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Abstract—The problem of blind separation of speech signals
in the presence of noise using multiple microphones is addressed.
Blind estimation of the acoustic parameters and the individual
source signals are carried out by applying the expectation-
maximization (EM) algorithm. Two models for the speech signals
are used, namely an unknown deterministic signal model and
a complex-Gaussian signal model. For the two alternatives, we
define a statistical model and develop EM-based algorithms
to jointly estimate the acoustic parameters and the speech
signals. The resulting algorithms are then compared from both
theoretical and performance perspectives. In both cases, the latent
data (differently defined for each alternative) is estimated in
the E-step, where in the M-step, the two algorithms estimate
the acoustic transfer functions of each source and the noise
covariance matrix. The algorithms differ in the way the clean
speech signals are used in the EM scheme. When the clean
signal is assumed deterministic unknown, only the a posteriori
probabilities of the presence of each source are estimated in the
E-step, while their time-frequency coefficients are designated as
parameters, and are estimated in the M-step using the minimum
variance distortionless response beamformer. If the clean speech
signals are modelled as complex Gaussian signals, their power
spectral densities (PSDs) are estimated in the E-step using the
multichannel Wiener filter output. The proposed algorithms were
tested using reverberant noisy mixtures of two speech sources in
different reverberation and noise conditions.

I. INTRODUCTION

In many applications it is required to recover one or more
speech signals from a set of microphone observations, which
might include competing speakers, reverberation, and ambient
noise. Speech enhancement is required in human-to-human
communication systems, conferencing systems, and as a pre-
processing step for speech recognition systems. Throughout
the past two decades, many methods for multi-microphone
speech enhancement were proposed [1]. Separating the desired
sources from the undesired sources may rely on spatial infor-
mation, the statistical independence of the sources, or both.

Spatial information can be utilized by using array proces-
sing theory. Different criteria were proposed to estimate the
desired signal. The minimum variance distortionless response
(MVDR) criterion [2], [3] is based on the preservation of the
desired signal while minimizing the power of the interfering
sources. An adaptive implementation of this beamformer is
the generalized side-lobe canceller (GSC) [4] which was
reformulated in the frequency domain, and extended to deal
with reverberant environments in [5]. In [6], an multichannel
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Wiener filter (MWF) approach was proposed to estimate the
desired speech in the minimum mean square error (MMSE)
sense. The MMSE criterion can be tuned to trade-off between
noise reduction and speech distortion [7]. To make use of these
algorithms, several sets of parameters governing the desired
sources (acoustic transfer functions (ATFs) or covariance ma-
trices) and the noise covariance matrix are required. These
parameters are usually not available and should be estimated
from the data.

In the general field of signal processing (not necessarily
speech signal processing), when only the mixed signals are
available, and the acoustic parameters are unknown, the se-
paration problem is usually referred to as a blind source
separation (BSS) problem. Several BSS methods utilize the
mutual statistical independence of the signals, usually by
applying independent component analysis (ICA) algorithms
[8]. These methods are also commonly applied to speech
separation tasks [9]. Alternatively, the sparsity of the speech
sources in the time-frequency (TF) domain can be utilized.
Using this property, speech components of simultaneously
active speakers can be assumed non-overlapping. In [10] and
the references therein, it was shown that due to the sparsity,
even when there are fewer microphones than speakers, it
is possible to obtain an acceptable separation performance.
Under the sparsity property, one should estimate which of the
sources is active in each TF bin, namely to calculate a (soft)
TF mask. This estimation commonly results in an a posteriori
speech presence probability (SPP).

The BSS problem can be addressed also from the per-
spective of the simultaneous estimation of the acoustical
parameters and the clean speech signals. Since neither the
speech signals, nor the acoustical parameters are known in
advance, the expectation-maximization (EM) algorithm [11],
which converges to a local maximum likelihood estimate of
the parameters, can be used to solve this problem, as was
proposed in [12]–[24]. In [12], the ATFs were approximated
by delay-only systems, and the noise covariance matrix was
assumed diffuse with time-varying power. In the E-step, each
source is estimated using an MVDR beamformer, and in the
M-step, the noise power and the delays were estimated. In
[13], a blind source separation technique is proposed based on
spectral masking and the MVDR beamformer. The direction
of arrivals (DOAs) of the different sources are estimated using
the EM algorithm, and are used to calculate the masks and the
associated MVDR BFs. In [14], the phase difference between
channels was exploited for source separation, using an EM
algorithm as well as a sequential variant of random sample
consensus (RANSAC). Another EM algorithm for acoustic
source separation was proposed in [15] for two-channel re-
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cordings, using the interaural phase and level differences.
In reverberant environments, the multichannel ATFs contain

more information than phase and level differences, and this
information is utilized in [16]–[24]. In [16], the acoustic
systems are approximated in the short-time Fourier transform
(STFT) domain by the multiplicative transfer function (MTF)
model, and an iterative algorithm was applied to estimate these
MTFs and the noise covariance matrix. In [17], the MTFs and
the acoustic parameters of reverberation are estimated using
an EM algorithm for joint dereverberation and noise reduction.
In [18], blind source separation is carried out by using a
Gaussian mixture model (GMM) and the EM algorithm. The
ATF can be modelled also as an auto-regressive (AR) system
in the STFT domain, as proposed in [19] in the context of
joint speech separation and dereverberation. A different signal
model is proposed in [20], where each source is modelled by a
complex-Gaussian process with a full-rank covariance matrix.
A full-rank model of the sources’ covariance matrices is also
used in [21], where an online algorithm was developed using
the incremental EM [25] for the parameters’ update. Another
online version was proposed in [22], where the algorithm in
[20] is extended to an online algorithm by substituting the
iterative-batch M-step by an online recursive version. Two
models of the ATF of a mixture are used for a binaural
microphone system in [23], and an EM algorithm is applied for
the source separation. A method for offline and online noise
reduction that uses complex Gaussian model for speech and
an EM algorithm was proposed in [24], where it is extended
to an online speech enhancement scenario.

Further EM algorithms for BSS were proposed by using the
nonnegative matrix factorization (NMF) approach, which is a
very useful tool in audio BSS applications [26]. Using this
approach, the periodogram of the received signals (usually,
calculated as the absolute-squared value of the signal in the
STFT domain, or a smoothed version thereof), is decomposed
by the NMF to the multiplication of non-negative basis and
activation functions. This representation was used in [27], for
BSS of speech signals, using the EM algorithm. In [28], [29]
the problem of time-varying acoustical systems was targeted,
and the NMF representation was estimated using a variational
EM approach.

In [30], an EM algorithm is proposed to estimate the
location of multiple sources that are considered complex
random processes. In the E-step, a delay and sum beamformer
(DSB) steered towards the DOA of each of the signals is
applied to estimate the desired signals, and in the M-step, the
signals estimates are used to update the beamformer weights.
In [31], this approach is extended, and the signals are modelled
either as deterministic unknown, or as stochastic processes. For
each of the models, an EM algorithm is derived for the joint
estimation of the source signals and the DOAs.

By the sparsity property of speech signal, a multiple-
hypothesis model can be attributed to a mixture of speech
sources, where under each hypothesis only a single source is
active. Under this model, the MMSE estimate of the separate
sources is shown to be an average of the conditional expected
values under each hypothesis, weighted by its respective a
posteriori speaker presence probability. These a posteriori

probabilities appear in several speech enhancement methods,
as in [32], where a method for SPP estimation in the presence
of stationary noise is presented. Assuming a multivariate
complex-Gaussian model for the noise and a rank-1 covariance
matrix for the speech, the a posteriori probability of speech
presence is derived. An important theoretical result in [32]
is that for spatially coherent noise fields, the performance of
the speech activity detection can be perfect. The utilization of
the a posteriori presence probability is also part of the BSS
algorithms proposed in [16], [33], [34] and in the spotforming
algorithms proposed in [35], [36].

In the current contribution, we develop two EM-based
algorithms for BSS, using the sparsity model, and compare
two models of the clean speech signals in the STFT domain;
namely an unknown deterministic signal and a complex-
Gaussian signal. This extends the methods in [30], [31] by
applying these two general alternatives to acoustic signals,
using MTF model for the ATFs and a multi-hypothesis model
for the speech signals. For the two alternative models, we
define the appropriate latent data set, and develop EM-based
algorithms for the simultaneous estimation of the acoustic
parameters and the speech signal. The resulting algorithms are
compared from both theoretical and performance perspectives.
In both algorithms, the E-step necessitates the evaluation of the
posterior presence probability of each speech source, and then,
these posterior probabilities are used for signal estimation.
The contribution of an accurate posterior estimates to the total
performance of the algorithm is investigated as well. In this
light, this paper extends the discussion in [32] to the multiple-
speaker case.

To summarize, the contribution of this paper is four-fold:
1) developing of two EM algorithms for BSS, by using
two different statistical models, 2) showing that the well-
known MVDR and MWF beamformers result naturally from
these statistical models, 3) analyzing and demonstrating the
similarities and differences between the two algorithms, and
4) incorporating in one of the methods an a posteriori proba-
bility estimator which serves as a soft mask to enhance the
separation capabilities.

This paper is organized as follows. The BSS problem
formulation and the two models are given in Sec. II. In
Secs. III and IV, the EM algorithms are derived for both
models. The differences between the models and the respective
algorithms are shown in Sec. V, and some practical conside-
rations are given in Sec VI. An experimental study for the
two algorithms is presented in Sec. VII, and conclusions are
drawn in Sec. VIII.

II. PROBLEM FORMULATION AND STATISTICAL MODEL

In this section, the problem and models are formulated.
In Sec. II-A, general notation and the observation model is
described, and the alternative models for the speech signals
are described in Secs. II-B and II-C.

A. Notation and observation model

The following model is formulated in the STFT domain,
where K and T denote the number of frequency bands and
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time-frames, respectively. We assume that D speech sources
are concurrently active, but based on the sparsity property,
each TF bin is dominated by only one source. The discrete
random variable d(t, k) indicates which speaker is active in the
(t, k)-th bin, where d(t, k) ∈ nD and nD , {0, ..., D}. Under
the d-th hypothesis, i.e. d(t, k) = d > 0, only the d-th speaker
is present, and under the null hypothesis, i.e. d(t, k) = 0, no
speaker is active. Now, define the set of indicators,

D = {d(t, k) : t ∈ nT , k ∈ nK} , (1)

where nT , {1, ..., T}, and nK , {1, ...,K}. Finally, define
the set of clean speech signals by

X , {xd(t, k) : t ∈ nT , k ∈ nK , d ∈ nD} , (2)

where by definition x0(t, k) = 0 is used only to simplify the
notation.

Using these definitions, and in addition, assuming that the
room impulse responses (RIRs) are time-invariant and shorter
than the STFT frame, the observation vector is given by,

z(t, k) =
v(t, k) ; d(t, k) = 0
v(t, k) + h1(k) · x1(t, k) ; d(t, k) = 1

...
...

v(t, k) + hD(k) · xD(t, k) ; d(t, k) = D

(3)

where z(t, k) is a J × 1 vector comprising all J microphone
signals, v(t, k) is a stationary additive noise, and hd(k)
represent the relative transfer functions (RTFs) between the d-
th source and a reference microphone. For more details about
the RTF, the reader is referred to [5].

Further denote by pd(k) ≡ Pr {d(t, k) = d} the time-
invariant a priori probability of the d-th hypothesis, satisfying∑
d∈nD

pd(k) = 1, and the set of observations

Z = {z(t, k) : t ∈ nT , k ∈ nK} . (4)

The noise signal is modelled as a zero-mean complex-
Gaussian random variable,

v(t, k) ∼ Nc {v(t, k);0,Rv(k)} , (5)

where Rv(k) is the time-invariant covariance matrix of the
noise, that may comprise a superposition of several noise
sources.

In Secs. III and IV we develop two algorithms to estimate
X from Z using two alternative models for the speech signals.
In Sec. II-B, X is modelled as a deterministic unknown signal,
and in Sec. II-C, as a stochastic complex-Gaussian signal.
For the two models, we define the speech enhancement and
separation task as a hidden-data problem and develop two EM
algorithms to estimate the parameters and the hidden data. The
observation set for the two models is Z , but the set of hidden
data and the set of unknown parameters differ. In Sec. II-B,
X is treated as part of the parameters set, while in Sec. II-C
X is treated as hidden data.

We conclude this section by defining the set of unknown
time-invariant parameters that are common to both models,

θ = {pd(k), hd(k), Rv(k), : k ∈ nK , d ∈ nD} . (6)

The notation is summarized in Table. I.

TABLE I
DEFINITIONS - (k IS OMITTED FOR BREVITY)

Sym. Definition Value

d(t) d-th hypothesis indicator
xd(t) d-th source signal
vj(t) j-th microphone noise
zj(t) j-th microphone signal
v(t) Noise vector [v0(t), ..., vJ−1(t)]

T

z(t) Observation vector [z0(t), ..., zJ−1(t)]
T

pd d-th a priori probability
hd d-th steering vector

[
hd,0, ..., hd,J−1

]T
Rv Noise covariance

Z Observation set {z(t) : t ∈ nT }
D Indicators set {d(t) : t ∈ nT }
X Speech STFT coefficients {xd(t) : t ∈ nT , d ∈ nD}
Φ Speech PSD coefficients {φd(t) : t ∈ nT , d ∈ nD}
θ Common parameter set {pd,hd,Rv : d ∈ nD}

Parameters and hidden - I θ = {θ,X}, H = D
Parameters and hidden - II θ̃ = {θ,Φ}, H̃ = {D,X}

B. Model I - Deterministic unknown speech signals

In model I, X is defined as a set of unknown parameters,
hence the observation model (3) is closely related to a GMM.
Under this model, the observation z(t, k) belongs to one of
(D + 1) Gaussians, where the mean of the d-th Gaussian is
hd(k) · xd(t, k), and all Gaussians have identical covariance
matrix Rv(k).

The set of parameters is (see (6)) θ = {θ,X}, the hidden
data is H = D, namely the association of each TF bin to one
of D + 1 classes, and the probability density function (p.d.f.)
of the complete data is

f(Z,H;θ) =
∏
t,k

∑
d

1t,k,d · pd(k) · f
(
z(t, k)

∣∣d;θ
)
, (7)

where 1t,k,d is an indicator random variable that equals one
if d(t, k) = d and zero otherwise. In a GMM, pd(k) is the
a priori probability of the d-th Gaussian, which in this case,
is a frequency-dependent parameter indicating the probability
of a specific source activity. For example, at the harmonic
frequencies of the d-th speaker, pd(k) is expected to be
relatively high.

The log-likelihood of the complete data is therefore

log f(Z,H;θ) = C

+
∑
t,k,d

1t,k,d

[
log pd(k) + log f

(
z(t, k)

∣∣d;θ
)]

, (8)

where C is a constant that is independent of the parameters,
and

f
(
z(t, k)|d(t, k) = d;θ

)
= Nc {z(t, k); hd(k) · xd(t, k),Rv(k)} . (9)

In the derivation of (8), we exchanged the logarithm and
summation order by using the fact that 1t,k,d is nonzero only
for a single hypothesis.

Under this model, the estimation of the various speech sour-
ces is obtained by the maximum likelihood (ML) estimation
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of X , which is a subset of θ. This is achieved by applying a
generalized EM (GEM) algorithm, derived in Sec. III.

C. Model II - Stochastic speech signals

As mentioned earlier, an alternative approach is proposed by
modelling X as a set of complex Gaussian random variables.
The elements of X are assumed statistically independent, with
zero mean, and different variances

xd(t, k) ∼ Nc {xd(t, k); 0, φt,k,d} , (10)

where φt,k,d is the variance of the d-th speaker at time t and
frequency k. Now, the set of unknown parameters is θ̃ =
{θ,Φ}, where

Φ , {φt,k,d : t ∈ nT , k ∈ nK , d ∈ nD} , (11)

and the hidden data set comprises both the indicators set
and the speech coefficients, H̃ = {X ,D}. The p.d.f. of the
complete data is now (compare with (7))

f(Z, H̃; θ̃) =
∏
t,k

∑
d

1t,k,d · pd(k)

× f
(
z(t, k), xd(t, k)

∣∣∣d; θ̃
)
. (12)

Unlike the model in Sec. II-B, (12) comprises additional
hidden data, hence

f
(
z(t, k), xd(t, k)

∣∣∣d; θ̃
)

= f
(
z(t, k)

∣∣∣xd(t, k), d; θ̃
)
· f
(
xd(t, k)

∣∣∣d; θ̃
)

= Nc {z(t, k); hd(k)xd(t, k),Rv(k)}
× Nc {xd(t, k); 0, φt,k,d} . (13)

By (3), the marginal p.d.f. of z(t, k) is

f(z(t, k)|d; θ̃)

= Nc
{
z(t, k);0, φt,k,dhd(k)hHd (k) + Rv(k)

}
. (14)

Similarly to (8), the log-likelihood of the complete data is

log f(Z, H̃; θ̃) = C +
∑
t,k,d

1t,k,d [log pd(k)

+ log f
(
z(t, k), xd(t, k)

∣∣∣d; θ̃
)]

. (15)

An EM algorithm based on this model is derived in Sec. IV.

III. ALGORITHM I - ESTIMATION OF DETERMINISTIC
SIGNALS

In this section a GEM algorithm is derived for the model
described in Sec. II-B. This algorithm requires a hypothesis
testing in the E-step, which is discussed in Sec. III-A, and
beamforming and parameter estimation, that are carried out in
the M-step and discussed in Sec. III-B. We dub this method
GEM for beamforming with posterior (GEMBFP).

For brevity, the frequency index k is omitted whenever
no confusion arises, and use (·)

(`)
to denote an estimated

value that was calculated at the `-th iteration of the GEMBFP
algorithm.

A. E-step: Posterior probabilities

In this section, the E-step of the GEMBFP algorithm is
derived, which is shown to comprise only the computation of
the a posteriori speaker presence probabilities. Since the TF
coefficients of the speech signals are considered parameters of
the model, they are estimated in the M-step in Sec. III-B.

Consider the (` + 1)-th iteration, where the previous para-
meter estimate θ

(`)
is available. To derive the equations for

the GEM algorithm, we define the auxiliary function, using
the complete data p.d.f. in (8),

Q
(
θ|θ(`))

, E
{

log f(Z,H;θ)
∣∣∣Z;θ

(`)
}

=
∑
t,k,d

w
(`)
d (t) ·

[
log pd(k) + log f

(
z(t, k)

∣∣d;θ
)]

, (16)

where w
(`)
d (t) is the a posteriori probability of the d-th

hypothesis,

w
(`)
d (t) , Pr

{
d(t, k) = d

∣∣∣Z;θ
(`)
}

=
p
(`)
d (k) · f

(
z(t, k)

∣∣∣d;θ
(`)
)

∑
d′∈nD

p
(`)
d′ (k) · f

(
z(t, k)

∣∣∣d′;θ(`)
) , (17)

and f(z(t, k)|d;θ) is given in (9). Equations (16) and (17) are
now used in the M-step, as shown in the next section.

B. M-step: Beamforming and parameters update

In the M-step, the set of parameters is updated by the
maximization of (16) with respect to (w.r.t.) each of the
elements of θ. We start by substituting (9) in (16),

Q
(
θ|θ(`))

(18)

=
∑
t,d

w
(`)
d (t)

[
log pd − log |Rv| − eHd (t)R−1v ed(t)

]
,

where

ed(t) =

{
z(t) ; d = 0

z(t)− hdxd(t) ; d > 0
.

It is important to note that ed(t) and v(t) are identical under
the d-th hypothesis, i.e. d(t) = d, but they are not equal under
the other hypotheses. The M-step of the (`+ 1)-th iteration is
carried out by solving

θ
(`+1)

= argmax
θ

Q
(
θ|θ(`))

. (19)

We begin with calculating the derivative of (19) w.r.t. xd(t)
for every d > 0 (recall that, by definition, x0(t) = 0),

∇x∗d(t)Q
(
θ|θ(`))

= w
(`)
d (t) · hHd ·R−1v · (z(t)− hd · xd(t)) , d > 0 ,

and by equating the derivative to zero the updated value is
obtained

x
(`+1)
d (t) = uHd

(
θ
(`)
)
· z(t) , d > 0 , (20)
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where

ud
(
θ
)

=
R−1v hd

hHd R−1v hd
, d > 0 . (21)

A few notes regarding the theory behind (21) are in order.
First, since x(`+1)

d (t) depends on the parameters hd and Rv ,
which are also estimated in the M-step, the entire algorithm is
a GEM rather than EM (see Sec. 3.2 in [37]). In practice, we
substitute Rv by R

(`)

v and hd by h
(`)

d in (21), which denote
the estimates of Rv and hd in the `-th iteration. Second, the
filter (21) fits the result in [38] (Sec. 6.2.1.2), that the ML
estimator of xd(t) coincides with the MVDR output. Third,
when trying to separate different signals as we propose in this
paper, one might expect the algorithm to completely cancel
the undesired sources, e.g. by a linear constraint minimum
variance beamformer. However, since we assumed sparsity
in the STFT domain, the MVDR (21) provides the optimal
solution that minimizes the noise while maintaining the desired
source.

Next, we maximize (16) w.r.t. pd under the constraint∑
d∈nD

pd = 1 by writing the Lagrangian

L(θ) = Q
(
θ|θ(`))

+ λ
(∑

d

pd − 1
)
, ∀d ∈ nd . (22)

After calculating the derivative w.r.t. pd and equating to zero
we obtain

p
(`+1)
d =

1

T

∑
t

w
(`)
d (t) , ∀d ∈ nd . (23)

The derivative of Q
(
θ|θ(`))

w.r.t. hHd for d > 0, is

∇hH
d
Q
(
θ|θ(`))

=
∑
t

w
(`)
d (t) x∗d(t) R

−1
v [z(t)− hd · xd(t)] , d > 0 ,

and, by equating to zero, we get hd that depends on the
values of xd(t). As was done in (20), the GEM algorithm
is applied instead of the regular EM, and the substitution
xd(t) = x

(`+1)
d (t) is used to obtain

h
(`+1)

d =

∑
t w

(`)
d (t) · z(t) ·

[
x
(`+1)
d (t)

]∗
∑
t w

(`)
d (t) ·

∣∣∣x(`+1)
d (t)

∣∣∣2 , d > 0 , (24)

which is the weighted least squares estimation of the linear
system between x(`+1)

d (t) and z(t).
Finally, by calculating the derivative of Q

(
θ|θ(`))

w.r.t. Rv

and equating to zero, it follows that

R
(`+1)

v =
1

T

∑
t,d

w
(`)
d (t) · e(`+1)

d (t)
[
e
(`+1)
d (t)

]H
, (25)

where

e
(`+1)
d (t) =

{
z(t) ; d = 0

z(t)− h
(`+1)

d · x(`+1)
d (t) ; d > 0

.

The algorithm is summarized on the left-hand side of Table II.

IV. ALGORITHM II - ESTIMATION OF STOCHASTIC
SIGNALS

In this section, an EM algorithm is derived for the statistical
model described in Sec. II-C. The resultant algorithm requires
hypothesis testing and beamforming in the E-step as discussed
in Sec. IV-A. The parameters estimation, carried out in the M-
step, is discussed in Sec. IV-B. We dub this method EM for
beamforming with posterior (EMBFP).

For clarity, we use the convention (̃·)
(`)

to denote an
estimated value that was calculated at the `-th iteration of the
EMBFP algorithm. When applied to a parameter (e.g. p̃(`)d ), it
represents an estimate at the `-th iteration, and when applied
to a random variable (e.g. x̃(`)d (t)), it represents an MMSE
estimate at the `-th iteration.

A. E-step: Posterior and beamforming

In this section, the E-step of the EMBFP algorithm is
derived. As in the GEMBFP algorithm, the a posteriori speaker
presence probabilities are computed in the E-step. However,
unlike the GEMBFP, the speech signals are considered sto-
chastic signals, which leads to the estimation of their first-
and second-order moments in the E-step.

To derive the equations for the EM algorithm, we define
the auxiliary function using the log-likelihood of the complete
data (15) as,

Q
(
θ̃|θ̃

(`))
, E

{
log f(Z, H̃; θ̃)

∣∣∣∣Z; θ̃
(`)
}

=
∑
t,d

w̃
(`)
d (t) E

{
log f

(
z(t), xd(t)

∣∣∣d; θ̃
)∣∣∣∣z(t); θ̃

(`)
}

+
∑
t,d

w̃
(`)
d (t) pd , (26)

where the a posteriori probability is now given by

w̃
(`)
d (t) = Pr

{
dt = d

∣∣∣∣Z; θ̃
(`)
}

(27)

=

pd f

(
z(t)

∣∣∣∣d; θ̃
(`)
)

∑
d′ pd′ f

(
z(t)

∣∣∣∣d′; θ̃(`)
) .

While w̃(`)
d (t) has the same structure as w(`)

d (t) (compare (27)
and (17)), the resulting posterior probabilities differ due to the
different model of the clean speech signals.

Next, the expected value in (26) is calculated by using (13).
For d = 0 we obtain

E

{
log f

(
z(t), xd(t)

∣∣∣d = 0; θ̃
)∣∣∣∣z(t); θ̃

(`)
}

= C − log |Rv| − zH(t) R−1v z(t) , (28)
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TABLE II
SUMMARY OF THE TWO ALGORITHMS

GEMBFP (Speech is a deterministic signal) EMBFP (Speech is a stochastic process)

Eq. Notation Value Eq. Notation Value

(9) f(z(t)|d;θ) Nc {z(t);hd · xd(t),Rv} (14) f(z(t)|d; θ̃) Nc
{
z(t);0, φd(t)hdh

H
d + Rv

}
(17) w

(`)
d (t)

pd·f
(
z(t)

∣∣∣d;θ(`)
)

∑
d′ pd′ ·f

(
z(t)

∣∣∣d′;θ(`)
) (27) w̃

(`)
d (t)

pd·f
(
z(t)

∣∣∣d;θ̃(`)
)

∑
d′ pd′ ·f

(
z(t)

∣∣∣d′;θ̃(`)
)

(20) x
(`+1)
d (t) u

(`)H
d · z(t) (30) x̃

(`)
d (t) w̃

(`)
d (t) · ũ(`)H

d (t) · z(t)

(21) u
(`)
d

R−1
v hd

hH
d

R−1
v hd

∣∣∣∣
θ=θ

(`)
(32) ũ

(`)
d (t)

R−1
v hd

hH
d

R−1
v hd

· φd(t)
φd(t)+ζd(t)

∣∣∣∣
θ̃=θ̃

(`)

(33) ˜|xd(t)|2
(`) ∣∣∣x̃(`)d (t)

∣∣∣2 + ζd(t) · φd(t)
φd(t)+ζd(t)

∣∣∣
θ̃=θ̃

(`)

(23) p
(`+1)
d

1
T

∑
t w

(`)
d (t) (36) p̃

(`+1)
d

1
T

∑
t w̃

(`)
d (t)

(24) h
(`+1)
d

∑
t w

(`)
d

(t)·z(t)·x∗(`+1)
d

(t)∑
t w

(`)
d

(t)·
∣∣∣x(`+1)

d
(t)
∣∣∣2 (37) h̃

(`+1)
d

∑
t w̃

(`)
d

(t)·z(t)x̃∗(`)
d

(t)∑
t w̃

(`)
d

(t) ˜|xd(t)|2
(`)

(25) R
(`+1)
v

1
T

∑
t,d w

(`)
d (t) · e(`+1)

d (t)e
H(`+1)
d (t) (38) R̃

(`+1)
v

1
T

∑
t,d w̃

(`)
d (t) · ˜ed(t)e

H
d (t)

(`)

(41) φ̃
(`+1)
d (t) w̃

(`)
d (t) · ˜|xd(t)|2

(`)

and for d > 0,

E

{
log f

(
z(t), xd(t)

∣∣∣d > 0; θ̃
)∣∣∣∣z(t); θ̃

(`)
}

(29)

= C − log φd(t)− ˜|xd(t)|2
(`)

φ−1d (t)− log |Rv|
− zH(t) R−1v z(t) + zH(t) R−1v hd x̃

(`)
d (t)

+
[
x̃
(`)
d (t)

]∗
hHd R−1v z(t)− hHd R−1v hd ˜|xd(t)|2

(`)

.

In the following, x̃(`)d (t) and ˜|xd(t)|2
(`)

are calculated for
every d > 0 (for d = 0 their value is zero by definition). The
first-order moments are,

x̃
(`)
d (t) = w̃

(`)
d (t) · E

{
xd(t)

∣∣∣∣z(t), d; θ̃
(`)
}

(30)

= w̃
(`)
d (t) · ũHd (t)z(t) , d > 0

where ũd(t) is the MWF,

ũd(t) = E−1
{
z(t) zH(t)

∣∣∣∣d; θ̃
(`)
}

× E
{
z(t) x∗d(t)

∣∣∣∣d; θ̃
(`)
}
, d > 0 .

(31)

The MWF can be decomposed into an MVDR beamformer
and a subsequent single-channel Wiener filter (SWF) [39],

ũd(t) = ud (θ)
φd(t)

φd(t) + ζd(t)

∣∣∣∣
θ=θ̃

(`)
, d > 0 , (32)

where ζd(t) =
(
hHd R−1v hd

)−1
denotes the power of the

residual noise at the output of the MVDR.

The second-order moments are given by

˜|xd(t)|2
(`)

=
∣∣∣x̃(`)d (t)

∣∣∣2
+ E

{
|xd(t)− x̃d(t)|2

∣∣∣∣d; θ̃
(`)
}
, d > 0 , (33)

where

E

{
|xd(t)− x̃d(t)|2

∣∣∣∣d; θ̃
(`)
}

(34)

= φd(t)− φd(t) hHd ũd(t)
∣∣
θ̃=θ̃

(`)

=
φd(t)

1 + φd(t)/ζd(t)

∣∣∣∣
θ̃=θ̃

(`)
, d > 0 ,

is the error covariance after applying the MWF.

B. M-step: Parameters estimation
Similarly to Sec. III-B, the M-step is carried out via the

maximization of Q
(
θ̃|θ̃

(`))
, i.e.,

θ̃
(`+1)

= argmax
θ̃

Q
(
θ̃|θ̃

(`))
, (35)

and the a priori probabilities are calculated as in (23),

p̃
(`+1)
d =

1

T

∑
t

w̃
(`)
d (t) , ∀d ∈ nd . (36)

Calculating the derivative of Q
(
θ̃|θ̃

(`))
w.r.t. hd and equa-

ting to zero results in

h̃
(`+1)
d =

∑
t w̃

(`)
d (t) · z(t) · x̃∗(`)d (t)∑

t w̃
(`)
d (t) · ˜|xd(t)|2

(`)
, d > 0 , (37)
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and the same procedure for Rv implies

R̃(`+1)
v =

1

T

∑
t,d

w̃
(`)
d (t) · ˜ed(t)eHd (t)

(`)

, (38)

where

˜ed(t)eHd (t)
(`)

= z(t) · zH(t)− 2<
{
hd · x̃(`)d (t) · zH(t)

}
+ ˜|xd(t)|2

(`)

· h̃(`+1)
d ·

[
h̃
(`+1)
d

]H
, d > 0 , (39)

and for d = 0 the term is simply

˜e0(t)eH0 (t)
(`)

= z(t) · zH(t) . (40)

Finally, the power spectral density (PSD) of the d-th speaker
is estimated by

φ̃
(`+1)
d (t) = w̃

(`)
d (t) · ˜|xd(t)|2

(`)

, d > 0 , (41)

which is the empirical PSD conditioned on the a posteriori
probability of the d-th hypothesis. The algorithm is summari-
zed on the right side of Table II.

V. COMPARISON AND DISCUSSION

The differences between the two models and the resulting
algorithms are highlighted in Sec. V-A, and an interpretation
of the posteriors w(`)

d (t) and w̃(`)
d (t) is given in Sec. V-B.

A. Comparison of the GEMBFP and EMBFP the algorithms

The difference between the beamformers ud (21) and ũd(t)
(32) is explained w.r.t. the underlying models. Under model
I, xd(t) is a deterministic unknown and therefore its ML
estimator is the output of the MVDR beamformer uHd · z(t).
However, when xd(t) is assumed a random process, the
MMSE estimate is required, which is obtained by the MWF
(32) that consists of an MVDR followed by an SWF.

In addition, the signal estimator in the EMBFP includes the
a posteriori speaker probability (30), while in the GEMBFP
the posterior is part of the statistics estimation, but not the
signal estimator (20). The a posteriori speaker probability in
(30) contributes to the aggressiveness of the attenuation of the
noise and the interference. While the EMBFP enhances the
signal by concatenating the MVDR beamformer, the SWF,
and the a posteriori speaker probability, the GEMBFP solely
comprises the MVDR beamformer.

In this context, we observe an important property of the
EMBFP algorithms emerging when consequent iterations are
executed. By (32), the value of φd(t) from the previous
iteration is substituted in the SWF formula, which directly
affects the next value of φd(t) (see (33) and (41)), constituting
a strong positive feedback. This feedback is not necessarily
bad, since noise and competing speakers are further attenuated
with every iteration. However, this property affects also TF
bins where the desired source PSD has medium to small
values, and the desired signal’s estimate becomes sparse and
distorted. Note that the GEMBFP algorithm does not exhibit
such behavior. Although x

(`)
d is fed back to the algorithm, it

is done via (17) which is not necessarily low for small values
of x(`)d .

In order to tradeoff between the EMBFP’s signal distortion
and noise and interference reduction, the mathematical formu-
lation of the problem is adjusted. We add a constraint to the
original ML approach, i.e. that φd(t) is higher than ξmin, a
pre-defined minimum value. As shown in Sec. V.B in [40],
the previous EM is replaced by a constrained-EM algorithm
that possesses similar convergence characteristics. In practice,
it is better from computational and performance aspects to set
a minimum level constraint on the SWF, i.e.

φd(t)

φd(t) + ζd(t)
> ξmin ∀d, t , (42)

which is mathematically equivalent to applying a constraint
on φd(t), and will be used in the following sections.

Comparison of the algorithms’ performance as well as the
practical choice of ξmin are discussed in Sec. VII-B.

B. Spatial interpretation of the posterior probability

In this section, we give a spatial interpretation to the
posterior probability and show that w̃d(t) obtains high value if
a signal impinges the array from the direction hd. Although we
mainly discuss w̃d(t), the same interpretation applies to wd(t)
mutatis mutandis. The following analysis links the algorithms
proposed in this paper to the analytic result in [32].

The posterior w̃d(t) in (27) depends on pd and

f

(
z(t)

∣∣∣∣d; θ̃
(`)
)

in (14) for all d ∈ nD. As the spatial

properties of the signal z(t) are manifested by its propagation
model, we ignore in our analysis its temporal properties
and express (14) as a function of an arbitrary time-invariant
propagation vector s,

f(s|d; θ̃) = (2π)−J |Rd(t)|−1 exp
(
−sH ·R−1d (t) · s

)
, (43)

where

Rd(t) = φd(t) · hdhHd + Rv . (44)

In the following, we assume that
1) The dominant eigenvector (EV) of Rd(t) is parallel to

the ATF of the d-th signal, and hence can be written as
αhd, where α is an arbitrary complex scalar.

2) The a priori probabilities in (27) are equal, i.e. pd =
1/(D + 1), ∀d ∈ nD.

Note that Assumption 1 is satisfied if the noise is spatially
white or if the signal-to-noise ratio (SNR) at the specific TF
bin is high, i.e. φd(t)� ‖Rv‖22. In addition, Assumption 2 is
relaxed at the end of this section.

Let Cd = ‖hd‖2 be the norm of the RTF of the d-th speaker,
then by Assumption 1,

hd = argmax
s

sH ·Rd(t) · s , s.t. ‖s‖2 = Cd . (45)

Now, since αhd is the most significant EV of Rd(t), then it
is also the least significant EV of R−1d (t), and consequently

hd = argmax
s

f(s|d; θ̃) , s.t. ‖s‖2 = Cd . (46)
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To conclude this discussion, it follows from (27) and As-
sumption 2 that the global maximum of w̃d(t) is obtained
if the input signal propagates from direction hd. If the null
hypothesis is true, i.e. d = 0, then w̃0(t) is not expected to
exhibit any directional preference.

Since f(s|d; θ̃) is an exponential function of s and a linear
function of pd, it is most likely that this result will hold
even when Assumption 2 is not fully satisfied. Moreover,
Assumption 1 holds for high and moderate SNR values in TF
bins dominated by speaker d, even if the noise is not spatially-
white.

VI. PRACTICAL ASPECTS

In this section we discuss several practical issues that
should be considered when applying the algorithms proposed
in Secs. II-B and II-C to actual speech signals.

A. Parameter initialization

The initialization of parameters is an important block in any
application of the EM algorithm. In this paper, we address
a blind separation problem, where no information about the
speakers’ activity is available, i.e. we do not know which
source is active in each TF bin. This makes the parameter
initialization a challenging task. In the following, we propose
a simple yet effective technique for initialization, which is used
to initialize both the GEMBFP and the EMBFP algorithms.

In the first iteration, the clean sources are initialized accor-
ding to (30)

x̃
(0)
d (t) = w̃

(0)
d (t) ·

(
ũd(t)

(0)
)H
· z(t) , (47)

where ũd(t)
(0) is calculated according to (32), using the initial

values of the parameters, denoted by R̃
(0)
v and h̃

(0)
d , and

assuming ζd(t) � φd(t), i.e., the SWF is approximately one
in this iteration. The a posteriori coefficients are initialized by

w̃
(0)
d (t) =

p
(0)
d · f (0)

(
z(t)

∣∣∣∣d; θ̃
(0)
)

∑
d′∈nD

p
(0)
d′ · f (0)

(
z(t)

∣∣∣∣d′; θ̃(0)
) , (48)

where we have used

f (0)
(
z(t)

∣∣∣∣d; θ̃
(0)
)

(49)

= Nc
(
z(t) ;0, h̃

(0)
d

[
h̃
(0)
d

]H
+ R̃(0)

v

)
.

Now, the initial values R̃(0)
v and h̃

(0)
d are required. The noise

covariance is simply initialized by the identity matrix,

R̃(0)
v = I . (50)

For the initialization of the RTFs h̃
(0)
d , we estimate the long-

term covariance matrix of the input

R̂ =
1

T

∑
t∈nT

z(t)zH(t) . (51)

Then, we calculate the EV decomposition of R̂, and de-
note by {λ1, ..., λJ} eigenvalues in descending order, and

by {q1, ...,qJ} the respective EVs. Since R̂ is calculated
from the entire mixture signals, it comprises average spatial
information from all sources. Initializing the RTFs with the D
leading eigenvectors, i.e. h

(0)

d = qd for all d = 1, ..., D, and
substituting in (49) results in

f (0)
(
z(t)

∣∣∣∣d; θ̃
(0)
)

∝ exp
(
−zH(t)

[
qdq

H
d + I

]−1
z(t)

)
. (52)

This choice, however, may result in a strong bias, as demon-
strated in the sequel. Using the Woodbury identity, it can be
easily verified that

[
qdq

H
d + I

]−1
=
[
I− 1

2qdq
H
d

]
, and the

argument of the exponent in (52) becomes,

− zH(t)
[
qdq

H
d + I

]−1
z(t)

= −z(t)Hz(t) +
1

2
qHd
[
z(t)zH(t)

]
qd . (53)

Since qd, d = 1, ..., D are the EVs of R̂, the time-average
of the term qHd

[
z(t)zH(t)

]
qd is the respective eigenvalue

λd. Since λ1, ..., λD are in descending order, it follows that
f (0)

(
z(t)

∣∣∣d; θ̃
(0)
)

, d = 1, ..., D are, on average, organized in
descending order as well, and due to the exponential function
can exhibit very large differences in their values. This may
imply a strong bias in the initialization procedure towards the
first eigenvector and consequently, the ability of the proposed
algorithm to separate the signals will significantly deteriorate.
Preliminary tests verifies this observation.

To circumvent these bias effects, we propose an alternative
initialization. Rather than using the eigenvectors of R̂, we
use a set of vectors

{
h̃
(0)
1 , ..., h̃

(0)
D

}
, satisfying the following

conditions,[
h̃
(0)
d

]H
h̃
(0)
d′ = 0 , ∀d 6= d′[

h̃
(0)
d

]H
· R̂ · h̃(0)

d = 1 , 1 ≤ d ≤ D.
(54)

Note that these vectors are not necessarily EVs of R̂, but
can however be directly obtained from the first D EVs, as
will be later demonstrated. The underlying intuition is that
1) the orthogonality property assures that the vectors are
distinctive, and 2) the equal energy distribution circumvents
the bias discussed above. A general formula for obtaining{
h̃
(0)
1 , ..., h̃

(0)
D

}
from {q1, ...,qD} is beyond the scope of this

paper, and here we consider the case of D = 2 as an example.
In this case, the initial RTFs are chosen as

h̃
(0)
1 =

q1 + q2√
λ1 + λ2

, h̃
(0)
2 =

q1 − q2√
λ1 + λ2

. (55)

It can be easily verified that the constraint set in (54) is
satisfied. Finally, the M-step and the subsequent iterations
are carried out according to the respective procedure for each
algorithm.

B. Robust and efficient computation of the posterior

Express (14) as

f(z(t)|d; θ̃) ∼ |Rd(t)|−1 · exp(−ξt,d) , (56)
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where ξt,d = zH(t) ·R−1d (t) · z(t), and rewrite (27) as

w̃
(`)
d (t) =

pd · |Rd(t)|−1 · exp(−ξt,d)∑
d′ pd′ · |Rd′(t)|−1 · exp(−ξt,d′)

. (57)

For large values of ξt,d, the term exp(−ξt,d) may exceed
the precision limitation. We therefore multiply the numerator
and denominator of (57) by exp(ξt,max) where ξt,max =
maxd {ξt,d},

w̃
(`)
d (t) =

pd · |Rd(t)|−1 · exp(−ξt,d + ξt,max)∑
d′ pd′ · |Rd′(t)|−1 · exp(−ξt,d′ + ξt,max)

, (58)

hence significantly reducing the argument in the exponent.
Identical procedure can be applied to calculate w(`)

d (t).
Another practical issue is the inversion of Rd(t), which is

computationally expensive. By the Woodbury identity [41],

R−1d (t) = R−1v −
R−1v hdh

H
d R−1v

φ−1d (t) + hHd R−1v hd
, (59)

where R−1v , R−1v hdh
H
d R−1v , and hHd R−1v hd are calculated

only once every iteration, reducing the computation to a single
(real) division at each time frame. Note that the calculation
of w(`)

d (t) requires only one matrix inversion per iteration,
because the covariance matrix in (9) is Rv , which is time
invariant.

C. Permutation ambiguity

The models and algorithms described in Secs. II-III apply
an identical procedure in each frequency band. However, when
the output signals are reconstructed, one needs to validate that
all separated sources are aligned across the frequency range
and no permutation occurs. In this work, we resolved the
frequency alignment problem based on correlation between
the signals at the different frequency bands, as proposed in
[42] and [43].

VII. PERFORMANCE EVALUATION

In this section we describe the experiments carried out to
evaluate the proposed algorithms. In Sec. VII-A we describe
the setup, the reference algorithms, and the quality measures.
In Sec. VII-B, we present the performance of the proposed
algorithms w.r.t. the reverberation level, noise level, and com-
pare them to each other. A comparison between the proposed
algorithms and a reference method is given in Sec. VII-C.

A. Experimental setup

1) Signals and RIRs: The algorithms developed in this
paper were evaluated by signals with two concurrently active
speakers (D = 2) and diffuse noise. Clean anechoic speech
signals were randomly drawn from the Wall Street Journal
(WSJ) corpus, each of length 30 seconds. For RIRs we used
the database that was presented in [44], which was recorded in
the Speech & Acoustic Lab of the Faculty of Engineering at
Bar-Ilan University1, with controllable reverberation time. The
room dimensions are 6×6×2.4 m (length× width× height),

1The RIRs database is available at http://www.eng.biu.ac.il/gannot/
downloads

90◦

45◦

0◦

−45◦

−90◦
1 m 2 m

Fig. 1. Microphone-array setup.

and the tested reverberation times (T60) are 0.16, 0.36, and
0.61 s. The RIRs were captured by an eight-microphone linear
array with inter-distances of {3, 3, 3, 8, 3, 3, 3} cm from one
another, as depicted in Fig. 1. For the additive noise, we used
a random signal with speech-like spectrum, and applied the
method described in [45] to produce diffuse noise field. The
speakers were positioned at different locations in the room,
where the distances from the array are 1 or 2 m semi-circle
with a grid of 15 degrees. The total number of signals used is
135, which resulted in a total of 1.13 hours of audio.

2) Tested algorithms: In Sec. VII-B we evaluate and com-
pare the performance of the algorithms proposed in Secs. III
and IV.

We compared the proposed algorithms with the method
presented in [27], which is based on the NMF of the speech
spectra. Since the algorithm in [27] was originally develo-
ped for a two-channels setup, a multi-channel extension was
used for the experiment in Sec. VII-C.2 The NMF algorithm
was initialized by using the separated source signals, where
each source is corrupted by the other sources with signal-to-
interference ratio (SIR) of 10 dB (see [27]).

In addition, an oracle version of the GEMBFP was applied
for the experiment described in Sec. VII-B. Explicitly, we
carried out the following steps, dubbed as oracle beamformer
(BF) with posterior (OBFP):
• Estimate hd from {xd(t) : t ∈ nT } and {z(t) : t ∈ nT },

using a least-squares identification.
• Estimate Rv directly from {v(t) : t ∈ nT }.
• Calculate ud by (21).
• Apply (17) to calculate w(`)

d (t).
• Calculate xd(t) according to (20) using uHd and w(`)

d (t).
The STFT analysis window length is a crucial parameter

for the correctness of the statistical model in Sec. II. Speci-
fically, in the multichannel signal model (3) we assume that
the analysis window is longer than the length of the RIRs.
However, according to our experience it is sufficient to use
analysis window of length T60/2.

3) Computational load: The algorithms were implemented
in MATLAB, on an Intel Core i7-3770 CPU at 3.4 GHz
with four cores, and using 8 GB of RAM. Since most of the
computation is done independently for each frequency band,

2We thank Dr. D. Kounades-Bastian for his kind help in developing and
sharing this version.
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computation can be parallelized, with every core executing the
computation for different frequency bands. Every iteration of
the EMBFP requires 4.88 seconds of computation to process
10 seconds of eight-channel signal sampled at 16 kHz (and
similar computation is required for the GEMBFP algorithm).
In this experimental study, we used 10 iterations for each
algorithm, thus 48.8 seconds were required to process 10
seconds of signal.

4) Quality measures: As in [16], [46], [47], we computed
the reverberant-signal to noise ratio (RSNR), SIR, and signal-
to-distortion ratio (SDR) for the input and output signals. The
three quality measures (QMs) were calculated by the same
formula, i.e.

QM {xd, η} ,
∑
t,k |xd(t, k)|2∑
t,k |η(t, k)|2

, (60)

where only η changes from one measure to another. The input
RSNR and SIR were calculated by

RSNRin
d = QM {xd, v} , SIRin

d,d′ = QM {xd, xd′} , (61)

where d, d′ ∈ {1, 2}, and SDRin
d = ∞ by definition. At the

output, we applied the estimated filter (obtained blindly from
the mixture) to the separated signals as follows. For example,
when evaluating theEMBFP, we applied (30) to the clean
speech and interference signals separately, i.e.

s̃d,v(t, k) =
[
w̃

(`)
d (t) · ũd(t)(`)

]H
· v(t, k) , (62)

s̃d,d′(t, k) =
[
w̃

(`)
d (t) · ũd(t)(`)

]H
· [hd′(k) · xd′(t, k)] , (63)

s̃d,d(t, k) =
[
w̃

(`)
d (t) · ũd(t)(`)

]H
· [hd(k) · xd(t, k)] , (64)

therefore the RSNR, SIR, and SDR at the output are given by

RSNRout
d = QM {s̃d,d, s̃d,v} , (65)

SIRout
d = QM {s̃d,d, s̃d,d′} , (66)

SDRout
d = QM {s̃d,d, (xd(t, k)− s̃d,d)} . (67)

The same calculation is carried out for the GEMBFP output
signals.

B. Algorithms’ performance

In this section we investigate the performance of the pro-
posed algorithms for the experimental setup described in
Sec. VII-A. We start by comparing the performance of the two
proposed algorithms, and then examine the QMs as a function
of a single setup parameter (e.g. T60, and RSNR) while all
other parameters remain fixed.

1) Comparison between the proposed algorithms: As an
example, sonograms are given in Fig. 2, where the clean, mix-
ture, and output signals are depicted for both algorithms. As
can be seen, the EMBFP reduce more noise and interference,
in the price of higher signal distortion. This result confirms the
discussion in Sec. V-A, attributing this distortion to the strong
feedback loop of the speech PSD in the EMBFP algorithm.
This point is further clarified in Fig. 3, where the QMs are
presented for different values of ξmin. It can be seen that as
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(a) Clean reverberant signal: 1st speaker.
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(b) Mixture signal: two speakers and noise.
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(c) 1st output signal - GEMBFP
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(d) 1st output signal - EMBFP

Fig. 2. Sonograms and waveforms for the clean (reverberant) signal of the
1-st speaker (a), noisy mixture of two speakers (b), and output signals of the
GEMBFP algorithm - which considers the speech signal to be deterministic
and unknown (c) and the EMBFP algorithm - which considers the speech
signal to be stochastic process (d). SIR=0, RSNR=20 dB, eight microphones,
10 EM iterations. ξmin = 0.3

the value of ξmin increases, the RSNR decreases due to the
lower attenuation of noise, and the SDR increases due to the
lower distortion of the desired source. The SIR decreases very
slowly with ξmin, suggesting that the SWF focuses mainly on
noise. For ξmin = 0.87 the RSNR and SIR of both algorithms
are approximately equal, while the EMBFP provides a lower
SDR compared to the GEMBFP. In the rest of the experimental
study, we used ξmin = 0.3.

2) QM vs. T60: In Table III, a comparison between the
GEMBFP, EMBFP, and the OBFP algorithms as a function
of the reverberation level is depicted. As expected, the OBFP
algorithm achieves better performance than the GEMBFP and
the EMBFP algorithms, with the EMBFP obtaining lower SDR
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Fig. 3. QMs at the output for different values of ξmin. Experiments were
executed with T60 = 0.36 s, and input RSNR = 30 dB.

TABLE III
COMPARISON BETWEEN THE PROPOSED METHOD AND THE OBFP

BEAMFORMER FOR VARIOUS REVERBERATION LEVELS.

Measure T60 (s) Input OBFP GEMBFP EMBFP

0.16 0.0 18.4 12.0 15.8
SIR 0.36 0.0 18.9 10.5 14.4

0.61 0.0 17.0 11.0 15.3
All 0.0 18.1 11.2 15.2

0.16 — 11.5 8.4 6.4

SDR 0.36 — 10.3 7.4 6.2

0.61 — 10.1 7.0 3.5

All — 10.7 7.6 5.4

0.16 19.5 29.7 14.2 26.6
RSNR 0.36 19.5 29.4 15.7 23.9

0.61 21.6 30.4 15.9 23.7
All 20.2 29.8 15.3 24.8

values, and higher SIR and RSNR values, as discussed in
Sec. V-A. In general, the longer the reverberation time, the
more difficult the separation, and the performance degrades
for the proposed and oracle algorithms.

Regarding the noise reduction performance, the EMBFP
improves the RSNR scores by 5 dB, while the GEMBFP
degrades them by 5 dB, as compared to the input. We will
elaborate on this issue in Sec. VII-B4.

3) QM vs. WDO: In this paper, we assumed that speech
signals do not overlap in the STFT domain, as was done in
numerous speech BSS algorithms e.g. [12], [16]. However,
this assumption is not fully satisfied in all practical scenarios,
as will be shown in the following. We examine the proposed
algorithms w.r.t. the validity of the assumption, following the
W-disjoint orthogonality (WDO) definition in [10]. To this end,

TABLE IV
QM VERSUS WDO.

Measure WDO Input OBFP GEMBFP EMBFP

[0.99,1] 0.0 17.5 10.4 12.3

SIR [0.95,0.99] 0.0 17.8 11.8 16.3

[0.89,0.95] 0.0 19.0 11.3 16.9

All 0.0 18.1 11.2 15.2

[0.99,1] — 10.1 7.6 5.5

SDR [0.95,0.99] — 9.9 7.4 4.4

[0.89,0.95] — 11.9 7.9 6.3

All — 10.7 7.6 5.4

[0.99,1] 19.5 29.6 15.3 24.3

RSNR [0.95,0.99] 21.7 30.2 16.7 25.7

[0.89,0.95] 19.5 29.7 13.9 24.3

All 20.2 29.8 15.3 24.8

we calculate a binary mask from the clean signals by

md(t, k) =

{
1 ; |xd(t, k)|2 > β · |xd′(t, k)|2
0 ; else , (68)

for d, d′ ∈ {1, 2} and d 6= d′, and β set to 100. Then, the
WDO of the d-th speaker was calculated

WDOd =
1

Bd
·
∑
t,k

|md(t, k) · xd(t, k)|2

− 1

Bd
·
∑
t,k

|md(t, k) · xd′(t, k)|2, (69)

where Bd =
∑
t,k |xd(t, k)|2 is the total power of the d-th

source, and finally WDO = 1
2 · (WDO1 + WDO2). Note that

this procedure is identical to (16) in [10]. The results of the
experiment were split according to their WDO value, and the
summary is given in Table IV. The range of WDO values
in Table IV is [0.89, 1], where lower values indicate a high
degree of overlap, and higher values indicate a higher sparsity
in the STFT domain. The WDO values in the experiment
Table IV are equally distributed, i.e. third of the signals has
WDO between 0.99 and 1, third between 0.95 and 0.99, etc.
In this experimental study, the WDO value is monotonically
decreasing when T60 is increasing, since reverberation causes
more overlap between the different speakers. However, this
influence is only a secondary factor, since the WDO levels
are influenced more by the specific speech signals than by
T60. It can be deduced that the proposed algorithms exhibit
low sensitivity to the level of WDO among the tested values.

4) QM vs. Input RSNR: Next we analyze the experiments
w.r.t. the input RSNR levels, where the average results for
each level are depicted in Table V. The relation between the
RSNR at the input and the SIR and SDR values at the output
is not clear, and anyway, only a marginal difference can be
observed between the different input noise levels. While the
output RSNR is approximately 5 dB higher than the input
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TABLE V
QM VERSUS RSNR.

Measure RSNR Input OBFP GEMBFP EMBFP

10 0.0 18.6 10.8 14.6
SIR 20 0.0 18.3 10.0 15.2

30 0.0 17.5 12.7 15.6
All 0.0 18.1 11.2 15.2

10 — 12.2 8.0 5.4

SDR 20 — 10.7 7.2 4.5

30 — 9.1 7.7 6.3

All — 10.7 7.6 5.4

10 10.5 25.2 10.2 15.7
RSNR 20 19.8 28.8 14.1 24.2

30 30.3 35.5 21.6 34.4
All 20.2 29.8 15.3 24.8

RSNR for the EMBFP, the noise reduction degrades (actually,
the noise is amplified) for the GEMBFP as the input RSNR
increases. This may be attributed to the low input SIR (0 dB in
all the signals) directing the beamformer towards interference
suppression rather than noise reduction.

C. Comparison to a reference algorithm

In this section, we compare the proposed methods to the
method proposed in [27] that is based on NMF. Unlike the
proposed method, it is impossible to apply the method in
[27] to v(t, k) or hd(k) · xd(t) as described in Sec. VII-A4.
Therefore, we use instead the signal to error ratio (SER) that
is defined as follows (see (60)),

SER = QM {xd, xd − x̂d} , (70)

where x̂d is the output signal, i.e., x̃d for the EMBFP, xd for
the GEMBFP, or the output of the NMF algorithm. For the
input SER, we use x̂d = z1. The SER values for the input
signal, the proposed algorithms, and the algorithm [27] as a
function of the T60, RSNR and WDO, are given in Table VI.

VIII. CONCLUSION

Two EM-based algorithms for simultaneous speech sepa-
ration and noise reduction were presented, where both the
acoustic parameters and the enhanced signals are estimated.
We started by assuming two alternative clean signal models,
i.e., either stochastic or deterministic unknown, and applied the
EM scheme for an ML estimation of the parameters. While
a deterministic model for the signal results in an MVDR
beamformer, a stochastic model results in an MWF as well
as an a posteriori speaker probability. The algorithm that uses
the MVDR is denoted GEMBFP, since it is based on the
generalized-EM scheme, while the one that uses the MWF
is denoted EMBFP algorithm.

TABLE VI
SER VS. WDO, VS. T60 , AND VS. RSNR.

WDO Input OBFP GEMBFP EMBFP NMF

[0.99,1] 0.2 6.5 2.4 3.5 1.4

[0.95,0.99] 0.1 6.4 2.8 3.3 1.6

[0.89,0.95] 0.2 8.8 2.8 4.4 3.3

All 0.1 7.3 2.7 3.7 2.1

T60

0.160 0.2 7.9 3.0 4.1 1.8

0.360 0.2 6.7 2.4 3.5 2.0

0.610 0.1 7.1 2.7 3.6 2.6

All 0.1 7.3 2.7 3.7 2.1

RSNR

10 0.4 9.2 3.0 4.4 3.8

20 0.0 7.5 2.1 3.5 2.1

30 0.0 5.1 3.0 3.3 0.5

All 0.1 7.3 2.7 3.7 2.1

The algorithms were tested in various RSNR, WDO, and
reverberation levels. For these scenarios, the proposed algo-
rithms were compared to an oracle reference filter, that rely
on a non-blind estimation of the parameters, and to an NMF-
based algorithm proposed in [27]. The performance of the
proposed algorithms are lower than the oracle algorithm’s but
higher than NMF algorithm. Unlike the GEMBFP, the EMBFP
comprises SWF and an a posteriori speaker probability which
enable better noise reduction and interference suppression
at the cost of signal distortion. It was further shown that
longer reverberation time degrades the performance, while the
input RSNR and the levels of overlap between the competing
speakers has a minor effect on the output quality.

ACKNOWLEDGMENTS

The authors would like to thank Yaron Laufer from the
Faculty of Engineering, Bar Ilan University, for his helpful
comments, and Dr. D. Kounades-Bastian from INRIA, Greno-
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