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Abstract—The problem of speaker tracking in noisy and
reverberant enclosures is addressed. We present a hybrid al-
gorithm, combining traditional tracking schemes with a new
learning-based approach. A state-space representation, consisting
of a propagation and observation models, is learned from signals
measured by several distributed microphone pairs. The proposed
representation is based on two data modalities corresponding
to high-dimensional acoustic features representing the full re-
verberant acoustic channels as well as low-dimensional TDOA
estimates. The state-space representation is accompanied by a
statistical model based on a Gaussian process used to relate the
variations of the acoustic channels to the physical variations
of the associated source positions, thereby forming a data-
driven propagation model for the source movement. In the
observation model, the source positions are nonlinearly mapped
to the associated TDOA readings. The obtained propagation
and observation models establish the basis for employing an
extended Kalman filter (EKF). Simulation results demonstrate
the robustness of the proposed method in noisy and reverberant
conditions.

Index Terms—speaker tracking, time difference of arrival
(TDOA), relative transfer function (RTF), extended Kalman filter
(EKF), Gaussian process.

I. INTRODUCTION

Speaker localization and tracking in reverberant enclosures
is required in various audio applications, including: automatic
camera steering in teleconferencing [1], beamforming [2],
source separation [3], [4] and robot audition [5], [6]. Con-
ventional localization methods are implemented by either a
single-step optimization directly on the measured signals, or
a dual-step approach. In the first category, the position is
estimated for example, by a grid search over the output power
of a beamformer steered to all potential locations [7], [8],
or by high-resolution methods such as the multiple signal
classification (MUSIC) algorithm [9]. In dual-step approaches,
the first stage is estimating the TDOAs of several microphone
pairs [10]–[12]. Then, in the second stage, the TDOA readings
are combined to perform the actual localization [13], [14].
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In a tracking scenario, the source is moving in the en-
closure in approximately continuous trajectory, implying de-
pendence between source positions in successive time steps.
Bayesian inference approaches, which model the varying
source position as a stochastic process, are widely used. These
methods commonly rely on estimated TDOAs, leading to
nonlinear and non-Gaussian models, which can be solved,
for example, using the unscented Kalman filter, the extended
Kalman filter (EKF) [15], and particle filters [16]–[18].

In real environments, the presence of noise or rever-
berations often yields unreliable observations with spurious
peaks, which may lead to severe performance degradation.
Several attempts to mitigate the harmful effect of noise and
reverberations, were made. In [19] an extended particle filter
(EPF) solution was proposed, where an EKF is used to derive
an optimal importance function for a particle filter. A multiple-
hypothesis model accounting for the multipath nature of the
sound propagation in reverberant enclosures was presented
in [16], and was combined with an EPF in [20]. In [21],
[22] a tracker was proposed based on a probability hypothesis
density (PHD) filter, which is a first moment approximation of
the target probability density. Robust tracking methods were
also proposed using sensor networks with special structures,
such as spherical microphone arrays [23] and distributed net-
works [24], [25]. In [26] a robust tracker based on a distributed
unscented Kalman filter was proposed, in which an interacting
multiple model [27] is used for accommodating the different
possible motion dynamics of the speaker, yielding a smoothed
trajectory of the speaker’s movement in noisy and reverberant
environments. Another approach to enhance the localization
robustness is to fuse several observation modalities, as was
demonstrated in audio-visual tracking methods [28]–[31].

Localization and tracking capabilities can be enhanced
using model-based methods, assuming certain structures of
either the speech signal or the acoustic channels. In [32]
an autoregressive (AR) modelling for the speech components
was used, and in [33], [34] the sources were modelled as
sums of harmonically related sinusoids, which can describe
many musical instruments and voiced speech. A model for
the early reflections of the acoustic channels was presented
in [35], based of which the early reflections were iteratively
estimated. These models often rely on approximated physical
and statistical assumptions, which do not always meet the
practical conditions in complex real-world scenarios, with high
levels of noise and reverberations. Recently, there is an attempt
to overcome these limitations by applying data-driven models,
rather than predefined physical and statistical models [36]–
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[40]. In this family of methods, the central idea is to learn
a mapping from high-dimensional acoustic features, extracted
from the measured signals, to corresponding source positions.

Recently, we have presented several localization appro-
aches based on the concepts of manifold learning. These
algorithms are based on learning the mapping between the high
dimensional acoustic channels to the source positions. In [40],
we presented a semi-supervised source localization algorithm
based on two-microphone measurements using the concept
of manifold regularization in a reproducing kernel Hilbert
space (RKHS). A Bayesian formulation to the localization
algorithm, which is analogous to the manifold regularization
approach, was presented in [41]. This Bayesian framework
served as a corner stone for extending the single node (microp-
hone pair) setup to an ad hoc network of microphone pairs,
in [42]. In [43], we extended the static localization approach to
tracking a moving source. The gist of the algorithm is to com-
bine between a local interpolation of successive time steps, and
a global interpolation of available prerecorded measurements.
All the above methods are based on data-driven models and
lead to improved localization results over TDOA-based appro-
aches in adverse conditions [40], [44]. However, TDOA-based
approaches may be superior in low reverberation and noise
levels, since the TDOA readings are typically reliable under
these conditions. Motivated by this observation, we propose
here a hybrid tracking algorithm, which combines learning-
based models with a traditional TDOA-based approach.

In this paper, we incorporate two data modalities, which are
both extracted from the measured microphone signals. The first
modality is the estimated TDOA, which ignores the complex
reflection pattern characterizing the acoustic environment, and
has an analytic known relation to the source position. The
second modality comprises the full representation of the acou-
stic channel, which is high dimensional and has an unknown
complex relation to the source position. As in [40], the relation
between the acoustic channels and the source positions can be
recovered by a data-driven model, built from a training set
of prerecorded measurements in the enclosure of interest. We
present a hybrid state-space formulation, which exploits both
data modalities. The propagation of the source is expressed
by a data-driven model, and translates the relations between
the high-dimensional acoustic channels into a linear transition
model for the source movement. The observation model is
TDOA-based, and combines estimated TDOAs extracted from
the measured signals and known TDOAs associated with the
training set. The resulting state-space model lays the founda-
tion for the application of an EKF. The algorithm performance
is examined on simulated trajectories of a moving source in
noisy and reverberant environments.

II. PROBLEM FORMULATION

Consider a source moving in a reverberant enclosure. We
assume that the movement of the source can be generally
described by the following Markovian relation:

p(t) = a (p(t− 1), It) (1)

where p(t) = [px(t), py(t), pz(t)]
T is the position of the

source at time t. Here, a(·) is the transition function, and It
represents all the relevant information available at time t, such
as prior information of the acoustic environment, the driving
variance, etc. Traditional tracking methods usually rely on a
completely heuristic propagation model, e.g., random walk or
Langevin [16], [17]. Conversely, here instead of assuming
a generic prior, we aim to infer a data-driven propagation
model based on observations and a training set of prerecorded
measurements. We assume that the training set consists of D
measurements of static sources in known positions {pi}Di=1 in
the enclosure of interest.

The estimation of the source position is based on audio
signals generated by the source and measured by a set of mi-
crophones located in the enclosure. We consider a setup with
M nodes, each of which consists of a pair of microphones,
arbitrarily positioned in the enclosure. The source generates a
speech signal s(t), which is measured by all the microphones.
The signal ymj(t) measured by the jth microphone in the mth
node is given by:

ymj(t) =
∑
τ

bmjt (τ)s(t− τ)+umj(t), 1 ≤ m ≤M, j = 1, 2

(2)
where bmjt is the time-varying acoustic impulse response
(AIR) relating the source at position p(t) and the jth microp-
hone in the mth node, and umj(t) is the corresponding noise
signal. Both the measured signals (2) and the training informa-
tion can be exploited for estimating the source positions. For
this purpose, in Sec. III, we define the propagation model (1),
i.e. we specify the transition function a(·), and define the
relevant information It, utilized at each time step. In Sec. IV,
we define the relevant features, which are treated as noisy
observations, and formulate the corresponding observation
model. The two models form a state-space representation of
the tracking problem, which is solved using an EKF recursion,
as described in Sec.V.

III. MANIFOLD-BASED PROPAGATION MODEL

The relevant information in the task of source localization
is reflected in the measured signals (2) through the corre-
sponding acoustic channels bmjt , and is independent of the
source signal. We claim that observed changes of the acoustic
channels during the movement of the source has a direct
relation to the corresponding changes in the source position.
Therefore, the propagation model of the source can be inferred
from the variations of the corresponding acoustic channels.
However, there is no simple model that relates the acoustic
channels to the source positions. In order to relate between
the two, we resort to data-driven models, which are learned
based on training information.

We first analyse the characteristic of the acoustic channels
and their relation to the source positions. Then, we extract
acoustic feature vectors, representing the acoustic channels,
from the measured signals (2). Next, we derive a data-driven
model attaching each feature vector to the corresponding
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source position. Finally, we learn the dynamics of the mo-
vement of the source from variations in the acoustic features
during the movement.

A. The Acoustic Manifold

Consider a specific reverberant enclosure, such as a con-
ference hall, an office, or a car interior. All possible acoustic
channels in this enclosure have a complex reflection pattern
stemming from the different surfaces and objects characteri-
zing the enclosure. Hence, the acoustic channels are typically
modelled by a large number of coefficients, resulting in
an intricate high-dimensional representation. However, in a
static environment, where the enclosure characteristics and the
microphone positions are approximately fixed, the difference
between acoustic channels is mainly attributed to the different
positions of the source [44], [45]. Thus, the true intrinsic
dimension of the set of possible acoustic channels in a specific
enclosure is significantly smaller than the number of variables
commonly used for their representation. By virtue of this
assumption, we can state that the acoustic channels in a
specific enclosure pertain to a low dimensional manifold [40],
[46]. The structure of the manifold is unknown, and can be
inferred from the training information. The available training
measurements in a specific enclosure can be considered as
samples drawn from the manifold. By analysing the relations
between the given training samples, we can form a data-driven
model that represents the structure of the manifold.

In the test phase, we obtain a series of varying acoustic
channels during the source movement. This series of acoustic
channels can be viewed as a trajectory on the learned manifold.
The trajectory on the manifold corresponds to the actual
trajectory of the source in the enclosure. Our goal is to relate
the observed variations in the domain of the acoustic channels
to the unknown dynamics of the source movement, aiming to
devise a data-driven propagation model.

B. Acoustic Feature Vectors

We would like to establish the relation between the acoustic
channels and the source positions. In practice, only the mea-
sured signals are available, and the acoustic channels cannot
be directly accessed. Therefore, we use the associated relative
transfer function (RTF) Hm(t, k), defined as the ratio between
the two transfer functions of the two microphones within the
mth node, i.e.

Hm(t, k) =
Bm2(t, k)

Bm1(t, k)
(3)

where Bmj(t, k) is the (unknown) transfer function of the
corresponding AIR. Note that here and henceforth t is used
to denote a frame index in the short-time Fourier transform
(STFT) domain, and k is a frequency bin. The RTF value
in the kth frequency bin is estimated in the time-frequency
domain using L+ 1 frames around t, and is smoothed across

time:

Ĥm
0 (t, k) ' Φ̂m21(t, k)

Φ̂m11(t, k)
=

∑t+L/2
n=t−L/2 Y

m2(n, k)Y m1∗(n, k)∑t+L/2
n=t−L/2 Y

m1(n, k)Y m1∗(n, k)

(4)

Ĥm(t, k) = γĤm
0 (t, k) + (1− γ)Ĥm(t− 1, k) (5)

where Φ̂m11(t, k) and Φ̂m21(t, k) are the estimated power spectral
density (PSD) and cross-PSD (CPSD) of the measured signals
at the mth node, Y mj(t, k) is the STFT of the measured
signal (2), and 0 ≤ γ ≤ 1 is a smoothing parameter. Let
h(t) denote the concatenation of RTF values in K frequency
bins and in all M nodes:

hm(t) =
[
Ĥm(t, k1), . . . , Ĥm(t, kK)

]T
h(t) =

[
h1T (t), . . . ,hMT (t)

]T
(6)

where hm(t) resides on the mth manifold Mm ⊂ RK , and
h(t) ∈ ∪Mm=1Mm. Note that each node is associated with
a specific manifold Mm, which represents the underlying
geometric structure of the RTFs associated with the mth node.
The different nodes are assumed to be spatially distributed in
the enclosure. Therefore, they represent different views, and,
in general, their associated manifolds have different structures.
To recover the mapping between RTFs and source positions,
we combine the different relations defined by the different
manifolds. Merging the information from the different mani-
folds increases the spatial separation and improves the ability
to accurately localize the source [42].

C. Mapping the Acoustic Features to Source Positions

We define the mapping function fc : ∪Mm=1Mm → R
which attaches to an RTF sample h(t) its corresponding source
position, i.e. pc(t) = fc(h(t)), c ∈ {x, y, z}. The function
fc(·) is modelled as a zero-mean Gaussian process [47], speci-
fied by its covariance function κ : ∪Mm=1Mm×∪Mm=1Mm →
R:

fc(·) ∼ GP(0, κ). (7)

The covariance function κ(h(t),h(τ)), often termed “kernel
function”, translates a pairwise relation between the RTFs h(t)
and h(τ) to a pairwise similarity between the corresponding
positions pc(t) and pc(τ). However, a covariance function
which is based on the standard Euclidean distance between
the high-dimensional RTFs, i.e. ‖h(t) − h(τ)‖2, reflects the
physical distance only for small scales [46]. Therefore, we
define a manifold-based covariance function, in which the
relation between two RTFs is evaluated with respect to the
manifolds of the different nodes. For this purpose, we utilize
the training information.

Recall that we assume the availability of D measurements
of static sources in D different locations {pi}Di=1. We estimate
the RTFs {hi}Di=1, defined as in (6), for each training position.
Since during training the sources are static, we estimate the
RTFs according to (4) using all the associated frames, without
time smoothing. The training sources are assumed to be static,
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since it is simpler to acquire measurements in known positions
for static sources. In addition, their corresponding RTFs can
be more accurately estimated, since the estimation can utilize
a higher number of frames, in contrast to a moving source for
which the acoustic channels vary from frame to frame. For
notational clarification, we emphasize that hi is a training RTF
sample of a static source from a known position pi, whereas
h(t) is a test RTF sample of a moving source from an unknown
position p(t).

The relations on the mth manifold are evaluated using a
standard Gaussian kernel, with a scaling factor εm:

κm
(
hmi ,h

m
j

)
= exp

{
−
‖hmi − hmj ‖22

εm

}
. (8)

Note that the Gaussian kernel implicitly limits the Euclidean
distance to a small range governed by εm. As a result, it
respects the linearity of the manifold for small scales. We
propose to measure the relations in each manifold separately
using (8), and then combine the different perspectives of the
different nodes. The purpose is to form a similarity measure
between RTFs, which represents relations that are co-observed
in all manifolds. By relying on the training samples {hi}Di=1,
we construct a multiple-manifold covariance function [42]:

κ(hr,hl) =
1

M2

M∑
q,w=1

D∑
i=1

κq(h
q
r,h

q
i )κw(hwl ,h

w
i ). (9)

where l and r represent ascription to certain positions, whereas
q and w represent ascription to certain nodes. Note that (9)
can be used to evaluate the covariance of both training and
test samples. The covariance of test samples of different time
frames is expressed by κ (h(t),h(τ)), and the covariance of a
test sample and a training sample is expressed by κ(h(t),hi).

In (9), the covariance is obtained by averaging over all
available training samples as well as over all different nodes.
Comparing the relations to other training samples yields an
affinity measure, which respects the manifold structure, hence
is preferable over a regular Euclidean distance between the
high-dimensional RTFs. Two RTF samples which exhibit si-
milar relations to other samples on the manifold are considered
close to each other, indicating that the corresponding source
positions are also in close proximity, and vice versa. In
addition, we average over the relations inspected in the various
nodes to fuse their different views. The defined covariance
consists of all the inter-relations between the different nodes,
enhancing observations which are common to pairs of nodes,
and ignoring relations that appear in only one node. Further
details about the derivation of (9) can be found in [42]. A
nomenclature listing the different symbols and their meanings
is given in Table I.

It is important to note that in the following derivation of the
tracking algorithm, we regard the mapping function fc(·) as a
Gaussian process with a covariance function κ(·, ·) as stated
in (7), with no restriction to a specific kernel function κ(·, ·).
In the experimental study in Section VI, we use the kernel
defined in (9). However, other definitions for the covariance
of the Gaussian process can be applied as well.

hi A training RTF sample, consisting of RTFs of all M nodes,
associated with a static source at position pi, 1 ≤ i ≤ D

h(t) A test RTF sample, consisting of RTFs of all M nodes,
associated with a moving source at an instantaneous position
p(t)

fc(·) A Gaussian process representing possible source positions,
mapped from their corresponding RTFs

κ(·, ·) A kernel function defining the covariance
of positions drawn from the Gaussian process,
evaluated via the relation between the corresponding RTFs

Mm The manifold associated with the RTFs of the mth node

TABLE I: Nomenclature

D. Derivation of The Propagation Model

After defining the instantaneous relation between RTFs
and source positions via the function fc(·), we can now
define the parameters of the propagation model for the source
movement (1). In this model, the current source position p(t)
is a combination of the previous source position p(t− 1) and
of relevant training positions in proximity to the source. The
relations between successive positions and the chosen training
positions are determined according to the relations between
the observed RTF samples, formed by the manifold-based
covariance terms defined in the previous section (9).

Following [48], for each test RTF sample h(t) we define a
subset of neighboring training samples

{
hti | ‖ h(t)−hti ‖<

η, ti ∈ {1, . . . , D}
}

, where η defines the neighborhood radius.
In order to obtain fixed-size sets, we focus on N nearest-
neighbors among the defined subset (assuming η is large
enough to include N samples), denoted by H̄t = {hti}Ni=1.
In this definition, the neighbors are determined based on the
Euclidean distance between the corresponding RTFs. Other
similarity measures can be used for this purpose, such as
relying on the distance induced by the covariance in (9).
Note that here, the exact extent of similarity is of secondary
importance. We only need to identify nearby samples, hence,
the Euclidean distance, which is meaningful for small scales,
is appropriate for this task.

Let Ht = h(t)
⋃
H̄t denote an extended set of size

N + 1, which consists of the current RTF sample as well
as all the chosen neighboring training samples. Let ft,c =

[fc(h(t)), fc(ht1), . . . , fc(htN )]
T denote a concatenation of

all the corresponding mappings of the function fc(·) over
the samples in Ht, representing their source positions. The
relation between the mappings of the t-th and the t − 1-th
sets is dictated by the Gaussian process (7). Both ft,c and
ft−1,c are Gaussian vectors, which consist of samples from the
Gaussian process fc(·). Therefore, they have a joint Gaussian
distribution with zero-mean and covariance matrix, which is
based on the covariance terms in (9):[

ft,c
ft−1,c

] ∣∣∣∣Ht,t−1 ∼ N (02(N+1),

[
Σt,t Σt,t−1

ΣT
t,t−1 Σt−1,t−1

])
(10)

where Ht,t−1 = Ht∪Ht−1, 02(N+1) is an 2(N+1)×1 vector
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of all zeros, and

Σt,τ =


κ(h(t),h(τ)) κ(h(t),hτ1) · · · κ(h(t),hτN )
κ(ht1 ,h(τ)) κ(ht1 ,hτ1) · · · κ(ht1 ,hτN )

...
...

. . .
...

κ(htN ,h(τ)) κ(htN ,hτ1) · · · κ(htN ,hτN )

 .
(11)

Accordingly, the conditional distribution of ft,c given ft−1,c is
also Gaussian:

Pr
(
ft,c|ft−1,c,Ht,t−1

)
= N

(
A(Ht,t−1)ft−1,c,Q(Ht,t−1)

)
(12)

where

A(Ht,t−1) = Σt,t−1Σ
−1
t−1,t−1

Q(Ht,t−1) = Σt,t −Σt,t−1Σ
−1
t−1,t−1Σ

T
t,t−1. (13)

Conveniently, the Gaussian conditional distribution induces
linear dependence between the positions of the current set
ft,c and the positions of the preceding set ft−1,c. Thus, the
propagation of the source positions in (1) can be formulated
by a linear equation of successive time steps, with a Gaussian
driving noise:

ft,c = A(Ht,t−1)ft−1,c + ξ(Ht,t−1) (14)

where the noise characteristics are directly inferred
from the conditional probability (12), i.e. ξ(Ht,t−1) ∼
N (0N+1,Q(Ht,t−1)). Here, we extend the commonly
used random walk model [20], by interpolating over both
the previous position and close positions from the training
set. The model parameters, i.e. the state-transition matrix
and the variance of the process noise, are computed using
It ≡ Ht,t−1, based on the relations between the corresponding
RTFs with respect to the different manifolds. This way a
nonlinear regression in the high-dimensional space of the
RTFs results in a linear (time-varying) propagation model for
the source movement.

The model applies to each of the coordinates, x, y or z,
independently. Here, we assume that the variations of the
RTFs reflect an independent movement of the source in either
direction. We use this independence assumption to simplify the
derived Gaussian process mapping. However, the observation
model presented in Section IV, which accounts on TDOA
readings, uses the full 3D location as required by the physical
model. Consequently, the full propagation model for the 3-D
position ft =

[
fTt,x, f

T
t,y, f

T
t,z

]T
is given by:

ft = A3(Ht,t−1)ft−1 + ξ3(Ht,t−1) (15)

where A3(Ht,t−1) = A(Ht,t−1) ⊗ I3 and ξ3(Ht,t−1) ∼
N
(
03(N+1),Q3(Ht,t−1)

)
with Q3(Ht,t−1) = Q(Ht,t−1) ⊗

I3. Here, ⊗ is the Kronecker product and I3 is the 3 × 3
identity matrix.

IV. TDOA-BASED OBSERVATION MODEL

The observations are formed by the range differences r =[
r1, . . . , rM

]T
of each of the nodes. The range differences

have a known nonlinear relation to the source position:

rm = g (p) =
∥∥p− qm2

∥∥
2
−
∥∥p− qm1

∥∥
2

(16)

where qmj is the position of the jth microphone in the
mth node (assumed to be known). The range differences
attached with the current time step, can be estimated using
the generalized cross-correlation (GCC) method [10], or they
can be extracted from the estimated RTFs [49]:

r̂m(t) =
1

v
argmax

τ
ĥm(t, τ) ≡ IDFT

{
Ĥm(t, k)

}
(17)

where v is the sound velocity. For the subset H̄t of the chosen
neighbors, the range differences {r̂ti}Ni=1 can be computed
by (16), using the corresponding measured positions {pti}Ni=1.

Let r̂t =
[
r̂T (t), r̂Tt1 , . . . , r̂

T
tN

]T
be the concatenation of

M(N+1) values/estimates of the range differences associated
with the set Ht. A nonlinear observation model is formed by:

r̂t = g(ft) + ζt (18)

where g(ft) = [gT (p(t)),gT (pt1), . . . ,gT (ptN )]T and

g(p) =


∥∥p− q12

∥∥
2
−
∥∥p− q11

∥∥
2

...∥∥p− qM2
∥∥
2
−
∥∥p− qM1

∥∥
2

 . (19)

Here, ζt ∼ N
(
0M(N+1),Rt

)
is the observation error, with a

diagonal covariance matrix Rt:

Rt = blkdiag {R(t),Rt1 , . . . ,RtN } (20)

where R(t) and Rti are the covariance matrices of the
observation noise associated with the current sample and with
the ith sample in H̄t, respectively:

R(t) = diag
{

(σ1
t )2, . . . , (σMt )2

}
Rti = diag

{
(σ1
ti)

2, . . . , (σMti )2
}
. (21)

Typically, (σmti )2 � (σmt )2 for all 1 6 m 6 M, 1 6 i 6 N ,
since r̂mti is computed in (16) using the corresponding measu-
red position pti , while r̂m(t) is estimated by (17). In addition,
the variance (σmt )2 is influenced by reverberation and noise
levels, as well as by the microphone positions with respect to
the speaker. Conversely, the variance (σmti )2 is independent
of the acoustic conditions, reflecting the reliability of the
measured training positions.

V. EXTENDED KALMAN FILTER TRACKING

A state-space representation is formed by combining the
propagation model with the observation model. In our case, we
combine the manifold-based propagation model (15), which is
derived based on the RTFs, and the TDOA-based observation
model (18), which relies on the TDOA readings. Both models
take advantage of the training information. Further discussion
about this combination, as a special case of a more general
scheme, is given at the end of this section. We obtain the
following state-space representation:

ft = A3(Ht,t−1)ft−1 + ξ3(Ht,t−1)

r̂t = g(ft) + ζt. (22)
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Fig. 1: An illustration of the proposed general scheme, which combines two data modalities of different types: The first type
is high-dimensional features (RTFs), which are mapped to the hidden states (source positions) by a data-driven model using
the training information, and form the state transition model (prorogation model for the source movement (15)). The second
type is low dimensional features (TDOAs), which have known relation to the hidden states and form the observation model
(TDOA-based observation model (18)). The derived state-space representation is iteratively solved using Bayesian filtering in
two steps: prediction step and update step (EKF recursion (25)).

Due to the nonlinearity of the observation model a nonlinear
Bayesian filtering technique should be applied. The particle
filter [50], which is based on random sampling, cannot be
directly applied here, since the evaluation of the covariance
terms in (22) is based on the corresponding RTFs, which are
given only for the pre-generated training samples, and are
unavailable for other random samples. Either the unscented
Kalman filter [51] or the extended Kalman filter (EKF) may
be applied. In [15], the trackers based on these two nonlinear
filters were shown to yield comparable results, hence we adopt
here the EKF recursion due to its simplicity.

The EKF algorithm applies a linearization of the observa-
tion model (which is given here in a closed-form, in contrast to
the inferred propagation model), using the following Jacobian:

5fg(ft) = blkdiag
{
5p g(p(t)),5pg(pt1), . . . ,5pg(ptN )

}
(23)

where

5pg(p) =


(

p−q12

‖p−q12‖2 −
p−q11

‖p−q11‖2

)T
...(

p−qM2

‖p−qM2‖2 −
p−qM1

‖p−qM1‖2

)T
 . (24)

Accordingly, the EKF recursion takes the following form:

f̂(t|t− 1) = A3tf̂(t− 1|t− 1)

Π(t|t− 1) = A3tΠ(t− 1|t− 1)AT
3t + Q3t

f̂(t|t) = f̂(t|t− 1) + Γ(t)
(
r̂t − g

(
f̂(t|t− 1)

))
Π(t|t) =

(
I3(N+1) − Γ(t)Gt

)
Π(t|t− 1) (25)

where A3t ≡ A3t(Ht,t−1), Q3t ≡ Q3t(Ht,t−1). Here,
Π(t|t−1) is the predicted covariance, Π(t|t) is the posteriori
covariance, and Γ(t) is the Kalman gain, defined as:

Γ(t) = Π(t|t− 1)GT
t

(
GtΠ(t|t− 1)GT

t + Rt

)−1
. (26)

where Gt ≡ 5fg
(
f̂(t|t− 1)

)
. The proposed tracking scheme

is summarized in Algorithm 1.

The resulting estimator f̂(t|t) is a combination of
a predicted position f̂(t|t − 1), and a correction term
Γ(t) (r̂t − g(f(t|t− 1))). The predicted position is con-
structed by a local interpolation of the previous position and
adjacent training positions, using manifold-based models. The
correction term is devised from the observed range differences.
Note that the proposed hybrid estimator consists of two estima-
tes based on two data modalities with different characteristics,
namely the RTFs and the TDOAs. On the one hand, the
TDOAs represent low-dimensional observations with known
relation to the source positions. The TDOA readings suffer
from two major disadvantages. First, the TDOA estimation ba-
sed on the measured signals may be unreliable and its accuracy
degrades as reverberation level increases. Second, some of the
relevant information is lost when instead of considering the
entire acoustic channels, the TDOA, which represents only the
direct arrival of the response, is extracted. On the other hand,
the RTFs represent high-dimensional features with unknown
complex relations to the source positions. The problem is
alleviated by the assumption that the RTFs are confined to
a manifold of much lower dimensions. The mapping to the
corresponding source positions is modelled by a Gaussian
process defined with respect to the manifolds of the different
nodes. The unknown relations are recovered by a data-driven
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model deduced from the training information.

Algorithm 1: Hybrid Tracking

Input :
• A training set consisting of D RTF samples {hi}Di=1

of static sources located at known positions {pi}Di=1.
• New test measurements of a moving source along an

unknown trajectory.
Output:
• Estimated source positions {p̂(t)}Tt=1 corresponding

the test measurements.
For each time segment t:

1) Estimate the concatenated RTF vector h(t) of (6),
using (4) and (5).

2) Search for N nearest neighbors of h(t) among the
training samples, and form the set H̄t = {hti}Ni=1 .

3) Form the sets Ht = h(t)
⋃
H̄t and

Ht,t−1 = Ht ∪Ht−1.
4) Compute the correlation terms between the current

sample h(t) and the sets Ht and Ht−1, using (8)
and (9).

5) Compute the matrices A(Ht,t−1) and Q(Ht,t−1)
according to (13).

6) Estimate the range differences {r̂m(t)}Mm=1,
according to (17).

7) Apply EKF recursion according to (25) and (26).

The proposed hybrid scheme combines two data modalities
with different properties, aiming to inherit the advantages
of both, in order to improve the localization accuracy. The
core idea of combining different types of data modalities
can be generalized in various ways. Both the RTFs and the
TDOAs can be substituted by other relevant observations with
similar properties, which can be extracted from the measured
signals (2), or from other available measurements. Following
the concepts of the derived estimator, a large variety of hybrid
trackers can be derived, by the general scheme illustrated in
Fig. 1.

VI. EXPERIMENTAL STUDY

We carried out a simulation study to examine the ability
of the proposed method to track a moving source in 2-D.
In Section VI-A, we describe the setup and present initial
tracking results with fixed and varying velocity movements.
In Section VI-B, we present the reference algorithms and
discuss their computational complexity. A comparison of the
performance for different reverberation and noise levels is
provided in Section VI-C. Additional aspects of the proposed
method are examined in Section VI-D.

A. Experimental Setup and Initial Results

We simulated a 5.2×6.2×3m room with 3 pairs of microp-
hones mounted next to the room walls, using MCROOMSIM,

0

1

2

3

4

5

0246

Fig. 2: The room setup: blue x-marks denote the microphone
positions and red asterisks denote the training positions.

a multichannel room acoustics simulator [52]. To simulate the
measured signal corresponding to a moving source along a
specific trajectory, we filtered different parts of the speech
signal with AIRs corresponding to different positions along the
specified trajectory. The filtering was performed in the STFT
domain using frames of 341ms, and 93.75% overlap, where
each frame was multiplied by the corresponding transfer-
function. Using a proper inverse-STFT, we obtained the time-
domain signals.

The locations of the source, both in the training and in
the test, were confined to a 2 × 2m rectangular region, in a
fixed height of 1.5m (the same height of all the microphones).
The sampling rate was set to 16kHz. We generated a training
set with D = 36 samples, forming a regular grid with a
resolution of 0.4m. The samples were generated using 3s long
speech signals, in noiseless conditions. The room setup and
the training positions are illustrated in Fig. 2.

An initial examination was carried out to track a source,
moving along both a straight line and a sinusoidal trajectory
in the designated region. The reverberation time was set to
200ms. The duration of the entire movement of the source
was 3s along the straight line, and 5s along the sinusoidal
movement. For both movement types, the source average velo-
city was approximately 1m/s. The measured signals were split
into frames of 128ms, with 75% overlap between successive
frames. For each frame, the RTF was estimated according
to (4) using 3 successive time frames, and smoothed across
time as in (5). Each RTF sample consisted of K = 250
frequency bins, corresponding to the 0 − 2kHz frequency
band, where most of the speech components are concentrated.
Figure 3 depicts the two trajectories along the x and the y
axes and the obtained tracking results. It can be observed
that the proposed method is able to track the source for both
trajectories.
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Fig. 3: True path and estimated path for (a)-(b) a straight line movement and for (c)-(d) a sinusoidal movement.

B. Compared Algorithms and Computational Complexity

A more comprehensive examination was carried out to
evaluate the performance of the proposed method for different
reverberation and noise levels. The results were compared
with a TDOA-based tracker (‘TDOA-EKF’) as in [15], in
which the manifold-based propagation model (14) is sub-
stituted by a simple random walk model. In addition, we
compared the proposed method to a learning-based approach
(‘KNN-KF’) adapted from [48], in which the TDOA-based
observation model (18) is substituted by a linear model that
links between the predicted positions of the subset H̄t to
their known positions. These two competing methods represent
two opposite extremes, which are combined in the proposed
hybrid approach. The algorithms’ parameters are summarized
in Table II.

We first discuss the computational complexity of the pro-
posed method as compared to the KNN-KF algorithm and
the TDOA-EKF algorithm. For simplicity, we equally weight
multiplications, divisions, additions, subtractions and exponen-
tiations. The major factors that influence the complexity of
the implementation are: (i) the number of nodes M , (ii) the
number of training samples D, (iii) the number of training
neighbors N , (iv) the FFT length F and (v) the number
of concatenated frequency bins K. The orders of magnitude
of the different operations performed by the algorithms are
summarized in Table III. The computations required in the
training stage (can be found in [42]) are performed off-line,
hence are omitted from Table III. The complexity of com-
puting the covariance terms (9) for constructing the matrices
A(Ht,t−1) and Q(Ht,t−1) according to (13), is based on
the analysis in [42]. The EKF recursion (25) requires several
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TABLE II: Algorithms’ Parameters

TDOA-EKF KNN-KF Hybrid

Trans. Mat. 0.99 · I3 data-driven data-driven
Trans. Noise Cov. 10−4 · I3 data-driven data-driven

Obs. Noise Cov. (σm
t )2 =

{
10−7 for 200− 300ms / 15− 25dB
10−5 for 400− 600ms / 0− 10dB 10−3 · IN (σm

t )2 =

{
10−3 for 200− 500ms / 15− 25dB
10−2 for 600ms / 0− 10dB

(σm
ti
)2 = 10−6, ∀1 ≤ i ≤ N

matrix multiplications and one matrix inversion, which at most
require O(M3) or O(M3(N + 1)3) operations for either of
the algorithms, assuming M > 2.

C. Algorithms’ Performance

Fifty Monte-Carlo trials were carried out with different
speakers moving along the defined straight line for 3s. The
same room and the same array geometry were used for
both training and testing. The test signals were generated
using different utterances than the ones used for training.
Diffuse noise signals with white spectrum were added to the
measurements. The average root mean square errors (RMSEs)
of all three algorithms are depicted in Fig. 4 as a function
of the reverberation level (noiseless) and as a function of the
noise level (200ms reverberation time).

It can be observed that the TDOA-based approach [15]
preforms well in low reverberation and noise levels. However
its performance degrades in reverberant and noisy conditions,
most likely due to inaccurate TDOA estimates. Conversely,
the learning-based approach [48], which relies on the training
information and takes into consideration the representation
of the acoustic channels, is more robust to reverberation
and noise. The proposed hybrid algorithm outperforms both
competing algorithms for all reverberation and noise levels.
We conclude that the hybrid method inherits the benefits of
both approaches, yielding an improved performance in various
conditions.

D. Performance Analysis

We further investigated several aspects concerning the
proposed method. First, we evaluated the tracking performance
with respect to the number of nodes in the network. Second,
we examined the ability of the proposed method to track to
changes in a switching scenario with several nonconcurrent
moving speakers.

We examined the influence of the number of nodes on
the tracking performance. We used a network with five dis-
tributed microphone pairs consisting of the three original
nodes depicted in Fig. 2, and two additional nodes located
at: [1.5, 4.5, 1.5] and [1.5, 1.5, 1.5]. For each fixed number of
nodes M̃ ≤ 5, we randomly chose M̃ nodes out of five. We
used the chosen nodes for tracking a source moving along the
defined straight line for T60 = 300ms. The error was averaged
over 50 trials with different speakers and different network
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Fig. 4: The RMSE for (a) various reverberation levels and for
(b) various noise levels.

constellations. The average RMSE is depicted in Fig. 5 as a
function of the number of nodes M̃ ∈ {1, . . . , 5}. We observe
a gradual performance improvement as the number of nodes
increases. By adding more nodes, we gain more information
representing different perspectives. Merging all the view points
together facilitates the identification of interfering factors and
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TABLE III: Computational Complexity

TDOA-EKF KNN-KF Hybrid

RTF/Spectrum Estimation (4),(5) O(MF log2 F ) O(MF log2 F ) O(MF log2 F )
TDOA Estimation (17) O(MF log2 F ) - O(MF log2 F )

N Nearest-Neighbors Search - O(D log2D) O(D log2D)
Covariance Computation (9),(13) - O(KMD +M2DN) O(KMD +M2DN)

EKF Recursion (25) O(M3) O(M3(N + 1)3) O(M3(N + 1)3)
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Fig. 5: The RMSE as a function of the number of nodes

the accurate localization of the source position by appropria-
tely matching the observations made by the nodes.

Finally, we examined a switching scenario, which consists
of three nonconcurrent speakers with three different trajecto-
ries starting from different points. The trajectory of the first
speaker starts from [2.85, 2, 1.5], continues along the y-axis
for 1m during 1.5s, and ends at [2.85, 3, 1.5]. The trajectory
of the second speaker starts from [3.4, 4, 1.5], continues along
the y-axis in the opposite direction for 1m during 1.5s, and
ends at [3.4, 3, 1.5]. The trajectory of the third speaker starts
from [2.7, 3.5, 1.5], continues along the x-axis for 2m during
3s, and ends at [4.7, 3.5, 1.5]. The reverberation time was set to
200ms. The estimated trajectories evaluated by the proposed
method are depicted in Fig. 6 along the x and the y axes.
We observe that the proposed method is able to track changes
after a short adaptation time.

We conclude this section by highlighting the main points
demonstrated in the experimental results. We have shown that
the proposed method can track a moving source in various
noisy and reverberant conditions. In addition, we have seen
that the proposed method is superior over either a traditional
TDOA-based approach or a pure learning-based approach,
stressing the advantage of the combination of both methods
in the proposed hybrid algorithm. It was also shown that the
performance is improved by increasing the number of nodes in
the network, and that the proposed method successfully adapt
to changes in a switching scenario.
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Fig. 6: Tracking results in a switching scenario of three
nonconcurrent speakers

VII. CONCLUSIONS

A hybrid tracking algorithm is presented using a learning-
based model combined with a TDOA-based model. The source
propagation in the physical domain is learned from the varia-
tions of the RTF samples with respect to an acoustic manifold.
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The structure of the manifold is inferred in a data-driven
manner from the training information. The source position is
nonlinearly related to the estimated TDOAs, which constitute
the observation model. The resulting state-space formulation
exploits both the characteristics of the full acoustic channels
represented by the RTFs, and the direct arrival information
represented by the TDOA readings. Simulation results demon-
strate the ability of the proposed method to locate the source
in challenging noisy and reverberant conditions. The algorithm
exploits the high accuracy of TDOA-based methods in optimal
conditions, while maintaining robustness, which characterizes
learning-based approaches.
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