
BHΨB

)−1
BH = Ψ−1 − Ψ−1gdg

H
d Ψ−1

gH
d Ψ−1gd

. (A.54)

Note that the only condition for the identity is BHgd =
0. In order to prove the above identity, the well-known
criterion of the MVDR-beamformer (BF) is used in
the following. Regarding the signal model in (3), the
MVDR-BF that minimizes the power of the interference
(i.e. the reverberation and the noise) while maintaining

distortionless response of the direct path is defined
by [21]

hMVDR = argmin
h

hHΨh s.t. hHgd = F, (A.55)

where F is the required response. The solution for this
optimization problem is

hMVDR =
Ψ−1gd

gH
d Ψ−1gd

F ∗. (A.56)

The MVDR-BF can be implemented using a generalized
sidelobe canceller (GSC) structure [21], [28]:

hMVDR = h0 −BhNC, (A.57)

where h0 is the fixed beamformer (FBF) satisfying
hH

0 gd = F and hNC is the noise canceller (NC) that
is responsible for mitigating the residual interference at
the output of the FBF,

hNC =
(
BHΨB

)−1
BHΨh0. (A.58)

A common choice for h0 is h0 = gd
||gd||2 [21]. Note that

for such a choice, the branches of the GSC (i.e. h0 and
−BhNC) are orthogonal.

In cases where the desired response F is set as F =
Gd,i (where Gd,i is the i-th component of gd), the FBF
can be set as h0 = Ii (where Ii is the i-th column of the
identity matrix I), since IH

i gd = Gd,i. Note that by this
selection, the MVDR decomposes into two vectors which
are not necessarily orthogonal. In previous work [4], we
elaborate about the benefits that can be gained from such
a structure.

Denote the MVDR-BF that satisfies F = Gd,i as
hMVDR,i, the standard MVDR expression (A.56) and its
corresponding GSC implementation (A.57) (which uses
h0 = Ii) are proved to be identical [21], i.e.,

hMVDR,i =
Ψ−1gd

gH
d Ψ−1gd

G∗d,i

= Ii −B
(
BHΨB

)−1
BHΨIi. (A.59)

Concatenating all the MVDR and the GSC expressions
for each F = Gd,i, the following is obtained:

[
hMVDR,1 ... hMVDR,N

]
=

Ψ−1gd

gH
d Ψ−1gd

gH
d

= I−B
(
BHΨB

)−1
BHΨI. (A.60)

Multiplying from the right both sides of the equation
above by Ψ−1 concludes the proof of the identity (A.54).
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APPENDIX B

In this appendix, it is proven that δ ≡ γ3γ1 − γ2
2 is a

positive number. In the following, a detailed expression
for δ is derived. Since γ1, γ2 and γ3 consist of Ψ−1

(see (38b)-(38d)), some transformations may be made to
Ψ−1 as elaborated in the sequel.

First, the noise PSD matrix is whitened by decompos-
ing Φv = φV CCH, where φV is the noise level, CCH

is the normalized3 PSD matrix of the noise and C is an
invertible matrix4. Therefore, from (36), Ψ−1 can now
be expressed as

Ψ−1 = C−H
(
φRC−1ΓC−H + φV I

)−1
C−1. (B.61)

Now, the EVD is applied to C−1ΓC−H, by defining

C−1ΓC−H = VHΛV. (B.62)

Ψ−1 now reads

Ψ−1 = C−HVHΥ−1VC−1, (B.63)

where Υ ≡ φRΛ + φV I .
Define d ≡ VC−1gd and using (B.63), the definitions

in (38b)-(38d) may be re-expressed as

γ1 = dHΥ−1d (B.64a)

γ2 = dHΥ−1ΛΥ−1d (B.64b)

γ3 = dHΥ−1ΛΥ−1ΛΥ−1d. (B.64c)

Since Λ and Υ−1 are diagonal matrixes, γ1, γ2 and γ3

can be again re-expressed

γ1 =
∑
i

|di|2

φRλi + φV
, (B.65a)

γ2 =
∑
i

|di|2 · λi
(φRλi + φV )2 , (B.65b)

γ3 =
∑
i

|di|2 · λ2
i

(φRλi + φV )3 , (B.65c)

where di are the elements of d and λi are the diagonal
elements of Λ.

Substituting the results from (B.65) in δ yields:

δ =
∑
i

|di|2 · λ2
i

(φRλi + φV )3

∑
j

|dj |2

φRλj + φV

−
∑
i

|di|2 · λi
(φRλi + φV )2

∑
j

|dj |2 · λj
(φRλj + φV )2 . (B.66)

3such that its trace equals N .
4since Φv is symmetric and usually full-rank, C can be found

using the eigenvalue decomposition (EVD) of Φv.

Computing common denominator for the above compo-
nents and executing several algebraic steps yields

δ =
∑
i

∑
j

|di|2|dj |2
(
λ2
i − λiλj

)
(φRλi + φV )3 (φRλj + φV )2 . (B.67)

For double-summation, a useful identity may be used,
which is obtained by exchanging the indexes of the
summations:∑

i

∑
j

f(i, j) =
1

2

∑
i

∑
j

f(i, j) +
1

2

∑
j

∑
i

f(j, i),

(B.68)
where f(j, i) is some function of i and j. Using the
above identity in (B.67) yields

δ =
1

2

∑
i

∑
j

|di|2|dj |2
(
λ2
i − λiλj

)
(φRλi + φV )3 (φRλj + φV )2

+
1

2

∑
j

∑
i

|dj |2|di|2
(
λ2
j − λjλi

)
(φRλj + φV )3 (φRλi + φV )2 . (B.69)

Finally, after computing common denominator and a few
algebraic steps, δ is proved to be a positive number since
all its components are positive5,

δ =
φV
2

∑
i

∑
j

|di|2|dj |2 (λi − λj)2

(φRλj + φV )3 (φRλi + φV )3 ≥ 0.

(B.70)
Some conclusions may be drawn from the final expres-
sion of δ: 1) if φV equals zero (i.e., noiseless case), δ
equals zero; or 2) if λi are identical for all i, δ equals
zero(which occurs when C−1ΓC−H = I, namely the
spatial fields of the ambient noise and the reverberation
are identical).In cases when δ equals zero, both CRB ex-
pressions (with and without blocking) become identical.
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