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Scoring-Based ML Estimation and CRBs for
Reverberation, Speech and Noise PSDs in a

Spatially Homogeneous Noise-Field
Yaron Laufer, Student Member, IEEE, and Sharon Gannot, Senior Member, IEEE

Abstract—Hands-free speech systems are subject to perfor-
mance degradation due to reverberation and noise. Common
methods for enhancing reverberant and noisy speech require the
knowledge of the speech, reverberation and noise power spectral
densities (PSDs). Most literature on this topic assumes that the
noise PSD matrix is known. However, in many practical acoustic
scenarios, the noise PSD is unknown and should be estimated
along with the speech and the reverberation PSDs. In this paper,
the noise is modelled as a spatially homogeneous sound field,
with an unknown time-varying PSD multiplied by a known time-
invariant spatial coherence matrix. We derive two maximum
likelihood estimators (MLEs) for the various PSDs, including
the noise: The first is a non-blocking-based estimator, that
jointly estimates the PSDs of the speech, reverberation and noise
components. The second MLE is a blocking-based estimator,
that blocks the speech signal and estimates the reverberation
and noise PSDs. Since a closed-form solution does not exist,
both estimators iteratively maximize the likelihood using the
Fisher scoring method. In order to compare both methods, the
corresponding Cramér-Rao Bounds (CRBs) are derived. For
both the reverberation and the noise PSDs, it is shown that
the non-blocking-based CRB is lower than the blocking-based
CRB. Performance evaluation using both simulated and real
reverberant and noisy signals, shows that the proposed estimators
outperform competing estimators, and greatly reduce the effect
of reverberation and noise.

Index Terms—Cramér-Rao Bound, Dereverberation, Maxi-
mum likelihood estimation, Noise reduction.

I. INTRODUCTION

Real-life audio signals typically suffer from environmental
noise, which may degrade the quality of speech. Apart from
noise, another source of speech quality degradation is rever-
beration, caused by multiple reflections on the room facets
and other objects in the enclosure. The presence of both
reverberation and noise can significantly degrade the quality
of the speech signal, and in severe case also its intelligibility
[1], [2].

Speech enhancement algorithms reduce the effects of rever-
beration and noise, by extracting the clean speech signal from
the noisy and reverberant measurements. A popular method
is the multichannel Wiener filter (MCWF) beamformer, which
estimates the desired speech by minimizing the mean square
error (MSE). The design of the MCWF requires several model
parameters, e.g. the speech, reverberation and noise PSDs. In
the multichannel framework, the late reverberant signal is com-
monly modelled as a spatially homogeneous and spherically
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isotropic sound field. More specifically, the reverberation PSD
matrix is factorized as a time-invariant spherical diffuse spatial
coherence matrix multiplied by an unknown time-varying
PSD [3]–[12]. Along with the reverberation PSD, the speech
PSD is also an unknown time-varying parameter. Methods for
estimating these PSDs can be divided into two classes, i.e. the
non-blocking-based method [5], [8], [10] and the blocking-
based method [3], [4], [6], [7], [9], [11]. While the non-
blocking-based method jointly estimates the reverberation and
speech PSDs, the blocking-based approach first blocks the
speech signal and then estimates the reverberation PSD alone.
For both classes, the estimation procedure is carried out using
either the maximum likelihood (ML) approach [3], [5], [7]–
[9], [11] or the least-squares (LS) criterion, by minimizing the
Frobenius norm of an error PSD matrix [4], [6], [10].

In the ML framework, a closed-form solution exists for the
reverberant noiseless case, i.e. when a noise-free environment
is assumed [5]. A similar estimator can be applied for the non-
reverberant noisy scenario, assuming that the noise coherence
matrix is known [3], [13]. However, in a reverberant and noisy
environment, closed-form ML solution is not available, thus
requiring iterative optimization techniques [7], [8], [11]. In
[7], [8], the log-likelihood was maximized iteratively using
Newton’s method [14], based on the first- and second-order
derivatives of the log-likelihood. It is well known that the
convergence of Newton’s method depends on the quality of
the initialization [14]. Typically, it converges very fast near
the maximum value. However, if the initial estimate is not
close to the optimum point, it may converge slowly or even
fail to converge [15]. This lack of stability can be attributed
to the fact that the Hessian matrix is not necessarily a positive
definite matrix, and may be singular and non-invertible. The
Fisher scoring algorithm [16]–[18] replaces the Hessian matrix
with the Fisher information matrix (FIM). The FIM is always
a positive definite matrix, and thus the convergence process
becomes more stable. Moreover, in certain models the FIM
has closed-form expression and can be computed easily.

All of the aforementioned methods do not include an
estimator for the noise PSD, where either a noise-free scenario
is considered [5] or an estimate of the noise PSD matrix is
assumed to be available [4], [6]–[12]. As long as the noise PSD
matrix is time-invariant, it can be estimated during speech-
absent segments by means of a voice activity detector (VAD).
However, in many practical acoustic scenarios the noise PSD
is time-varying, and thus has to be included in the estimation
procedure.
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A useful tool to assess the quality of an estimator is the
Cramér-Rao Bound (CRB), which determines a lower bound
on the variance of any unbiased estimator. A fundamental
property of the maximum likelihood estimator (MLE) is the
asymptotic optimality, i.e. it reaches the CRB when the sample
size is large [19]. Several papers derived CRB expressions
for estimating the PSDs. For the noiseless case, MLEs of
the reverberation and speech PSDs were proposed in [5],
and the corresponding CRBs were derived in [20]. In [13],
ML-based CRBs were employed in setting up a Bayesian
refinement step above the ML-based speech enhancement, in
a non-reverberant noisy scenario. The reverberant and noisy
scenario was addressed in [21], assuming a known noise PSD
matrix. Therein, CRBs on the reverberation PSD were derived
for both the blocking-based MLE of [7] and the non-blocking-
based MLE of [8]. Comparing these bounds, it was shown that
the non-blocking-based approach yields lower CRB compared
with the blocking-based method.

In contrast to previous works, in [22] the noise PSD matrix
is not assumed to be known. The noise is modelled as a spa-
tially homogeneous sound field, with the PSD matrix factor-
ized as a time-invariant spatial coherence matrix multiplied by
a time-varying PSD. The spatial coherence matrix of the noise
is assumed to be known in advance, while the time-varying
PSD is an unknown parameter that should be estimated. For
instance, an air-conditioner with a thermostat control, which
adjusts continuously its fan level. Based on the LS approach,
two estimators were derived. The first is a non-blocking-based
estimator that jointly estimates the reverberation, speech, and
noise PSDs; and the second is a blocking-based estimator, that
first blocks the speech component and then jointly estimates
the noise and reverberation PSDs. However, it was stated in
[11] that the ML approach produces superior PSD estimates
compared to the LS method, due to the more accurate statis-
tical model.

In our previous work [23], MLEs were derived for estimat-
ing the PSDs in the presence of rank-deficient noise field. Due
to the special structure of the noise PSD matrix, a closed-form
solution does exist, thus avoiding iterative techniques. The
optimal strategy to estimate the reverberation level consists of
generating nulls towards the speech and the directional noise
sources, thus resembling the form of the the noiseless solution
[5]. However, in the full-rank noise scenario similar procedure
cannot be applied, and a closed-form solution is not available.

In the current contribution, we follow [22] and assume
that the noise is modelled as a spatially homogeneous sound
field, with an unknown time-varying PSD multiplied by a
known time-invariant full-rank coherence matrix. Two novel
MLEs are derived for estimating the speech, reverberation
and noise PSDs, namely a non-blocking-based and a blocking-
based estimators. In the absence of closed-form solutions, the
scoring method is used to maximize iteratively the likelihood.
In order to examine the quality of the proposed estimators, the
corresponding CRBs are derived and analyzed.

To summarize, as compared to most previous studies in
the field, we deal with a more general noisy and reverberant
scenario, in which the noise PSD is unknown. Focusing on this
scenario, the contribution of this paper is twofold. First, we

derive two novel CRBs for estimating the noise, reverberation
and speech PSDs, thus demonstrating the best achievable
performance under the assumed data model. Second, we
propose two novel ML estimators based on the scoring-based
iterative algorithm, with enhanced robustness of convergence.
The performance of the MLEs approaches the CRBs, thus
yielding approximately optimal performance. The proposed
estimators slightly outperform competing estimators, with only
a moderate increase in the computational complexity.

The rest of the paper is organized as follows. Section II
introduces the problem formulation, and presents the statistical
model. In Section III, MLEs are derived for both the non-
blocking-based and the blocking-based methods. The corre-
sponding CRBs are derived in Section IV. Section V describes
the experimental study, where the proposed estimators are
evaluated using both simulated data and real audio signals.
Section VI concludes the paper.

Notation

In our notation, scalars are denoted with regular lowercase
letters, vectors are denoted with boldface lowercase letters
and matrices are denoted with boldface uppercase letters. The
superscripts (·)> and (·)H describe transposition and Hermitian
transposition, respectively. The determinant of a matrix is
denoted by | · |, and the trace operator is denoted by Tr[·].

II. PROBLEM FORMULATION

A. Signal Model

A speech signal is received by N microphones, in a noisy
and reverberant acoustic environment. We work in the short-
time Fourier transform (STFT) domain, where k ∈ [1,K]
denote the frequency bin index, and m ∈ [1,M ] denote
the time frame index. The N -channel measurement signal
y(m, k) = [y1(m, k), · · · , yN (m, k)]> is equal to

y(m, k) = xe(m, k) + r(m, k) + v(m, k), (1)

where xe(m, k) denotes the direct and early reverberation
speech component, r(m, k) = [r1(m, k), · · · , rN (m, k)]> de-
notes the late reverberation speech component and v(m, k) =
[v1(m, k), · · · , vN (m, k)]> denotes the noise. The direct
and early reverberation speech component is given by
xe(m, k) = gd(k)s(m, k), where s(m, k) is the direct and
early speech component, as received by the first microphone
(assumed to be the reference microphone), and gd(k) =
[1, gd,2(k), · · · , gd,N (k)]> is the time-invariant relative early
transfer function (RETF) vector between the reference micro-
phone and all microphones. In this paper, we follow previous
works in the field, e.g. [4], [21], [22], [24], and neglect the
early reflections. Thus, the target signal s(m, k) is approxi-
mated as the direct component at the reference microphone,
and gd(k) reduces to the relative direct-path transfer function
(RDTF) vector.

B. Probabilistic Model

The speech signal is assumed to follow a zero-mean com-
plex Gaussian distribution with a time-varying PSD φS(m, k):

p
(
s(m, k);φS(m, k)

)
= Nc

(
s(m, k); 0, φS(m, k)

)
. (2)
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The late reverberation signal is modelled by a zero-mean
complex multivariate Gaussian distribution:

p
(
r(m, k); Φr(m, k)

)
= Nc

(
r(m, k); 0,Φr(m, k)

)
. (3)

We assume that the reverberation PSD matrix can be modelled
as a spatially homogeneous sound field with a time-varying
PSD, Φr(m, k) = φR(m, k)ΓR(k). The time-invariant coher-
ence matrix ΓR(k) is modelled as an ideal spherical diffuse
sound field [25]:

ΓR,ij(k) = sinc
(

2πfsk

K

dij
c

)
, (4)

where sinc(x) = sin(x)/x, dij is the inter-distance between
microphones i and j, fs denotes the sampling frequency and
c is the sound velocity. The noise signal is assumed to follow
a zero-mean complex multivariate Gaussian distribution:

p
(
v(m, k); Φv(m, k)

)
= Nc

(
v(m, k); 0,Φv(m, k)

)
. (5)

The noise PSD matrix is modelled as a spatially homo-
geneous sound field, with a time-varying PSD multiplied
by a time-invariant spatial coherence matrix, Φv(m, k) =
φV (m, k)ΓV (k). It is assumed that ΓV is known. However,
φV is an unknown parameter that should be estimated along
with the speech and reverberation PSDs. Assuming that the
various components in (1) are uncorrelated, the probability
density function (PDF) of the measurement vector writes

p
(
y(m, k); Φy(m, k)

)
= Nc

(
y(m, k); 0,Φy(m, k)

)
, (6)

where

Φy(m, k) = φS(m, k)gd(k)gH
d (k) + φR(m, k) ΓR(k)

+ φV (m, k) ΓV (k). (7)

A widely-used method for enhancing a reverberant and
noisy speech is the MCWF, which produces an optimal speech
estimator in the sense of minimizing the MSE [26]:

ŝMCWF(m, k) =
gH
d (k)Φ−1

i (m, k)

gH
d (k)Φ−1

i (m, k)gd(k) + φ−1
S (m, k)

y(m, k),

(8)
where

Φi(m, k) , φR(m, k) ΓR(k) + φV (m, k) ΓV (k) (9)

denotes the interference matrix. For implementing (8), it is
required to estimate the time-varying PSDs of the speech,
reverberation and noise components, namely φS , φR and φV .
In the sequel, we derive MLEs for the various PSDs, assuming
that the RDTF vector gd, the reverberation spatial coherence
matrix ΓR and the noise spatial coherence matrix ΓV are
known. Note that the RDTF depends only on the speaker
direction of arrival (DOA) and the microphone array geometry,
hence it can be constructed based on a DOA estimate. For the
sake of brevity, the frame index m and the frequency bin index
k are henceforth omitted whenever possible.

III. ML ESTIMATORS

In this section, two MLEs will be presented: (i) A non-
blocking-based estimator, which simultaneously estimates the

speech, reverberation and noise PSDs; and (ii) A blocking-
based estimator, which first eliminates the speech signal and
then jointly estimates the reverberation and noise PSDs.

A. Non-Blocking-Based Estimation

The set of unknown parameters is denoted by φ(m) =
[φR(m), φV (m), φS(m)]

>. Let ȳ(m) denote a set of L suc-
cessive i.i.d. snapshots of y(m):

ȳ(m) ,
[
y>(m− L+ 1), · · · ,y>(m)

]>
. (10)

Using the short-time stationarity assumption [11], [20], we
assume that the PSDs are approximately constant across the
L segments. The PDF of ȳ writes (see e.g. [21]):

p
(
ȳ(m);φ(m)

)
=

(
1

πN |Φy(m)|
exp

(
− Tr

[
Φ−1

y (m)Ry(m)
] ))L

, (11)

where Ry is the sample covariance matrix, given by

Ry(m) =
1

L

m∑
`=m−L+1

y(`)yH(`). (12)

The MLE of φ(m) is obtained by maximizing the log likeli-
hood

φML,ȳ(m) = argmax
φ(m)

log p
(
ȳ(m); φ(m)

)
. (13)

Using [19, Eqs. (15.47)–(15.48)], the derivative of the log-
likelihood function w.r.t. the various PSDs writes

dȳi (φ(m)) ,
∂ log p (ȳ(m); φ(m))

∂φi(m)

= L Tr
[(

Φ−1
y (m)Ry(m)− I

)
Φ−1

y (m)
∂Φy(m)

∂φi(m)

]
, (14)

where i ∈ {R, V, S}, and

∂Φy(m)

∂φR(m)
= ΓR ,

∂Φy(m)

∂φV (m)
= ΓV ,

∂Φy(m)

∂φS(m)
= gdg

H
d .

(15)
Setting (14) to zero and solving for φ(m) yields the MLE.
However, this is a nonlinear optimization problem, and a
closed-form solution does not exist. We may therefore resort
to a numerical evaluation of the MLE using an iterative
maximization procedure, e.g. the Newton method [14] or the
Fisher’s scoring algorithm [16]. Using the iterative method of
Newton, the search procedure is given by [14]

φ(j+1) = φ(j) −
(
Hȳ

(
φ(j)

))−1

dȳ
(
φ(j)

)
, (16)

where dȳ (φ) ∈ R3 and Hȳ (φ) ∈ R3×3 denote, respectively,
the gradient vector and the Hessian matrix of log p (ȳ;φ)
w.r.t. φ. Formally, this writes

dȳ (φ) =
∂ log p

(
ȳ;φ

)
∂φ

; Hȳ (φ) =
∂2 log p

(
ȳ;φ

)
∂φ∂φ>

. (17)

The Hessian matrix is a function of both the parameters and
the data. It is evident that when Hȳ (φ) is close to be singular,
the right hand term of (16) may wildly fluctuate from iteration
to iteration and the search may converge slowly or even not
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converge. We therefore propose to use the Fisher scoring
approach [16]. In this method, the Hessian matrix is replaced
by its expected value, namely the negative FIM:

φ(j+1) = φ(j) +
(
Iȳ
(
φ(j)

))−1

dȳ
(
φ(j)

)
, (18)

where

Iȳ (φ) = −Eȳ|φ

[
∂2 log p

(
ȳ;φ

)
∂φ∂φ>

]
. (19)

The stability of the iteration is increased, since the FIM is a
positive definite matrix and hence invertible [19]. Note that the
expectation is taken over the data given the parameters, and
therefore the FIM is only a function of the parameters and is
not sensitive to the data. The elements of dȳ (φ) are given
in (14), and an explicit expression for Iȳ (φ) will be derived
in Section IV-A. Note that to obtain φ(j+1), both dȳ (φ) and
Iȳ (φ) in (18) are computed using φ(j), namely the value of
φ obtained in the previous iteration.

B. Blocking-Based Estimation

In the blocking-based approach, a blocking matrix (BM) is
applied to the input vector in order to block the speech signal.
Let B ∈ CN×(N−1) denote the BM, satisfying BHgd = 0.
The output of the BM is given by

z(m) , BH y(m) = BH(r(m) + v(m)
)
, (20)

with the PDF

p
(
z(m); Φz(m)

)
= Nc

(
z(m); 0,Φz(m)

)
. (21)

Using (7) and (9), the PSD matrix of the blocked signal writes

Φz(m) = BHΦi(m)B

= φR(m) BHΓRB + φV (m) BHΓV B. (22)

Under this model, the parameter set of interest is φ̃(m) =
[φR(m), φV (m)]

>. Let z̄ be defined similarly to ȳ in (10),
as a concatenation of L i.i.d. consecutive frames. Similarly
to Φy(m), we assume that Φz(m) is fixed over the entire
segment. The PDF of z̄ therefore writes

p
(
z̄(m); φ̃(m)

)
=

(
1

πN−1|Φz(m)|
exp

(
− Tr

[
Φ−1

z (m)Rz(m)
] ))L

(23)

where Rz(m) is defined similarly to (12). The MLE of φ̃(m)
is obtained by solving:

φ̃ML,z̄(m) = argmax
φ̃(m)

log p
(
z̄(m); φ̃(m)

)
. (24)

To the best of our knowledge, this problem does not have a
closed-form solution. Again, we use the scoring method for
iterative maximization of the log-likelihood:

φ̃(j+1) = φ̃(j) +
(
Iz̄
(
φ̃(j)

))−1

dz̄
(
φ̃(j)

)
, (25)

where dz̄
(
φ̃
)
∈ R2 and Iz̄

(
φ̃
)
∈ R2×2 denote, respectively,

the gradient vector and the FIM of log p
(
z̄; φ̃

)
w.r.t. φ̃. The

elements of dz̄ (φ) are given by

dz̄i

(
φ̃
)

= L Tr
[(

Φ−1
z (m)Rz(m)− I

)
Φ−1

z (m)
∂Φz(m)

∂φ̃i(m)

]
,

(26)
where i ∈ {R, V }, and

∂Φz(m)

∂φR(m)
= BHΓRB ,

∂Φz(m)

∂φV (m)
= BHΓV B. (27)

The FIM Iz̄
(
φ̃
)

will be derived explicitly in Section IV-B.
In Section V-B, the MCWF will be used for enhancing

a reverberant and noisy speech. The implementation of the
MCWF requires (among others) an estimate of the speech PSD
(see (8)), which is missing in the blocking-based framework.
By substituting the obtained blocking-based reverberation and
noise estimates, namely φML,z̄

R and φML,z̄
V , into the general

likelihood function in (11), the maximization becomes a one-
dimensional optimization problem, and a closed-form solution
is available [11], [27]:

φML,z̄
S (m) = wH

MVDR(m)
(
Ry(m)− φML,z̄

R (m)ΓR

− φML,z̄
V (m)ΓV

)
wMVDR(m), (28)

where

wMVDR(m) =
Φ̂−1
i (m)gd

gH
d Φ̂−1

i (m)gd
. (29)

IV. CRB DERIVATION

In this section, CRBs are derived for both the non-blocking-
based and the blocking-based estimators of Section III.

A. CRB for the Non-Blocking-Based Estimation

Under the non-blocking-based method, the Fisher informa-
tion matrix (FIM) of φ writes

Iȳ (φ) =

 IȳRR IȳRV IȳRS
IȳV R IȳV V IȳV S
IȳSR IȳSV IȳSS

 , (30)

where Iȳij , [Iȳ (φ)]ij = −E
[
∂2 log p

(
ȳ;φ
)

∂φi∂φj

]
and i, j ∈

{R, V, S}. Since y(m) ∼ Nc
(
0,Φy(m)

)
, the FIM elements

are given by [28], [29]:[
Iȳ (φ)

]
ij

= L Tr
[
Φ−1

y

∂Φy

∂φi
Φ−1

y

∂Φy

∂φj

]
. (31)

Upon inverting the FIM in (30) we have that

CRBȳ
φR

=
[(

Iȳ (φ)
)−1
]

11
=

IȳV V IȳSS − IȳV SIȳSV
I∆

, (32a)

CRBȳ
φV

=
[(

Iȳ (φ)
)−1
]

22
=

IȳRRIȳSS − IȳRSIȳSR
I∆

, (32b)

CRBȳ
φS

=
[(

Iȳ (φ)
)−1
]

33
=

IȳRRIȳV V − IȳRV IȳV R
I∆

, (32c)

where

I∆ = IȳRR
(
IȳV V IȳSS − IȳV SIȳSV

)
− IȳRV

(
IȳV RIȳSS − IȳV SIȳSR

)
+ IȳRS

(
IȳV RIȳSV − IȳV V IȳSR

)
. (33)
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Using (31) and (15), we have

IȳRR = L Tr
[
Φ−1

y ΓRΦ−1
y ΓR

]
, (34a)

IȳRV = I ȳV R = L Tr
[
Φ−1

y ΓRΦ−1
y ΓV

]
, (34b)

IȳRS = I ȳSR = L gH
dΦ−1

y ΓRΦ−1
y gd, (34c)

IȳV V = L Tr
[
Φ−1

y ΓV Φ−1
y ΓV

]
, (34d)

IȳV S = I ȳSV = L gH
dΦ−1

y ΓV Φ−1
y gd, (34e)

IȳSS = L
(
gH
dΦ−1

y gd
)2
. (34f)

To simplify (34), Φy can be recast as Φy = φSgdg
H
d + Φi

(see (7) and (9)), and then Φ−1
y is obtained by the Woodbury

matrix inversion identity [30]. Substituting into (34), yields

IȳRR = L

(
γ0 −

2γ3

γ1 + φ−1
S

+
γ2

2(
γ1 + φ−1

S

)2
)
, (35a)

IȳRV = L

(
γ̃0 −

2γ̃3

γ1 + φ−1
S

+
γ2γ̂2(

γ1 + φ−1
S

)2
)
, (35b)

IȳRS =
Lγ2

(1 + γ1φS)
2 , (35c)

IȳV V = L

(
γ̂0 −

2γ̂3

γ1 + φ−1
S

+
γ̂2

2(
γ1 + φ−1

S

)2
)
, (35d)

IȳV S =
Lγ̂2

(1 + γ1φS)
2 , (35e)

IȳSS =
Lγ2

1

(1 + γ1φS)
2 , (35f)

where, in a similiar manner to [21], the following auxiliary
variables are introduced:

γ0 = Tr
[
Φ−1
i ΓRΦ−1

i ΓR
]
, (36a)

γ1 = gH
dΦ−1

i gd, (36b)

γ2 = gH
dΦ−1

i ΓRΦ−1
i gd, (36c)

γ3 = gH
dΦ−1

i ΓRΦ−1
i ΓRΦ−1

i gd, (36d)

γ̂0 = Tr
[
Φ−1
i ΓV Φ−1

i ΓV
]
, (36e)

γ̂2 = gH
dΦ−1

i ΓV Φ−1
i gd, (36f)

γ̂3 = gH
dΦ−1

i ΓV Φ−1
i ΓV Φ−1

i gd, (36g)

γ̃0 = Tr
[
Φ−1
i ΓV Φ−1

i ΓR
]
, (36h)

γ̃3 = gH
dΦ−1

i ΓV Φ−1
i ΓRΦ−1

i gd. (36i)

In the derivation of (35b), we used the fact that ΓV Φ−1
i ΓR =

ΓRΦ−1
i ΓV , which can be verified using (9). Note that all

quantities defined in (36) are independent of φS . Substituting
(35) into (32) yields the CRBs, given in (36)–(38) at the
bottom of the page, where

δ = γ1γ3 − γ2
2 , (40a)

δ̂ = γ1γ̂3 − γ̂2
2 , (40b)

δ̃ = γ1γ̃3 − γ2γ̂2. (40c)

It should be noted that the reverberation CRB in (36) resem-
bles the one derived in [21, Eq. (39)] for the case of known
noise PSD, except an additional term in the denominator.

B. CRB for the Blocking-Based Estimation

Under the blocking-based method, the FIM of φ̃ writes

Iz̄
(
φ̃
)

=

(
Iz̄RR Iz̄RV
Iz̄V R Iz̄V V

)
. (41)

We have upon inversion that

CRBz̄
φR =

[(
Iz̄
(
φ̃
))−1

]
11

=
Iz̄V V

Iz̄RRIz̄V V − Iz̄RV Iz̄V R
, (42a)

CRBz̄
φV =

[(
Iz̄
(
φ̃
))−1

]
22

=
Iz̄RR

Iz̄RRIz̄V V − Iz̄RV Iz̄V R
. (42b)

CRBȳ
φR

(φS) =
1

L

1

γ0 − 2γ3γ1 +
γ2
2

γ2
1

+

 2δ
γ2
1(1+γ1φS)

−

(
γ̃0−2

γ̃3
γ1

+
γ2γ̂2
γ21

+ 2δ̃

γ21(1+γ1φS)

)2

γ̂0−2
γ̂3
γ1

+
γ̂22
γ21

+ 2δ̂

γ21(1+γ1φS)

 (36)

CRBȳ
φV

(φS) =
1

L

1

γ̂0 − 2 γ̂3γ1 +
γ̂2
2

γ2
1

+

 2δ̂
γ2
1(1+γ1φS)

−

(
γ̃0−2

γ̃3
γ1

+
γ2γ̂2
γ21

+ 2δ̃

γ21(1+γ1φS)

)2

γ0−2
γ3
γ1

+
γ22
γ21

+ 2δ

γ21(1+γ1φS)

 (37)

CRBȳ
φS

=
(1 + γ1φS)

2

Lγ2
1

1 +
1

γ2
1

(γ0γ̂0−γ̃2
0)(1+γ1φS)3−(2γ3γ̂0+2γ0γ̂3−4γ̃0γ̃3)(1+γ1φS)2φS+(4γ3γ̂3−4γ̃2

3)(1+γ1φS)φ2
S

(γ0γ̂2
2+γ2

2 γ̂0−2γ2γ̂2γ̃0)(1+γ1φS)−(2γ3γ̂2
2+2γ2

2 γ̂3−4γ2γ̂2γ̃3)φS
− (1− γ2

1φ
2
S)


(38)
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Since z(m) ∼ Nc
(
0,Φz(m)

)
, the FIM writes [28], [29]:[

Iz̄
(
φ̃
)]

ij
= L Tr

[
Φ−1

z

∂Φz

∂φ̃i
Φ−1

z

∂Φz

∂φ̃j

]
, i, j ∈ {R, V } .

(43)
Using (43) and (27), we have

Iz̄RR = L Tr
[
Φ−1

z BHΓRBΦ−1
z BHΓRB

]
, (44a)

Iz̄RV = I z̄V R = L Tr
[
Φ−1

z BHΓRBΦ−1
z BHΓV B

]
, (44b)

Iz̄V V = L Tr
[
Φ−1

z BHΓV BΦ−1
z BHΓV B

]
. (44c)

Using (22) and following the identity from [21, Eq. (45)]:

B
(
BHΦiB

)−1
BH = Φ−1

i −
Φ−1
i gdg

H
dΦ−1

i

gH
dΦ−1

i gd
, (45)

the FIM elements of (44) can be written as

Iz̄RR = L

(
γ0 − 2

γ3

γ1
+
γ2

2

γ2
1

)
, (46a)

Iz̄RV = L

(
γ̃0 − 2

γ̃3

γ1
+
γ2γ̂2

γ2
1

)
, (46b)

Iz̄V V = L

(
γ̂0 − 2

γ̂3

γ1
+
γ̂2

2

γ2
1

)
. (46c)

Substituting (46) into (42) yields the CRBs:

CRBz̄
φR =

1

L

1

γ0 − 2γ3γ1 +
γ2
2

γ2
1
−

(
γ̃0−2

γ̃3
γ1

+
γ2γ̂2
γ21

)2

γ̂0−2
γ̂3
γ1

+
γ̂22
γ21

, (47)

CRBz̄
φV =

1

L

1

γ̂0 − 2 γ̂3γ1 +
γ̂2
2

γ2
1
−

(
γ̃0−2

γ̃3
γ1

+
γ2γ̂2
γ21

)2

γ0−2
γ3
γ1

+
γ22
γ21

. (48)

Again, the reverberation CRB in (47) is similar to the one
derived in [21, Eq. (48)] for the case of known noise PSD,
except an extra term in the denominator.

C. Comparing the CRBs

In this section, we compare the non-blocking-based and
blocking-based CRBs derived in the previous sections.

1) Comparing the reverberation CRBs: First, the reverber-
ation CRBs in (36) and (47) are compared. Both expressions
are identical except the last terms in the denominator. In the
sequel, these terms will be carefully examined.

For the sake of convenience, let us denote the last term in
the denominator of CRBȳ

φR
(φS) by

αȳ (φS) ,
2δ

γ2
1 (1 + γ1φS)

−

(
γ̃0 − 2 γ̃3γ1 + γ2γ̂2

γ2
1

+ 2δ̃
γ2
1(1+γ1φS)

)2

γ̂0 − 2 γ̂3γ1 +
γ̂2
2

γ2
1

+ 2δ̂
γ2
1(1+γ1φS)

.

(49)

The last term in the denominator of CRBz̄
φR is denoted by

αz̄ , −

(
γ̃0 − 2 γ̃3γ1 + γ2γ̂2

γ2
1

)2

γ̂0 − 2 γ̂3γ1 +
γ̂2
2

γ2
1

. (50)

Obviously, CRBz̄
φR is independent of φS . However, for the

sake of comparison, the behaviour of CRBȳ
φR

(φS) can be
analyzed as a function of φS [21]. Specifically, we consider
the following three possible regions of φS :

1) When φS = 0, αȳ (φS) is reduced to

αȳ (φS = 0) =
2δ

γ2
1

−

(
γ̃0 − 2 γ̃3γ1 + γ2γ̂2

γ2
1

+ 2δ̃
γ2
1

)2

γ̂0 − 2 γ̂3γ1 +
γ̂2
2

γ2
1

+ 2δ̂
γ2
1

. (51)

In Appendix A, it shown that δ̂ ≥ 0 and δ̃ ≤ 0. It follows
that(

γ̃0 − 2 γ̃3γ1 + γ2γ̂2
γ2
1

+ 2δ̃
γ2
1

)2

γ̂0 − 2 γ̂3γ1 +
γ̂2
2

γ2
1

+ 2δ̂
γ2
1

≤

(
γ̃0 − 2 γ̃3γ1 + γ2γ̂2

γ2
1

)2

γ̂0 − 2 γ̂3γ1 +
γ̂2
2

γ2
1

.

(52)
Using (51), (52) and the fact that δ ≥ 0 (see Ap-
pendix A), it follows that αȳ (φS = 0) ≥ αz̄ and thus

CRBȳ
φR

(φS = 0) ≤ CRBz̄
φR , (53)

with equality if and only if δ = δ̂ = δ̃ = 0. As shown
in Appendix A, this condition is satisfied only when
φR = φV = 0 or ΓR = ΓV . It should be noted
that in the latter case, i.e. when the spatial fields of
the reverberation and noise are identical, the problem
essentially reduces to the noiseless scenario, since only
two PSDs have to be estimated: the speech PSD and the
combined reverberation-plus-noise PSD. In this case, the
CRB becomes simpler and identical for both methods
[20], [21].

2) The behaviour in the range 0 < φS < ∞: Let the two
terms of αȳ(φS) be denoted by η1 , 2δ

γ2
1(1+γ1φS)

and

η2 ,

(
γ̃0−2

γ̃3
γ1

+
γ2γ̂2
γ21

+ 2δ̃

γ21(1+γ1φS)

)2

γ̂0−2
γ̂3
γ1

+
γ̂22
γ21

+ 2δ̂

γ21(1+γ1φS)

, s.t. αȳ = η1 − η2.

To analyze the trend of η1 versus φS , note that δ ≥
0 (see Appendix A) and γ1 is positive, since Φi is a
positive definite matrix (see (36b)). Accordingly, η1 is
non-negative and therefore a monotonically decreasing
function of φS . Using the fact that δ̂ ≥ 0 and δ̃ ≤ 0,
η2 is monotonically increasing with φS . It follows that
αȳ (φS) is monotonically decreasing in φS , and thus
CRBȳ

φR
(φS) is a monotonic increasing function of φS .

3) When φS goes to infinity, αȳ (φS) approaches αz̄:

lim
φS→∞

αȳ (φS) = −

(
γ̃0 − 2 γ̃3γ1 + γ2γ̂2

γ2
1

)2

γ̂0 − 2 γ̂3γ1 +
γ̂2
2

γ2
1

= αz̄, (54)

and thus

lim
φS→∞

CRBȳ
φR

(φS) = CRBz̄
φR . (55)

Interestingly, as φS → ∞ the non-blocking-based
reverberation CRB becomes independent of φS , and
approaches the blocking-based CRB.

We have shown that CRBȳ
φR

(φS) is smaller than CRBz̄
φR at

φS = 0, and that both CRBs coincide as φS → ∞. By the
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monotonicity of CRBȳ
φR

(φS) in φS , we conclude that

CRBȳ
φR

(φS) ≤ CRBz̄
φR . (56)

2) Comparing the noise CRBs: Using a similar set of
arguments for comparing the noise CRBs in (37) and (48),
it can be deduced that

CRBȳ
φV

(φS) ≤ CRBz̄
φV . (57)

D. Analysis of the Speech CRB

In this section, we present the two limiting cases of the
speech CRB in (38). When φS = 0, the speech CRB reduces
to

CRBȳ
φS

∣∣∣
φS=0

=
1

Lγ2
1

1 +
1

γ2
1(γ0γ̂0−γ̃2

0)
γ0γ̂2

2+γ2
2 γ̂0−2γ2γ̂2γ̃0

− 1

 .

(58)

When φS →∞, the speech CRB is simplified to

lim
φS→∞

CRBȳ
φS

=
φ2
S

L
. (59)

V. EXPERIMENTAL STUDY

In this section, we assess the performance of the proposed
MLEs using both simulated data and real-life audio signals.
Section V-A deals with simulated data, where the signals are
generated synthetically according to the assumed statistical
model. A large number of Monte-Carlo trials are carried
out in order to examine the effect of the different model
parameters, while comparing the MSEs to the corresponding
CRBs. In Section V-B, real-life audio signals are generated
using room impulse responses (RIRs) and noise signals that are
recorded in a reverberant environment. Based on the proposed
PSD estimators, an MCWF is constructed, aiming to enhance
reverberant and noisy speech. The performance is evaluated
by means of objective speech quality measures.

A. Monte-Carlo Simulation

1) Simulation Setup: Synthetic data is generated based on
the assumed signal model (1), by simulating L i.i.d. snapshots
of a single-tone signal at f = 2000 Hz. The signals are
captured by a uniform linear array (ULA) of N microphones
with inter-distance spacing of d = 6 cm. The desired signal
s is generated according to (2), then multiplied by the RDTF
gd = exp (−j2πfτ ) , where τ = d sin(θ)

c × [0, · · · , N − 1]
>

is the time difference of arrival (TDOA) w.r.t. the first mi-
crophone, and θ is the DOA, measured w.r.t. the broadside
angle. The reverberation signal r was drawn according to (3),
where ΓR is modelled as an ideal spherical diffuse sound
field, given by ΓR,ij = sinc

(
2πf d|i−j|c

)
, i, j ∈ 1, . . . , N .

The noise signal v was drawn according to (5), where ΓV is
modelled as a white spatial field.

The various PSDs were estimated using both the non-
blocking-based method of (18) and the blocking-based method
of (25), where the parameters were initialized with φ(0) =

TABLE I: Nominal Parameters

Definition Symbol Nominal value
Frequency f 2 kHz
Direction of arrival θ 0◦

Number of Snapshots L 100
Speech PSD φS 0.5
Reverberation PSD φR 0.5
Noise PSD φV 0.5
Number of Microphones N 4
Inter-sensor spacing d 6 cm
Number of iterations J 2

10−10. For comparison, we also evaluated the LS non-
blocking-based and blocking-based estimators proposed in
[22]. The accuracy of the estimators was assessed using the
normalized mean square error (nMSE) criterion,

nMSEφi =

E
[(
φi − φ̂i

)2
]

φ2
i

, i ∈ {R, V, S} , (60)

by averaging over 2000 Monte-Carlo trials. As a benchmark,
normalized versions of the CRBs in (36)-(38) and (47)-(48)
were calculated, against which the nMSEs will be compared.

The examined estimators and the CRBs are inspected as
a function of the following model parameters: i) number of
snapshots L; ii) reverberation PSD φR; iii) noise PSD φV ;
iv) speech PSD φS ; and v) number of microphones N . In
each experiment, the value of one parameter is changed, while
keeping the rest fixed to the nominal values, shown in Table I.
In the sequel, the following notation is used: The signal-to-
reverberation ratio (SRR) is defined as SRR , 10 log

(
φS
φR

)
,

the signal-to-noise ratio (SNR) as SNR , 10 log
(
φS
φV

)
and the

signal-to-reverberation-plus-noise ratio (SRNR) as SRNR ,
10 log

(
φS

φR+φV

)
.

2) Simulation Results: The first experiment examines the
effect of increasing the number of snapshots, L. The nMSEs
and CRBs of the reverberation, noise and speech PSDs are
shown in Fig. 1(a), 1(b) and 1(c), respectively. Clearly, the
nMSEs of all the estimators decrease as the number of snap-
shots increases. In comparison with the LS method presented
in [22], it is evident that the proposed reverberation and noise
MLEs outperform the corresponding LS estimators. For the
speech PSD, the results of both estimators are quite similar.
Finally, the MSEs of the proposed MLEs coincide with the
corresponding CRBs. Under the parameter choice of this
experiment, i.e. φS = φR = φV , the non-blocking-based and
the blocking-based methods seem to be indistinguishable. A
deviation between the CRBs will be demonstrated in Fig. 4,
where the effect of changing φS is examined.

In the next experiment, the effect of changing the reverber-
ation level is investigated. We change φR and hold the other
parameters fixed s.t. the resulting SRR ranges between −20 dB
and 20 dB. In Fig. 2, the various nMSEs are presented versus
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Fig. 1: Normalized MSEs and CRBs versus Number of snap-
shots, for estimating: (a) φR, (b) φV , and (c) φS .

SRR. It is evident that the performance of the reverberation
PSD estimators improves as the reverberation level increases
(i.e. when the SRR decreases). The trend for the speech
and noise PSDs is reversed; the nMSEs decrease as the
reverberation level decreases (i.e. SRR increases).

Next, we study the effect of varying the noise level. In
this experiment, φV is changed s.t. the SNR varies between
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Fig. 2: Normalized MSEs and CRBs versus SRR, for estimat-
ing: (a) φR, (b) φV , and (c) φS .

−30 dB and 30 dB. Fig. 3 shows the nMSEs against SNR.
The performance of the noise PSD estimators improves as the
noise level increases (SNR decreases), while for the speech
and reverberation PSD estimators, the nMSEs decrease as φV
decreases (SNR increases).

The effect of varying the speech PSD level is now inspected,
by setting φS to several values s.t. the SRNR ranges between
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Fig. 3: Normalized MSEs and CRBs versus SNR, for estimat-
ing: (a) φR, (b) φV , and (c) φS .

−20 dB and 20 dB. In Fig. 4, the nMSEs are presented versus
SRNR. As expected from the analytical study, for small φS
the non-blocking-based method yields a lower MSE compared
to the blocking-based method. The gap is, however, very small
(on the order of 0.1 dB).

Obviously, the blocking-based estimators are not affected
by the value of φS . For the non-blocking-based method, it
is shown that the speech PSD estimators are improved as

the speech level increases, until reaching the limiting value
of 1

L , which is inline with (59). For the non-blocking-based
reverberation and noise PSD estimators, there is a fundamental
difference between the ML and the LS methods: The LS
estimators degrade significantly as φS is increased. Similar
trends were observed in Figs. 2 and 3, where increase in the
level of one PSD value deteriorates the estimation accuracy of
the other PSDs. In contrast, the reverberation and noise MLEs
(and the corresponding CRBs) start with a very small gap
below the blocking-based estimators (as described before), and
as φS increases they approach the blocking-based performance
(i.e. become independent on φS), as manifested by (55). This
behaviour may be attributed to the fact that the LS method
finds the parameter values to best fit the assumed model to
the observed data. As the level of one parameter increases,
the fit becomes less sensitive to errors in other parameters,
and vice versa.

In contrast, the ML method optimally takes into account
the different spatial characteristics of the various components,
namely the rank-1 nature of the speech component as opposed
to the full-rankness of the reverberation and noise components.
By (55), the non-blocking-based CRB coincides with the
blocking-based CRB for large φS , which implies that the
optimal strategy to estimate φR includes a preliminary step
of generating a null towards the rank-1 speech signal. This
phenomenon resembles the noiseless case, where the rever-
beration non-blocking-based MLE is identical to the blocking-
based MLE [20]. The MLE in that case can be interpreted as
consisting of two steps: i) applying a projection matrix onto the
subspace orthogonal to the speech subspace, which blocks the
direction of the speech signal; and ii) averaging the resulting
normalized variance. We therefore presume that in our noisy
scenario, as φS becomes large the non-blocking-based MLE
of the reverberation (or noise) imitates the blocking-based
operation and generates a null towards the speech direction.
Therefore, it is not affected by any further change in φS .

Figure 5 depicts the nMSEs versus the number of micro-
phones, N . Obviously, the nMSEs of the proposed MLEs
decrease as the number of microphones increases. While
the non-blocking-based LS estimators show a similar trend,
the blocking-based LS estimators demonstrate much weaker
dependency on N . The reverberation estimator produces only
a moderate improvement with N , while the noise estimator
approaches a constant nMSE for N > 6.

We conclude that the proposed MLEs for the reverberation
and noise PSDs outperform the competing LS estimators, for
both the non-blocking-based and the blocking-based methods.
The performance of the speech PSD estimators is quite similar.
It is further demonstrated that the proposed MLEs achieve the
corresponding CRBs derived in Section IV.

3) Implementation Issues: In this section we briefly discuss
three practical issues, namely the effect of bad initial guess on
the required number of iterations, a comparison of techniques
to estimate the speech PSD for the blocking-based method,
and the computational complexity of both the proposed and
the competing methods.

a) Convergence: Both scoring and Newton methods
employ an iterative process to maximize the likelihood. It
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Fig. 4: Normalized MSEs and CRBs versus SRNR, for esti-
mating: (a) φR, (b) φV , and (c) φS .

is well known that the Newton method converges quickly
near the maximum value [15]. However, if started with bad
initial values it may converge very slowly. In the follow-
ing experiment, we examine the convergence of the Newton
method compared to the scoring method, as a function of the
number of iterations. For the sake of brevity, let the nMSE
of the non-blocking-based noise PSD estimator obtained by
Newton method be denoted as φy,NV , and the corresponding
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Fig. 5: Normalized MSEs and CRBs versus N , for estimating:
(a) φR, (b) φV , and (c) φS .

scoring-based estimator as φy,SV . In Fig. 6, φy,NV is presented
versus the number of iterations for various initial points φ(0),
while φy,SV is depicted only for the worse initial point. As a
benchmark, the CRB in (37) is also depicted. It is shown that
for the scoring method, convergence to a very high accuracy
is achieved in one iteration, even for a remote initial point.
In contrast, the Newton method requires a few dozens of
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Fig. 6: Convergence behaviour of the non-blocking-based
noise MLE implemented by both Newton and scoring meth-
ods, for various initial points.
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Fig. 7: Normalized MSEs and CRB for estimating φS , as a
function of Number of snapshots.

iterations for convergence, unless a very good initialization
is provided.

b) Speech PSD estimate for the blocking-based method:
In (28), a speech PSD estimate was proposed for the blocking-
based ML estimator. For the LS estimator, the blocking-based
speech PSD can be estimated as [22]

φLS,z̄
S (m) =

1

gH
dgd

Tr
[
Ry(m)− φLS,z̄

R (m)ΓR

− φLS,z̄
V (m)ΓV

]
, (61)

where φLS,z̄
R and φLS,z̄

V are defined therein. In Fig. 7, the
nMSEs of both estimators are depicted versus the number of
snapshots. For comparison, the non-blocking-based estimators
and CRB are depicted as well. It is shown that the proposed
blocking-based MLE in (28) outperforms the LS estimator of
(61), and approaches the performance of the non-blocking-
based method.

c) Computational Complexity: In this section, we com-
pare the computational complexity and the running time of
the proposed ML estimators, compared to the LS estimators
[22]. The complexity of the various estimators is summarized
in Table II, where K denotes the number of frequency bins,
M is the number of STFT frames, N denotes the number of
microphones and J is the number of iterations for the scor-
ing method. The computational complexity of the proposed
estimators is therefore about 2J times higher than that of
the competing LS estimators. For demonstration, we present
also the running time for each method, when required to
process a 3 sec recording at sampling rate of 16 kHz, with
K = 257,M = 372, N = 8 and J = 1. The experiments
were run in MATLAB R2016b on a HP Compaq Elite 8300
PC, with an Intel 4-core (8 threads) i7-3770 CPU at 3.4 GHz
and 32 GB RAM. From these results, it can be deduced that
both methods can be implemented in real-time applications.

B. Experiments with Measured Room Impulse Responses

Real noisy and reverberant audio signals are used for assess-
ing the performance of the proposed PSD estimators, when
utilized for speech dereverberation and noise reduction. Two
different acoustic scenarios are considered. In the sequel, we
first describe the experimental setup and the implementation
details. Then, we present the performance measures used for
assessing the quality of speech, and show the obtained results.

1) Experimental Setup: We consider two different real-life
acoustic scenarios, recorded at the acoustic lab of the Engi-
neering Faculty at Bar-Ilan University (BIU). Both scenarios
consist of measured RIRs and recorded noises. A first series of
experiments was carried out using an eight microphones non-
uniform array, with inter-distances of [8, 6, 4, 3, 3, 4, 6] cm.
The room panels were adjusted to create reverberation level of
T60 = 400 msec. A 30 sec periodic chirp signal was played
from a Head and Torso Simulator (HATS) mannequin with
built-in mouth, which was positioned a 1 m from the array,
at an angle of 90◦ (see Fig. 8). More details on the setup
can be found in [31]. The recorded signals were utilized for
identifying the RIR, using the technique described in [32]. For
the additive noise, an air-conditioner noise was recorded under
the same conditions. The noisy and reverberant signals were
constructed by convolving clean speech utterances from the
TIMIT database [33] with the RIR, and then adding the noise
with several reverberant signal-to-noise ratio (RSNR) levels.

In the second series of experiments, RIRs were downloaded
from the RIR database [34]. The reverberation time was set
to T60 ∈ {360, 610} msec. Measurements were carried out
by a ULA of 8 microphones with inter-distance of 8 cm
between adjacent microphones. A loudspeaker was located
at 1 m distance in front of the array center (angle of 0◦).
For the additive noise, we used a babble noise signal from
the NOISEX-92 database [35]. Different segments from the
babble signal were simultaneously played from 4 loudspeakers
located in the room corners (facing the wall), as illustrated in
Fig. 8. The microphone signals were synthesized using the
same procedure described in the first experiment.

The proposed method assumes the knowledge of the noise
spatial coherence matrix. To this end, a 1 sec noise segment
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Fig. 8: The room sketch: microphone locations are depicted
with blue ‘x’ marks, positions of the speaker are marked by
black circle, and position of noise loudspeakers are depicted
by orange squares.

TABLE II: Computational Complexity

Method Complexity Running Time

Non-blocking LS [22] O
(
5KMN3

)
10.2 sec

Blocking LS [22] O
(
5KM(N − 1)3 + 4KN3

)
8.3 sec

Non-blocking ML O
(
10KMN3J

)
18.6 sec

Blocking ML O
(
10KM(N − 1)3J + 4KN3

)
17.1 sec

is preceded to the reverberant and noisy speech signal. This
noise-only segment was utilized for estimating the noise
spatial coherence matrix ΓV . Note that ΓV is a full-rank
matrix, due to reverberation and the short frame size.

The various parameters were set as follows. The sampling
rate was set to 16 KHz, and the STFT frame length was
32 msec with 75% overlap. Due to non-stationarity of speech,
the sample covariance matrices Ry(m) and Rz(m) were
estimated using recursive averaging [11] with a smoothing pa-
rameter α = 0.7, instead of the moving-window averaging of
(12). The scoring method was initialized with φ(0) = 10−10,
and the number of iterations was fixed to 2.

2) Dereverberation and Noise Reduction Algorithm: A
widely-used method for enhancing a reverberant and noisy
speech is the MCWF, which produces an optimal speech
estimator in the sense of minimizing the MSE [26]. The
MCWF, given in (8), can be decomposed into a multichannel
minimum variance distortionless response (MVDR) beam-
former followed by a single-channel Wiener postfilter [36],
[37]:

ŝMCWF(m) =
γ̂(m)

γ̂(m) + 1︸ ︷︷ ︸
HW (m)

gH
d Φ̂−1

i (m)

gH
d Φ̂−1

i (m)gd︸ ︷︷ ︸
wH

MVDR(m)

y(m), (62)

where

γ̂(m) =
φ̂S(m)

φ̂RE(m)
(63)

denotes the SRNR at the output of the MVDR, and φ̂RE(m) ,(
gH
d Φ̂−1

i (m)gd

)−1

is the residual interference at the MVDR
output. As an alternative to (63), the decision-directed ap-

proach [38] suggests to smooth the estimate of γ̂ by

γ̂DD(m) = β
|ŝ(m− 1)|2

φ̂RE(m− 1)
+ (1− β)

φ̂Si(m)

φ̂RE(m)
, (64)

where β is a weighting factor, and φ̂Si is an instantaneous
estimate based on the MVDR output [10]:

φ̂Si(m) = max
(
|wH

MVDR(m)y(m)|2 − φ̂RE(m), 0
)
. (65)

In order to calculate the MCWF in (62), the various PSDs
were estimated using both the non-blocking-based method of
(18) and the blocking-based method of (25). The proposed
estimators are compared to the LS non-blocking-based and
blocking-based estimators derived in [22]. Therein, it was
shown that the decision-directed approach in (64)–(65) yields
improved performance compared to (63). We therefore exam-
ine both versions of computing γ̂: i) The direct implementation
in (63), denoted henceforth as Dir; and ii) the decision-directed
implementation in (64)–(65), which will be referred to as
DD. The smoothing factor for the decision-directed was set
to β = 0.8, and the gain of the single channel postfilter was
lower bounded to −15 dB.

3) Performance Measures: Three commonly used objective
measures were used for evaluating the speech quality: per-
ceptual evaluation of speech quality (PESQ) [39], frequency-
weighted segmental SNR (fwSNRseg) [40] and log-spectral
distance (LSD). The various measures were calculated by
comparing ŝMCWF(m) to the clean reference s(m), i.e. the
direct speech signal as measured by the reference microphone.
The reference signal was obtained by convolving the anechoic
speech with the direct path component of the RIR. The
measures were averaged over five male and five female TIMIT
speakers.

To demonstrate the efficiency of the proposed estimators,
the scores obtained by an oracle MCWF with true parameters
were also computed. The oracle speech PSD was calculated
from the clean reference s(m), the oracle reverberation PSD
was computed by convolving the anechoic speech signal with
the reverberation component of the RIR (assumed to start
2 msec after the direct path), and the oracle noise PSD was
calculated from the noise signal.

4) Experimental Results: PESQ, fwSNRseg and LSD
scores for the various methods are presented in Tables III,
IV and V for both acoustic scenarios. The best results are
highlighted in boldface. Note that low LSD indicates a high
speech quality. For both acoustic scenarios, it is evident that
the proposed estimators provide significant improvement with
respect to the noisy and reverberant signal. For the first
acoustic scenario, Table III shows that the proposed blocking-
based ML DD method obtains the best PESQ and LSD scores,
while the proposed non-blocking-based ML DD method yields
the best fwSNRseg results. For the second acoustic scenario,
Tables IV and V demonstrate that the proposed blocking-
based ML DD method yields the best scores in terms of
all performance measures, for almost all cases. Note that
the decision-directed implementation is superior to the direct
implementation for all the considered scenarios. It should be
further emphasized that in most cases, each of the proposed
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TABLE III: Speech Quality Measures for Scenario 1: Air-Conditioner Noise, T60 = 400 msec

PESQ fwSNRseg LSD

Alg.\RSNR 0dB 5dB 10dB 15dB 20dB 0dB 5dB 10dB 15dB 20dB 0dB 5dB 10dB 15dB 20dB

Unprocessed 1.38 1.52 1.67 1.80 1.90 -13.33 -10.02 -7.26 -5.34 -4.05 12.81 10.65 8.98 7.77 6.66

Blocking LS [22] Dir 1.97 2.15 2.26 2.32 2.35 -3.46 -1.75 -0.61 0.17 0.88 6.36 5.17 4.37 4.01 3.87
Blocking LS [22] DD 2.31 2.52 2.63 2.68 2.69 0.39 1.12 1.75 2.23 2.55 5.08 4.52 4.13 3.93 3.81

Blocking ML Dir 2.14 2.25 2.31 2.34 2.36 -2.07 -1.04 -0.23 0.49 1.09 5.13 4.49 4.12 3.92 3.82
Blocking ML DD 2.35 2.55 2.66 2.70 2.71 0.55 1.32 1.93 2.37 2.70 5.08 4.47 4.07 3.86 3.74

Non-blocking LS [22] Dir 2.10 2.25 2.33 2.37 2.38 -1.92 -0.68 0.13 0.74 1.40 5.51 4.65 4.15 3.90 3.78
Non-blocking LS [22] DD 2.30 2.50 2.62 2.68 2.69 0.56 1.32 1.91 2.37 2.67 5.14 4.59 4.20 3.97 3.83

Non-blocking ML Dir 2.17 2.32 2.39 2.42 2.43 -0.72 -0.03 0.51 1.14 1.60 5.10 4.51 4.11 3.92 3.81
Non-blocking ML DD 2.32 2.53 2.64 2.69 2.71 0.60 1.36 1.96 2.39 2.70 5.15 4.53 4.13 3.91 3.78

Oracle MCWF 3.04 3.13 3.19 3.30 3.33 2.20 2.83 3.30 3.82 4.12 3.93 3.58 3.39 3.20 3.14

TABLE IV: Speech Quality Measures for Scenario 2: Babble Noise, T60 = 360 msec

PESQ fwSNRseg LSD

Alg.\RSNR 0dB 5dB 10dB 15dB 20dB 0dB 5dB 10dB 15dB 20dB 0dB 5dB 10dB 15dB 20dB

Unprocessed 1.41 1.59 1.78 1.96 2.10 -10.42 -7.52 -5.00 -3.34 -2.27 10.53 8.80 7.52 6.39 5.26

Blocking LS [22] Dir 1.93 2.23 2.49 2.70 2.85 -1.66 -0.01 1.10 1.88 2.44 5.66 4.78 4.14 3.66 3.43
Blocking LS [22] DD 2.22 2.58 2.86 3.11 3.24 0.70 1.68 2.35 2.82 3.15 4.82 4.23 3.82 3.62 3.51

Blocking ML Dir 1.89 2.17 2.42 2.63 2.80 -2.07 -0.48 0.57 1.34 1.94 5.81 5.08 4.46 4.12 3.93
Blocking ML DD 2.28 2.63 2.89 3.16 3.26 0.88 1.77 2.37 2.90 3.20 4.78 4.21 3.80 3.62 3.53

Non-blocking LS [22] Dir 2.03 2.31 2.54 2.74 2.85 -1.00 0.22 1.16 1.85 2.35 5.17 4.49 4.01 3.72 3.58
Non-blocking LS [22] DD 2.23 2.56 2.81 3.10 3.21 0.63 1.53 2.12 2.63 2.93 4.96 4.44 4.04 3.94 3.76

Non-blocking ML Dir 2.07 2.36 2.58 2.77 2.88 -0.83 0.36 1.27 1.98 2.42 5.05 4.38 3.91 3.62 3.51
Non-blocking ML DD 2.28 2.62 2.87 3.15 3.25 0.81 1.64 2.23 2.72 3.02 4.85 4.32 3.93 3.81 3.65

Oracle MCWF 3.07 3.23 3.33 3.59 3.68 2.83 3.32 3.68 4.12 4.35 3.46 3.26 3.14 2.88 2.81

TABLE V: Speech Quality Measures for Scenario 2: Babble Noise, T60 = 610 msec

PESQ fwSNRseg LSD

Alg.\RSNR 0dB 5dB 10dB 15dB 20dB 0dB 5dB 10dB 15dB 20dB 0dB 5dB 10dB 15dB 20dB

Unprocessed 1.35 1.47 1.59 1.68 1.74 -14.53 -11.78 -9.53 -7.99 -6.92 13.06 11.31 9.51 7.71 6.28

Blocking LS [22] Dir 1.80 2.01 2.17 2.29 2.36 -4.79 -3.08 -1.86 -1.08 -0.41 6.63 5.54 4.72 4.24 4.07
Blocking LS [22] DD 2.07 2.34 2.53 2.68 2.74 -1.41 -0.43 0.24 0.79 1.06 5.31 4.67 4.30 4.13 4.03

Blocking ML Dir 1.73 1.93 2.09 2.21 2.29 -4.66 -3.34 -2.20 -1.40 -0.86 6.48 5.56 4.88 4.70 4.55
Blocking ML DD 2.11 2.39 2.58 2.74 2.80 -1.11 -0.18 0.42 0.90 1.20 5.16 4.59 4.25 4.13 4.02

Non-blocking LS [22] Dir 1.89 2.08 2.22 2.32 2.37 -3.79 -2.50 -1.62 -0.93 -0.39 5.79 4.97 4.43 4.23 4.14
Non-blocking LS [22] DD 2.04 2.29 2.49 2.67 2.75 -1.23 -0.31 0.26 0.78 1.09 5.28 4.74 4.41 4.30 4.17

Non-blocking ML Dir 1.94 2.14 2.27 2.37 2.42 -3.39 -2.17 -1.42 -0.69 -0.19 5.56 4.79 4.32 4.14 4.06
Non-blocking ML DD 2.10 2.37 2.56 2.74 2.80 -1.12 -0.18 0.36 0.85 1.13 5.18 4.65 4.30 4.21 4.08

Oracle MCWF 2.87 2.99 3.07 3.28 3.35 1.33 1.66 1.88 2.33 2.51 3.69 3.50 3.38 3.19 3.15

ML implementations outperforms the competing LS imple-
mentation, except for the blocking ML Dir in scenario 2.

We now examine the influence of the number of micro-
phones on the performance. Fig. 9 depicts the measures
obtained with different number of microphones, i.e. N ∈
{4, 6, 8}, for acoustic scenario 2 with T60 = 610msec and
RSNR = 5 dB. For both the ML and the LS approaches,
the best 2 implementations (i.e. with DD) are depicted, where
NBB denotes the non-blocking-based method, and BB refers
to the blocking-based method. To emphasize the score dif-
ferences, we present the improvement in the performance
measures with respect to the input signal. As expected, the
performance is improved as the number of microphones is
increased. It is evident that the proposed methods outperform
the baseline methods for all values of N . Note that for N = 4,
the non-blocking-based method outperforms the blocking-

based method. This may be attributed to the fact that the
blocking stage reduces one dimension, which becomes more
meaningful when the dimensions number of the data is small.

The capability of the proposed method to jointly reduce
reverberation and noise while maintaining low speech dis-
tortion is further demonstrated in Fig. 10, where we depict
some sonogram examples of the various signals in acoustic
scenario 2 with T60 = 610msec. Fig. 10(a) depicts s, i.e. the
clean direct speech signal, as received by the first microphone.
Fig. 10(b) shows y1, the noisy and reverberant signal at the
first microphone. Figs. 10(c) and 10(d) present the enhanced
signal at the output of the MCWF, computed using either
the blocking ML Dir or the blocking ML DD, respectively.
Sonograms for the LS estimators are quite similar. However,
the proposed method yields a slightly better performance. It
can be concluded that the proposed MLEs, when used to
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Fig. 9: Results versus N , for Scenario 2 with T60 = 610msec and RSNR = 5dB: (a) ∆PESQ, (b) ∆fwSNR, and (c) ∆LSD.

construct an MCWF, provide significant interference reduction
while keeping low speech distortion. Audio examples can be
found in our website.1

VI. CONCLUSIONS

In this paper, we addressed the problem of speech dere-
verberation and noise reduction in a spatially homogeneous
noise-field. Based on the Fisher scoring algorithm, we derived
a non-blocking-based and a blocking-based ML estimators of
the various PSDs required for implementing the MCWF. As
opposed to state-of-the-art methods which assume the knowl-
edge of the noise PSD, our procedure includes an estimator for
the noise PSD, along with the reverberation and speech PSDs.
Furthermore, CRBs on the various PSDs were derived for the
two proposed MLEs. For both the reverberation and the noise
PSD estimators, it is shown that the non-blocking-based CRB
is smaller than the blocking-based CRB. The discussion is
supported by an experimental study, based on both simulated
data and real-life audio signals, demonstrating the advantage
of the proposed estimators over competing estimators.

APPENDIX A

In [21, Appendix B], it was shown that δ ≥ 0, with equality
if φV = 0 or ΓV = ΓR. Following the same lines of proof,
we now show that δ̂ ≥ 0 and δ̃ ≤ 0.

We start by showing that δ̂ ≥ 0. To this end, we derive an
explicit expression for δ̂. Using the Cholesky decomposition,
the reverberation spatial coherence matrix is decomposed as
ΓR = RRH, where R is an N ×N lower triangular matrix.
Using (9), the prewhitened interference PSD matrix writes

ΦiW , R−1ΦiR
−H = φRI + φV R−1ΓV R−H. (66)

Applying the eigenvalue decomposition (EVD) to
R−1ΓV R−H yields

R−1ΓV R−H = UHΛU, (67)

where U is the N ×N eigenvectors matrix and Λ is the di-
agonal matrix whose diagonal elements are the corresponding

1http://www.eng.biu.ac.il/gannot/speech-enhancement/

eigenvalues, denoted by λi , Λii, i = 1, . . . , N . Substituting
(67) into (66) and using the orthonormality of U, Φ−1

i writes

Φ−1
i = R−HΦ−1

iW R−1 = R−HUHΥ−1UR−1, (68)

where in the last step we defined the diagonal matrix Υ ,
φRI+φV Λ. Substituting (68) into (36b), (36f) and (36g) yields

γ1 = dHΥ−1d, (69a)

γ̂2 = dHΥ−1ΛΥ−1d, (69b)

γ̂3 = dHΥ−1ΛΥ−1ΛΥ−1d, (69c)

where d , UR−1gd. By construction, Λ and Υ are diagonal
matrices, and thus (69) can be recast as

γ1 =

N∑
i=1

|di|2

φR + φV λi
, (70a)

γ̂2 =
N∑
i=1

|di|2λi
(φR + φV λi)

2 , (70b)

γ̂3 =
N∑
i=1

|di|2λ2
i

(φR + φV λi)
3 . (70c)

Substituting (70) into δ̂ in (40b) and using the double-sum
identity in [21, Eq. B.68], yields

δ̂ =
φ2
R

2

N∑
i=1

N∑
j=1

|di|2|dj |2 (λi − λj)2

(φR + φV λi)
3

(φR + φV λj)
3 . (71)

Note that λi > 0 since they are eigenvalues of a positive
definite matrix. It follows that δ̂ ≥ 0, with equality if: i) φR =
0; or ii) λi = λj , ∀ 1 ≤ i, j ≤ N . It can be shown that the
latter case occurs only if ΓV = ΓR.

The proof that δ̃ ≤ 0 is similar. Substituting (68) into (36c)
and (36i) yields

γ2 = dHΥ−2d =
N∑
i=1

|di|2

(φR + φV λi)
2 , (72a)

γ̃3 = dHΥ−1ΛΥ−2d =
N∑
i=1

|di|2λi
(φR + φV λi)

3 . (72b)
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(a) Clean direct speech at microphone #1.
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(b) Noisy and Reverberant signal at microphone #1.
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(c) Output of the MCWF using the proposed
blocking-based ML Dir.
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blocking-based ML DD.

Fig. 10: Sonogram examples for Scenario 2, with T60 = 610 msec and RSNR = 10 dB.

Substituting (70a), (70b) and (72) into δ̃ in (40c), it can be
shown that

δ̃ = −φRφV
2

N∑
i=1

N∑
j=1

|di|2|dj |2 (λi − λj)2

(φR + φV λi)
3

(φR + φV λj)
3 , (73)

and thus δ̂ ≤ 0, with equality if: i) φR = 0; or ii) φV = 0; or
iii) ΓV = ΓR.
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