Multi-Microphone Speech Dereverberation using Eigen-decomposition

Sharon Gannot

School of Electrical Engineering, Bar-Ilan University

Signal Processing and Systems (SP&S) Seminar, February 3rd, 2008

・ロト ・四ト ・モト・ モー

The Reverberation Phenomenon

(a) Clean signal

<ロ> <同> <同> < 回> < 回>

Sharon Gannot Speech Dereverberation using EVD

The Room impulse Response (RIR)

The talk is based on:

- S. Gannot and M. Moonen, "Subspace methods for multi-microphone speech dereverberation," EURASIP J. Appl. Signal Process., vol. 2003, no. 1, pp. 1074-1090, 2003.
- S. Gannot, "Multi-Microphone Speech Dereverberation using Eigen-decomposition", to appear in "Speech Dereverberation", P.A. Naylor and N.D. Gaubich (Eds.), Springer, 2008.

Outline

<ロ> <部> < 部> < き> < き> <</p>

æ

Outline

2 Preliminaries

Sharon Gannot Speech Dereverberation using EVD

・ロン ・部 と ・ ヨ と ・ ヨ と …

Outline

- Problem Formulation
- 2 Preliminaries
- 3 RIR Estimation Algorithm Derivation

・ロト ・回ト ・ヨト ・ヨト

Outline

- Problem Formulation
- 2 Preliminaries
- 3 RIR Estimation Algorithm Derivation
- 4 Extensions of the Basic Algorithm

イロン イロン イヨン イヨン

Outline

- Problem Formulation
- 2 Preliminaries
- 3 RIR Estimation Algorithm Derivation
- 4 Extensions of the Basic Algorithm
- **5** RIR Estimation in Subbands

Outline

- Problem Formulation
- 2 Preliminaries
- 3 RIR Estimation Algorithm Derivation
- 4 Extensions of the Basic Algorithm
- 5 RIR Estimation in Subbands
- 6 Signal Reconstruction

Outline

- Problem Formulation
- 2 Preliminaries
- 3 RIR Estimation Algorithm Derivation
- 4 Extensions of the Basic Algorithm
- 5 RIR Estimation in Subbands
- 6 Signal Reconstruction
- Experimental Study

Outline

- Problem Formulation
- 2 Preliminaries
- 3 RIR Estimation Algorithm Derivation
- 4 Extensions of the Basic Algorithm
- 5 RIR Estimation in Subbands
- 6 Signal Reconstruction
- Experimental Study
- 8 Summary and Conclusions

(日) (同) (三) (三)

Problem Formulation

Preliminaries RIR Estimation - Algorithm Derivation Extensions of the Basic Algorithm RIR Estimation in Subbands Signal Reconstruction Experimental Study Summary and Conclusions

Problem Formulation

Sharon Gannot

Speech Dereverberation using EVD

Problem Formulation

Preliminaries RIR Estimation - Algorithm Derivation Extensions of the Basic Algorithm RIR Estimation in Subbands Signal Reconstruction Experimental Study Summary and Conclusions

Goal

Use a Two Stage Approach

Sharon Gannot Speech Dereverberation using EVD

Problem Formulation Preliminaries RIR Estimation - Algorithm Derivation Extensions of the Basic Algorithm RIR Estimation in Subbands Signal Reconstruction

Experimental Study Summary and Conclusions

Goal

Use a Two Stage Approach

• Estimate the Acoustic Transfer Function (ATFs) $H_m(z)$.

Sharon Gannot Speech Dereverberation using EVD

Summary and Conclusions

Goal

Use a Two Stage Approach

- Estimate the Acoustic Transfer Function (ATFs) $H_m(z)$.
- Use $\hat{H}_m(z)$; m = 1, ..., M to extract s(n).

Two Microphone, Noiseless Case

 $y_1(n) = h_1(n) * s(n)$

Nullifying Filters

$$[y_2(n) * h_1(n) - y_1(n) * h_2(n)] * e_{\ell}(n) = 0$$
$$\tilde{h}_{m,\ell}(n) = h_m(n) * e_{\ell}(n); \ m = 1, 2$$

Sharon Gannot

Speech Dereverberation using EVD

Data Matrix

$$\mathbf{Y}_{m}^{T} = \begin{bmatrix} y_{m}(0) & 0 & \cdots & 0 \\ y_{m}(1) & y_{m}(0) & \vdots \\ \vdots & y_{m}(1) & \ddots & 0 \\ y_{m}(\hat{n}_{h} - 1) & \vdots & \ddots & y_{m}(0) \\ y_{m}(\hat{n}_{h}) & y_{m}(\hat{n}_{h} - 1) & y_{m}(1) \\ \vdots & y_{m}(\hat{n}_{h}) & \ddots & \vdots \\ y_{m}(N) & \vdots & \ddots & y_{m}(\hat{n}_{h} - 1) \\ 0 & y_{m}(N) & \ddots & y_{m}(\hat{n}_{h}) \\ \vdots & 0 & \ddots & \vdots \\ 0 & \cdots & 0 & y_{m}(N) \end{bmatrix}$$

Sharon Gannot Speech Dereverberation using EVD

æ

Filtered Room Impulse Responses (RIRs)

Define:

$$ilde{\mathbf{h}}_{m,\ell}^T = \left[\; ilde{h}_{m,\ell}(0) \; \; ilde{h}_{m,\ell}(1) \; \dots \; \; ilde{h}_{m,\ell}(\hat{n}_h) \; \right]; \; m = 1,2$$

Concatenate:

$$\tilde{\mathbf{h}}_{\ell} = \begin{bmatrix} \tilde{\mathbf{h}}_{1,\ell} \\ \tilde{\mathbf{h}}_{2,\ell} \end{bmatrix}; \quad \mathbf{Y} = \begin{bmatrix} \mathbf{Y}_2 \\ -\mathbf{Y}_1 \end{bmatrix}$$

Nullifying Filters:

$$\mathbf{Y}^{T} \tilde{\mathbf{h}}_{\ell} = 0; \ \forall \ell.$$

Therefore:

$$\tilde{\mathbf{h}}_{\ell} \mathbf{Y} \mathbf{Y}^{\mathsf{T}} \tilde{\mathbf{h}}_{\ell} = 0 \Rightarrow \tilde{\mathbf{h}}_{\ell} \hat{\mathbf{R}}_{y} \tilde{\mathbf{h}}_{\ell} = 0; \ \forall \ell$$

Null Subspace

Eigenvalue (or Singular Value) Decomposition

$$\lambda_{\ell} = 0 \ \ell = 0, 1, \dots, \hat{n}_h - n_h$$

 $\lambda_{\ell} > 0$ otherwise

Sharon Gannot Speech Dereverberation using EVD

イロン イロン イヨン イヨン

Null Subspace

Eigenvalue (or Singular Value) Decomposition

$$\lambda_{\ell} = 0 \ \ell = 0, 1, \dots, \hat{n}_h - n_h$$

 $\lambda_{\ell} > 0$ otherwise

Null Subspace Vectors

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}_0 \ \mathbf{v}_1 \ \cdots \ \mathbf{v}_{\hat{n}_h - n_h} \end{bmatrix} = \begin{bmatrix} \tilde{\mathbf{h}}_{1,0} \ \tilde{\mathbf{h}}_{1,1} \ \cdots \ \tilde{\mathbf{h}}_{1,\hat{n}_h - n_h} \\ \tilde{\mathbf{h}}_{2,0} \ \tilde{\mathbf{h}}_{2,1} \ \cdots \ \tilde{\mathbf{h}}_{2,\hat{n}_h - n_h} \end{bmatrix}$$

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Over-Estimated Room Impulse Responses

Acoustical Transfer Functions

For $\ell = 0, 1, \dots, \hat{n}_h - n_h, \ m = 1, 2$:

$$\widetilde{\mathsf{h}}_\ell \Leftrightarrow \widetilde{H}_{m,\ell}(z) \ \widetilde{H}_{m,\ell}(z) = H_m(z) E_\ell(z)$$

イロト イポト イヨト イヨト

3

Over-Estimated Room Impulse Responses

Acoustical Transfer Functions

For $\ell = 0, 1, \dots, \hat{n}_h - n_h, \ m = 1, 2$:

$$ilde{\mathbf{h}}_{\ell} \Leftrightarrow ilde{H}_{m,\ell}(z) \ ilde{H}_{m,\ell}(z) = H_m(z) E_{\ell}(z)$$

Fundamental Lemma

Sharon Gannot Speech Dereverberation using EVD

Over-Estimated Room Impulse Responses

Acoustical Transfer Functions

For
$$\ell = 0, 1, \dots, \hat{n}_h - n_h, \ m = 1, 2$$
:

$$\widetilde{\mathsf{h}}_\ell \Leftrightarrow \widetilde{H}_{m,\ell}(z) \ \widetilde{H}_{m,\ell}(z) = H_m(z) E_\ell(z)$$

Fundamental Lemma

• For
$$m = 1, 2, ..., M$$
:
 $\tilde{H}_{m,\ell}(z)$ have $\hat{n}_h - n_h$ common roots $\Rightarrow E_l(z)$.

Sharon Gannot Speech Dereverberation using EVD

Over-Estimated Room Impulse Responses

Acoustical Transfer Functions

For
$$\ell = 0, 1, \dots, \hat{n}_h - n_h, \ m = 1, 2$$
:

$$\widetilde{\mathsf{h}}_\ell \Leftrightarrow \widetilde{H}_{m,\ell}(z) \ \widetilde{H}_{m,\ell}(z) = H_m(z) E_\ell(z)$$

Fundamental Lemma

• For
$$m = 1, 2, ..., M$$
:
 $\tilde{H}_{m,\ell}(z)$ have $\hat{n}_h - n_h$ common roots $\Rightarrow E_l(z)$.
• For $\ell = 0, 1, ..., \hat{n}_h - n_h$:
 $\tilde{H}_{m,\ell}(z)$ have n_h common roots $\Rightarrow H_m(z)$.

RIR Estimation - Algorithm Derivation Filtering (Silvester) Matrix:

$$\mathbf{H}_{m} = \underbrace{\begin{bmatrix} h_{m}(0) & 0 & 0 & \cdots & 0 \\ h_{m}(1) & h_{m}(0) & 0 & \cdots & 0 \\ \vdots & h_{m}(1) & \ddots & \vdots & \vdots \\ h_{m}(n_{h}) & \vdots & \ddots & \ddots & 0 \\ 0 & h_{m}(n_{h}) & \ddots & h_{m}(0) \\ \vdots & 0 & h_{m}(1) \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & h_{m}(n_{h}) \end{bmatrix}}_{\hat{n}_{h} - n_{h} + 1}$$

Sharon Gannot Speech Dereverberation using EVD

Over-Estimated Room Impulse Responses Matrix Form

Define:

$$\mathbf{e}_{\ell}^{T} = \big[e_{\ell}(0) e_{\ell}(1) \ldots e_{\ell}(\hat{n}_{h} - n_{h}) \big]$$

Extraneous Filters:

$$\mathbf{E} = \left[\, \mathbf{e}_0 \, \, \mathbf{e}_1 \, \cdots \, \, \mathbf{e}_{\hat{n}_h - n_h} \, \right].$$

Null Subspace Vectors (Over-estimated RIRs):

$$\mathbf{V} = \begin{bmatrix} \tilde{\mathbf{h}}_{1,0} & \tilde{\mathbf{h}}_{1,1} & \cdots & \tilde{\mathbf{h}}_{1,\hat{n}_h - n_h} \\ \tilde{\mathbf{h}}_{2,0} & \tilde{\mathbf{h}}_{2,1} & \cdots & \tilde{\mathbf{h}}_{2,\hat{n}_h - n_h} \end{bmatrix} = \begin{bmatrix} \mathbf{H}_1 \\ \mathbf{H}_2 \end{bmatrix} \mathbf{E} \stackrel{\triangle}{=} \mathbf{H} \mathbf{E}$$

Define $\mathbf{E}^{i} \stackrel{\triangle}{=} \operatorname{inv}(\mathbf{E}) = \begin{bmatrix} \mathbf{e}_{0}^{i} & \mathbf{e}_{1}^{i} & \cdots & \mathbf{e}_{\hat{n}_{h}-n_{h}}^{i} \end{bmatrix}$ Then:

$$H = VE^{\prime}$$

RIR Extraction Exploiting the Silvester Structure

Sharon Gannot Speech Dereverberation using EVD

Algorithm Summary

RIR Estimation - Basic Case

Sharon Gannot Speech Dereverberation using EVD

・ロト ・四ト ・モト ・モト

Algorithm Summary

RIR Estimation - Basic Case

• $\tilde{\mathbf{V}} \boldsymbol{\theta} = \mathbf{0}$

Sharon Gannot Speech Dereverberation using EVD

ヘロン ヘロン ヘビン ヘビン

Algorithm Summary

RIR Estimation - Basic Case

- $\tilde{\mathbf{V}} \boldsymbol{\theta} = \mathbf{0}$
- \bullet Find eigenvector of $\tilde{\boldsymbol{V}}$ corresponding to eigenvalue 0

イロト イポト イヨト イヨト

Algorithm Summary

RIR Estimation - Basic Case

- $\tilde{\mathbf{V}} \boldsymbol{\theta} = \mathbf{0}$
- \bullet Find eigenvector of $\tilde{\boldsymbol{V}}$ corresponding to eigenvalue 0
- \bullet Extract h_1,h_2 from the eigenvector

・ロト ・回ト ・ヨト ・ヨト

Extensions

Two Microphone Noisy Case Multi-Microphone Case (M > 2) Partial Knowledge of the Null Subspace

• Two Microphone Noisy Case

Sharon Gannot Speech Dereverberation using EVD

< ロ > < 同 > < 三 > < 三 > :

Extensions

Two Microphone Noisy Case Multi-Microphone Case (M > 2)Partial Knowledge of the Null Subspace

• Two Microphone Noisy Case

• White Noise Case

Sharon Gannot Speech Dereverberation using EVD

< ロ > < 同 > < 三 > < 三 > :

Extensions

Two Microphone Noisy Case Multi-Microphone Case (M > 2)Partial Knowledge of the Null Subspace

• Two Microphone Noisy Case

- White Noise Case
- Colored Noise Case

< ロ > < 同 > < 回 > < 回 > .

Extensions

Two Microphone Noisy Case Multi-Microphone Case (M > 2)Partial Knowledge of the Null Subspace

- Two Microphone Noisy Case
 - White Noise Case
 - Colored Noise Case
- Multi-Microphone Case (M > 2)

(a)

Extensions

Two Microphone Noisy Case Multi-Microphone Case (M > 2) Partial Knowledge of the Null Subspace

- Two Microphone Noisy Case
 - White Noise Case
 - Colored Noise Case
- Multi-Microphone Case (M > 2)
- Partial Knowledge of the Null Subspace
Two Microphone Noisy Case Multi-Microphone Case (M > 2) Partial Knowledge of the Null Subspace

Two Microphone Noisy Case

$$\mathbf{X}=\mathbf{Y}+\mathbf{\Upsilon},$$

- X noisy signal data matrix
- $oldsymbol{\Upsilon}$ noise-only data matrix

$$\hat{\mathbf{R}}_x pprox \hat{\mathbf{R}}_y + \hat{\mathbf{R}}_
u$$

 $\hat{\mathbf{R}}_{x} = \frac{\mathbf{X}\mathbf{X}^{T}}{N+1} \text{ - noisy signal correlation matrix}$ $\hat{\mathbf{R}}_{\nu} = \frac{\mathbf{Y}\mathbf{Y}^{T}}{N+1} \text{ - noise-only signal correlation matrix}$

・ロト ・ 一下・ ・ ヨト・ ・ ヨト・

RIR Estimation - White Noise

Sharon Gannot Speech Dereverberation using EVD

・ロン ・部 と ・ ヨ と ・ ヨ と …

RIR Estimation - White Noise

V - eigenvectors corresponding to eigenvalue σ²_ν (remains intact)

Two Microphone Noisy Case Multi-Microphone Case (M > 2) Partial Knowledge of the Null Subspace

White Noise $\hat{\mathbf{R}}_{\nu} \approx \sigma_{\nu}^{2} \mathbf{I}$

RIR Estimation - White Noise

- V eigenvectors corresponding to eigenvalue σ²_ν (remains intact)
- $\tilde{\mathsf{V}}\theta = \epsilon$

イロト イポト イヨト イヨト

Two Microphone Noisy Case Multi-Microphone Case (M > 2) Partial Knowledge of the Null Subspace

White Noise $\hat{\mathbf{R}}_{\nu} \approx \sigma_{\nu}^2 \mathbf{I}$

RIR Estimation - White Noise

- V eigenvectors corresponding to eigenvalue σ²_ν (remains intact)
- $\tilde{\mathsf{V}} \theta = \epsilon$
- Find eigenvector of $\tilde{\mathbf{V}}$ corresponding to the smallest eigenvalue $\Rightarrow \mathsf{Total}$ Least Squares

Two Microphone Noisy Case Multi-Microphone Case (M > 2) Partial Knowledge of the Null Subspace

White Noise $\hat{\mathbf{R}}_{\nu} \approx \sigma_{\nu}^2 \mathbf{I}$

RIR Estimation - White Noise

- V eigenvectors corresponding to eigenvalue σ²_ν (remains intact)
- $\tilde{\mathsf{V}} \, \theta = \epsilon$
- Find eigenvector of $\tilde{\mathbf{V}}$ corresponding to the smallest eigenvalue $\Rightarrow Total \ Least \ Squares$
- Extract $\mathbf{h}_1, \mathbf{h}_2$ from the eigenvector

Colored Noise

Two Microphone Noisy Case Multi-Microphone Case (M > 2)Partial Knowledge of the Null Subspace

RIR Estimation - Colored Noise

Sharon Gannot Speech Dereverberation using EVD

(a)

Colored Noise

Two Microphone Noisy Case Multi-Microphone Case (M > 2) Partial Knowledge of the Null Subspace

RIR Estimation - Colored Noise

• Calculate generalized EVD of $\hat{\mathbf{R}}_{x}$ and $\hat{\mathbf{R}}_{\nu}$ (or generalized SVD of **X** and $\hat{\boldsymbol{\Upsilon}}$)

イロト イポト イヨト イヨト

Colored Noise

Two Microphone Noisy Case Multi-Microphone Case (M > 2) Partial Knowledge of the Null Subspace

RIR Estimation - Colored Noise

- Calculate generalized EVD of $\hat{\mathbf{R}}_{x}$ and $\hat{\mathbf{R}}_{\nu}$ (or generalized SVD of \mathbf{X} and $\hat{\mathbf{\Upsilon}}$)
- V generalized eigenvectors corresponding to generalized eigenvalue 1

< 日 > < 同 > < 三 > < 三 >

Colored Noise

Two Microphone Noisy Case Multi-Microphone Case (M > 2) Partial Knowledge of the Null Subspace

RIR Estimation - Colored Noise

- Calculate generalized EVD of $\hat{\mathbf{R}}_{x}$ and $\hat{\mathbf{R}}_{\nu}$ (or generalized SVD of \mathbf{X} and $\hat{\mathbf{\Upsilon}}$)
- V generalized eigenvectors corresponding to generalized eigenvalue 1

•
$$\tilde{\mathsf{V}}\theta = \epsilon$$

< 日 > < 同 > < 三 > < 三 >

Colored Noise

Two Microphone Noisy Case Multi-Microphone Case (M > 2) Partial Knowledge of the Null Subspace

RIR Estimation - Colored Noise

- Calculate generalized EVD of $\hat{\mathbf{R}}_x$ and $\hat{\mathbf{R}}_\nu$ (or generalized SVD of \mathbf{X} and $\hat{\mathbf{\Upsilon}}$)
- V generalized eigenvectors corresponding to generalized eigenvalue 1
- $\tilde{\mathsf{V}} heta=\epsilon$
- Find eigenvector of $\tilde{\mathbf{V}}$ corresponding to the smallest eigenvalue $\Rightarrow \mathsf{Total}$ Least Squares

Colored Noise

Two Microphone Noisy Case Multi-Microphone Case (M > 2) Partial Knowledge of the Null Subspace

RIR Estimation - Colored Noise

- Calculate generalized EVD of $\hat{\mathbf{R}}_{x}$ and $\hat{\mathbf{R}}_{\nu}$ (or generalized SVD of \mathbf{X} and $\hat{\mathbf{\Upsilon}}$)
- V generalized eigenvectors corresponding to generalized eigenvalue 1
- $\tilde{\mathsf{V}} heta=\epsilon$
- Find eigenvector of $\tilde{\mathbf{V}}$ corresponding to the smallest eigenvalue \Rightarrow Total Least Squares
- \bullet Extract h_1,h_2 from the eigenvector

イロト イポト イヨト イヨト

Two Microphone Noisy Case Multi-Microphone Case (M > 2)Partial Knowledge of the Null Subspace

Multi-Microphone Case (M > 2)

Pairing
$$\frac{M \times (M-1)}{2}$$
 channels:
 $[y_i(n) * h_j(n) - y_j(n) * h_i(n)] * e_l(n) = 0$
 $i, j = 1, 2, ..., M; \ l = 0, 1, ..., \hat{n}_h - n_h$

Construct an extended data matrix:

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_{2} \ \mathbf{X}_{3} \ \cdots \ \mathbf{X}_{M} \ \mathbf{0} \ \cdots \ \mathbf{0} \ \cdots \ \mathbf{0} \\ -\mathbf{X}_{1} \ \mathbf{0} \ \cdots \ \mathbf{X}_{3} \ \cdots \ \mathbf{X}_{M} \ \mathbf{0} \\ \mathbf{0} \ -\mathbf{X}_{1} \ \mathbf{0} \ -\mathbf{X}_{2} \ \mathbf{0} \ \vdots \\ \vdots \ \mathbf{0} \ \cdots \ \mathbf{0} \ \mathbf{X}_{M} \\ \vdots \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{X}_{M} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \cdots \ -\mathbf{X}_{1} \ \cdots \ \mathbf{0} \ \mathbf{X}_{M} \\ \mathbf{0} \ \mathbf{X}_{M}$$

Algorithm

Two Microphone Noisy Case Multi-Microphone Case (M > 2)Partial Knowledge of the Null Subspace

RIR Estimation - Multi-Microphone

Sharon Gannot Speech Dereverberation using EVD

イロト イポト イヨト イヨト

Algorithm

Two Microphone Noisy Case Multi-Microphone Case (M > 2)Partial Knowledge of the Null Subspace

RIR Estimation - Multi-Microphone

• Calculate generalized EVD of new $\hat{\mathbf{R}}_{\times}$ and $\hat{\mathbf{R}}_{\nu}$ (or generalized SVD of new X and Υ)

イロト イポト イヨト イヨト

Algorithm

Two Microphone Noisy Case Multi-Microphone Case (M > 2)Partial Knowledge of the Null Subspace

RIR Estimation - Multi-Microphone

- Calculate generalized EVD of new $\hat{\mathbf{R}}_{\times}$ and $\hat{\mathbf{R}}_{\nu}$ (or generalized SVD of new **X** and $\boldsymbol{\Upsilon}$)
- <u>V</u> new null subspace

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Algorithm

Two Microphone Noisy Case Multi-Microphone Case (M > 2)Partial Knowledge of the Null Subspace

RIR Estimation - Multi-Microphone

- Calculate generalized EVD of new $\hat{\mathbf{R}}_{x}$ and $\hat{\mathbf{R}}_{\nu}$ (or generalized SVD of new **X** and $\boldsymbol{\Upsilon}$)
- \underline{V} new null subspace

•
$$\frac{\tilde{\mathbf{V}} \boldsymbol{\theta}}{\boldsymbol{\theta}^{T}} = \boldsymbol{\epsilon}$$
, where:
 $\underline{\boldsymbol{\theta}}^{T} = \left[(\mathbf{e}_{0}^{i})^{T} (\mathbf{e}_{1}^{i})^{T} \cdots (\mathbf{e}_{\hat{n}_{h}-n_{h}}^{i})^{T} \mathbf{h}_{1}^{T} \mathbf{h}_{2}^{T} \dots \mathbf{h}_{M}^{T} \right]$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Algorithm

Two Microphone Noisy Case Multi-Microphone Case (M > 2)Partial Knowledge of the Null Subspace

RIR Estimation - Multi-Microphone

- Calculate generalized EVD of new $\hat{\mathbf{R}}_{x}$ and $\hat{\mathbf{R}}_{\nu}$ (or generalized SVD of new **X** and $\hat{\boldsymbol{\Upsilon}}$)
- \underline{V} new null subspace

•
$$\frac{\tilde{\mathbf{V}}}{\underline{\theta}} = \epsilon$$
, where:
 $\underline{\theta}^{T} = \left[(\mathbf{e}_{0}^{i})^{T} (\mathbf{e}_{1}^{i})^{T} \cdots (\mathbf{e}_{\hat{n}_{h}-n_{h}}^{i})^{T} \mathbf{h}_{1}^{T} \mathbf{h}_{2}^{T} \dots \mathbf{h}_{M}^{T} \right]$

• Find eigenvector of $\underline{\tilde{\mathbf{V}}}$ corresponding to the smallest eigenvalue $\Rightarrow \mathsf{Total}$ Least Squares

(日) (同) (三) (三)

Algorithm

Two Microphone Noisy Case **Multi-Microphone Case** (M > 2)Partial Knowledge of the Null Subspace

RIR Estimation - Multi-Microphone

- Calculate generalized EVD of new $\hat{\mathbf{R}}_{x}$ and $\hat{\mathbf{R}}_{\nu}$ (or generalized SVD of new **X** and $\hat{\boldsymbol{\Upsilon}}$)
- \underline{V} new null subspace

•
$$\frac{\tilde{\mathbf{V}}}{\underline{\theta}} = \epsilon$$
, where:
 $\underline{\theta}^T = \left[(\mathbf{e}_0^i)^T (\mathbf{e}_1^i)^T \cdots (\mathbf{e}_{\hat{n}_h - n_h}^i)^T \mathbf{h}_1^T \mathbf{h}_2^T \dots \mathbf{h}_M^T \right]$

- Find eigenvector of $\underline{\tilde{\mathbf{V}}}$ corresponding to the smallest eigenvalue \Rightarrow Total Least Squares
- Extract $\mathbf{h}_1, \mathbf{h}_2, \dots, \mathbf{h}_M$ from the eigenvector

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Two Microphone Noisy Case Multi-Microphone Case (M > 2) Partial Knowledge of the Null Subspace

Partial Knowledge of the Null Subspace

Augmented Null Subspace:

$$\bar{\mathbf{V}} = \begin{bmatrix} \mathbf{V} & \mathbf{0}^T & \mathbf{0}^T & \mathbf{0}^T \\ \mathbf{0}^T & \mathbf{V} & \mathbf{0}^T & \mathbf{0}^T \\ \vdots & \ddots & \mathbf{0}^T \\ \mathbf{0}^T & \mathbf{V} \end{bmatrix} = \bar{\mathbf{H}} \underbrace{\begin{bmatrix} \mathbf{E} & \mathbf{0}^T & \mathbf{0}^T & \mathbf{0}^T \\ \mathbf{0}^T & \mathbf{E} & \mathbf{0}^T & \mathbf{0}^T \\ \vdots & \ddots & \mathbf{0}^T \\ \mathbf{0}^T & \mathbf{E} & \mathbf{0}^T \end{bmatrix}}_{L > \hat{n}_h - n_h + \hat{\ell}} \triangleq \bar{\mathbf{H}} \bar{\mathbf{E}}$$

$$\mathbf{E}^{P_i} = \operatorname{Pinv}\{\bar{\mathbf{E}}\} = \bar{\mathbf{E}}^T (\bar{\mathbf{E}} \bar{\mathbf{E}}^T)^{-1}$$

$$\Rightarrow \bar{\mathbf{V}} \mathbf{E}^{P_i} = \bar{\mathbf{H}}$$

Algorithm

Two Microphone Noisy Case Multi-Microphone Case (M > 2) Partial Knowledge of the Null Subspace

RIR Estimation - Multi-Microphone

Sharon Gannot Speech Dereverberation using EVD

Algorithm

Two Microphone Noisy Case Multi-Microphone Case (M > 2) Partial Knowledge of the Null Subspace

RIR Estimation - Multi-Microphone

 \bullet Calculate $\bar{\boldsymbol{V}}$ - augmented null subspace

Sharon Gannot Speech Dereverberation using EVD

Algorithm

Two Microphone Noisy Case Multi-Microphone Case (M > 2) Partial Knowledge of the Null Subspace

RIR Estimation - Multi-Microphone

• Calculate $\overline{\mathbf{V}}$ - augmented null subspace • $\tilde{\overline{\mathbf{V}}} \theta = \epsilon$

Algorithm

Two Microphone Noisy Case Multi-Microphone Case (M > 2) Partial Knowledge of the Null Subspace

RIR Estimation - Multi-Microphone

- \bullet Calculate $\bar{\boldsymbol{V}}$ augmented null subspace
- $\tilde{\bar{\mathbf{V}}} \theta = \epsilon$
- Find eigenvector of $\tilde{\mathbf{V}}$ corresponding to the smallest eigenvalue \Rightarrow Total Least Squares

・ロト ・ 一下・ ・ ヨト・ ・ ヨト・

Algorithm

Two Microphone Noisy Case Multi-Microphone Case (M > 2) Partial Knowledge of the Null Subspace

RIR Estimation - Multi-Microphone

- \bullet Calculate $\bar{\mathbf{V}}$ augmented null subspace
- $\tilde{\bar{\mathbf{V}}}\theta = \epsilon$
- Extract h_1, h_2 from the eigenvector

< ロ > < 同 > < 回 > < 回 > .

Subband Filters

æ

RIR Estimation in Subbands

Sharon Gannot Speech Der

Speech Dereverberation using EVD

Causal Equalizers Non-Causal Equalizers

Signal Reconstruction (general)

 $g_m(n)$; m = 1, 2, ..., M - set of M equalizers. Estimated speech signal:

$$\hat{s}(n) = \sum_{m=1}^{M} g_m(n) * x_m(n) = \sum_{m=1}^{M} g_m(n) * h_m(n) * s(n) + \sum_{m=1}^{M} g_m(n) * \nu_m(n)$$

Equalization:

m=1

$$\sum_{m=1}^{M} g_m(n) * h_m(n) = \delta(n) \Leftrightarrow \sum_{m=1}^{M} G_m(z) H_m(z) = 1$$

m=1

Causal Equalizers Non-Causal Equalizers

Multi-channel Inverse Filter Theorem (MINT)

FIR Equalizers:

$$\mathbf{g}_m^T = \left[g_m(0) \ g_m(1) \ \dots \ g_m(L_g) \right]$$

Causal equalization:

Causal Equalizers Non-Causal Equalizers

Non-Causal Equalizers

Matched Beamformer (MBF)

$$G_m(z) = \frac{H_m^*(1/z^*)}{\sum_{m=1}^M H_m(z)H_m^*(1/z^*)} \Leftrightarrow G_m(e^{j\omega}) = \frac{H_m^*(e^{j\omega})}{\sum_{m=1}^M |H_m(e^{j\omega})|^2}.$$

Causal Equalizers Non-Causal Equalizers

Non-Causal Equalizers

Matched Beamformer (MBF)

$$G_m(z) = \frac{H_m^*(1/z^*)}{\sum_{m=1}^M H_m(z)H_m^*(1/z^*)} \Leftrightarrow G_m(e^{j\omega}) = \frac{H_m^*(e^{j\omega})}{\sum_{m=1}^M |H_m(e^{j\omega})|^2}.$$

Inverse Filter

$$G_m(z) = rac{1}{H_m(z)} \Leftrightarrow G_m(e^{j\omega}) = rac{1}{H_m(e^{j\omega})}$$

Full-band Version - Results Subband Version - Results

Experimental Study Figures of Merit

• Inspection of the estimated RIR and ATF

Full-band Version - Results Subband Version - Results

Experimental Study Figures of Merit

- Inspection of the estimated RIR and ATF
- Comparison of the input speech signal, the reverberant signal, and the processed signal

< ロ > < 同 > < 回 > < 回 > .

Full-band Version - Results Subband Version - Results

Experimental Study Figures of Merit

- Inspection of the estimated RIR and ATF
- Comparison of the input speech signal, the reverberant signal, and the processed signal
- Normalized Projection Misalignment (NPM)

$$NPM [dB] = 20 \log_{10} \left(\frac{1}{\|h\|^2} \|h - \frac{(\mathbf{h}^T \hat{\mathbf{h}})^2 \hat{\mathbf{h}}}{\|\hat{\mathbf{h}}\|^2} \|^2 \right)$$
$$= 20 \log_{10} \left(1 - \left(\frac{\mathbf{h}^T \hat{\mathbf{h}}}{\|\mathbf{h}\| \|\hat{\mathbf{h}}\|} \right)^2 \right)$$

(a)

Full-band Version - Results Subband Version - Results

Full-band Version - Results NPM vs. SNR

Scenario

M = 2, $n_h = 16$, $\hat{n}_h = 21$, Fs = 8000Hz, T = 0.5s, Discrete uniform distributed RIR coefficients, 50 "Monte Carlo" trials.

イロト イポト イヨト イヨト

Full-band Version - Results Subband Version - Results

Full-band Version - Results NPM vs. SNR

Scenario

M = 2, $n_h = 16$, $\hat{n}_h = 21$, Fs = 8000Hz, T = 0.5s, Discrete uniform distributed RIR coefficients, 50 "Monte Carlo" trials.

White Noise Input							
SNR	15	20	25	30	35	40	45
NPM	-3.5	-8.6	-16.5	-28.0	-35.0	-44.0	-53
Full-band Version - Results Subband Version - Results

Full-band Version - Results NPM vs. SNR

Scenario

M = 2, $n_h = 16$, $\hat{n}_h = 21$, Fs = 8000Hz, T = 0.5s, Discrete uniform distributed RIR coefficients, 50 "Monte Carlo" trials.

White N	loise l	nput						
SNR NPM	15 -3.5	20 -8.6	25 -16.	30 5 -28	0 35 .0 -35	5)	45 -53
Speech	Input						_	
SNR	35	40	45	50	55	60	f	 ຈິ5
NPM	0.0	0.0	-2.0	-10.0	-11.0	-24.5	-3	8.0

Full-band Version - Results Subband Version - Results

Full-band Version - Results NPM vs. filter order

Scenario

M = 2, SNR=50dB, $\hat{n}_h - n_h = 5$, Fs = 8000Hz, T = 0.5s, Gaussian distributed with decaying envelope RIR coefficients, 50 "Monte Carlo" trials.

イロン 不同 とくほう イロン

Full-band Version - Results Subband Version - Results

Full-band Version - Results NPM vs. filter order

Scenario

M = 2, SNR=50dB, $\hat{n}_h - n_h = 5$, Fs = 8000Hz, T = 0.5s, Gaussian distributed with decaying envelope RIR coefficients, 50 "Monte Carlo" trials.

White Noise Input						
n _h NPM						

< ロ > < 同 > < 回 > < 回 > .

Full-band Version - Results Subband Version - Results

Full-band Version - Results Truncated Simulated RIR

Scenario

M = 2, SNR=50dB, $\hat{n}_h - n_h = 5$, Fs = 8000Hz, T = 0.5s, $T_{60} = 0.7$ s, RIR truncated to $n_h = 600$. NPM=-26dB.

Full-band Version - Results Subband Version - Results

Full-band Version - Results Sonograms

Full-band Version - Results Subband Version - Results

Subband Version - Results

Scenario

M = 2, SNR=120dB, $n_h = 24$, 6 bands, $\hat{n}_h^k - n_h^k = 2$ per-band, T=4000, Gaussian distributed with decaying envelope RIR coefficients, white noise input, gain ambiguity compensated.

Limitations of the Proposed Methods Summary

Limitations of the Proposed Methods

• Noise Robustness

イロン 不同 とくほう イロン

Limitations of the Proposed Methods Summary

Limitations of the Proposed Methods

Noise Robustness

• Null Subspace

イロト イポト イヨト イヨト

Limitations of the Proposed Methods Summary

Limitations of the Proposed Methods

- Noise Robustness
 - Null Subspace
 - MINT

イロト イポト イヨト イヨト

Limitations of the Proposed Methods Summary

Limitations of the Proposed Methods

- Noise Robustness
 - Null Subspace
 - MINT
- Common Zeros

イロト イポト イヨト イヨト

Limitations of the Proposed Methods Summary

Limitations of the Proposed Methods

- Noise Robustness
 - Null Subspace
 - MINT
- Common Zeros
 - Room Impulse Responses

イロト イポト イヨト イヨト

э

Limitations of the Proposed Methods Summary

Limitations of the Proposed Methods

- Noise Robustness
 - Null Subspace
 - MINT
- Common Zeros
 - Room Impulse Responses
 - Extraneous zeros resulting in from the overestimation

Limitations of the Proposed Methods Summary

Limitations of the Proposed Methods

- Noise Robustness
 - Null Subspace
 - MINT
- Common Zeros
 - Room Impulse Responses
 - Extraneous zeros resulting in from the overestimation
- The Demand for the Entire RIR Compensation

Limitations of the Proposed Methods Summary

Limitations of the Proposed Methods

- Noise Robustness
 - Null Subspace
 - MINT
- Common Zeros
 - Room Impulse Responses
 - Extraneous zeros resulting in from the overestimation
- The Demand for the Entire RIR Compensation
 - $\hat{n}_h \geq n_h$

Limitations of the Proposed Methods Summary

Limitations of the Proposed Methods

- Noise Robustness
 - Null Subspace
 - MINT
- Common Zeros
 - Room Impulse Responses
 - Extraneous zeros resulting in from the overestimation
- The Demand for the Entire RIR Compensation
 - $\hat{n}_h \geq n_h$
- Filter-bank Design

Limitations of the Proposed Methods Summary

Limitations of the Proposed Methods

- Noise Robustness
 - Null Subspace
 - MINT
- Common Zeros
 - Room Impulse Responses
 - Extraneous zeros resulting in from the overestimation
- The Demand for the Entire RIR Compensation
 - $\hat{n}_h \geq n_h$
- Filter-bank Design
 - Band overlap

Limitations of the Proposed Methods Summary

Limitations of the Proposed Methods

- Noise Robustness
 - Null Subspace
 - MINT
- Common Zeros
 - Room Impulse Responses
 - Extraneous zeros resulting in from the overestimation
- The Demand for the Entire RIR Compensation
 - $\hat{n}_h \geq n_h$
- Filter-bank Design
 - Band overlap
 - Band gaps

Limitations of the Proposed Methods Summary

Limitations of the Proposed Methods

- Noise Robustness
 - Null Subspace
 - MINT
- Common Zeros
 - Room Impulse Responses
 - Extraneous zeros resulting in from the overestimation
- The Demand for the Entire RIR Compensation
 - $\hat{n}_h \geq n_h$
- Filter-bank Design
 - Band overlap
 - Band gaps
- Gain Ambiguity

< ロ > < 同 > < 回 > < 回 > .

Limitations of the Proposed Methods Summary

Limitations of the Proposed Methods

- Noise Robustness
 - Null Subspace
 - MINT
- Common Zeros
 - Room Impulse Responses
 - Extraneous zeros resulting in from the overestimation
- The Demand for the Entire RIR Compensation
 - $\hat{n}_h \geq n_h$
- Filter-bank Design
 - Band overlap
 - Band gaps
- Gain Ambiguity
 - Subband method

(日) (同) (日) (日) (日)

Limitations of the Proposed Methods Summary

Summary

• The reverberating filters are embedded in the null subspace of the multi-channel received data

э

Limitations of the Proposed Methods Summary

Summary

- The reverberating filters are embedded in the null subspace of the multi-channel received data
- The null subspace is estimated using either the GSVD of the data matrix or the GEVD of the respective correlation matrix

< ロ > < 同 > < 回 > < 回 > .

Problem Formulation	
Preliminaries	
RIR Estimation - Algorithm Derivation	
Extensions of the Basic Algorithm	
RIR Estimation in Subbands	
Signal Reconstruction	
Experimental Study	
Summary and Conclusions	

Summary

- The reverberating filters are embedded in the null subspace of the multi-channel received data
- The null subspace is estimated using either the GSVD of the data matrix or the GEVD of the respective correlation matrix
- The channel order overestimation and the additive colored noise are treated by employing TLS-based procedure

Problem Formulation	
Preliminaries	
RIR Estimation - Algorithm Derivation	
Extensions of the Basic Algorithm	
RIR Estimation in Subbands	
Signal Reconstruction	
Experimental Study	
Summary and Conclusions	
Summary and Conclusions	

Summary

- The reverberating filters are embedded in the null subspace of the multi-channel received data
- The null subspace is estimated using either the GSVD of the data matrix or the GEVD of the respective correlation matrix
- The channel order overestimation and the additive colored noise are treated by employing TLS-based procedure
- Both full-band and subband versions

イロト イポト イヨト イヨト

Problem Formulation	
Preliminaries	
RIR Estimation - Algorithm Derivation	
Extensions of the Basic Algorithm	
RIR Estimation in Subbands	
Signal Reconstruction	
Experimental Study	
Summary and Conclusions	

Summary

- The reverberating filters are embedded in the null subspace of the multi-channel received data
- The null subspace is estimated using either the GSVD of the data matrix or the GEVD of the respective correlation matrix
- The channel order overestimation and the additive colored noise are treated by employing TLS-based procedure
- Both full-band and subband versions
- Both variants demonstrate high sensitivity to SNR level and the RIR order

イロト イポト イヨト イヨト

Problem Formulation
Preliminaries
RIR Estimation - Algorithm Derivation
Extensions of the Basic Algorithm
RIR Estimation in Subbands
Signal Reconstruction
Experimental Study
Summary and Conclusions

Summary

- The reverberating filters are embedded in the null subspace of the multi-channel received data
- The null subspace is estimated using either the GSVD of the data matrix or the GEVD of the respective correlation matrix
- The channel order overestimation and the additive colored noise are treated by employing TLS-based procedure
- Both full-band and subband versions
- Both variants demonstrate high sensitivity to SNR level and the RIR order
- At the current stage, the proposed methods are incapable of solving the dereverberation problem

イロン 不同 とくほう イロン

Problem Formulation
Preliminaries
RIR Estimation - Algorithm Derivation
Extensions of the Basic Algorithm
RIR Estimation in Subbands
Signal Reconstruction
Experimental Study
Summary and Conclusions

Summary

Limitations of the Proposed Methods Summary

- The reverberating filters are embedded in the null subspace of the multi-channel received data
- The null subspace is estimated using either the GSVD of the data matrix or the GEVD of the respective correlation matrix
- The channel order overestimation and the additive colored noise are treated by employing TLS-based procedure
- Both full-band and subband versions
- Both variants demonstrate high sensitivity to SNR level and the RIR order
- At the current stage, the proposed methods are incapable of solving the dereverberation problem

э