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Abstract—In this paper, we present an algorithm for direction
of arrival (DOA) tracking and separation of multiple speakers
with a microphone array using the factor graph statistical model.
In our model, the speakers can be located in one of a predefined
set of candidate DOAs, and each time-frequency (TF) bin can
be associated with a single speaker. Accordingly, by attributing a
statistical model to both the DOAs and the associations, as well
as to the microphone array observations given these variables, we
show that the conditional probability of these variables given the
microphone array observations can be modeled as a factor graph.
Using the loopy belief propagation (LBP) algorithm, we derive a
novel inference scheme which simultaneously estimates both the
DOAs and the associations. These estimates are used in turn for
separating the sources, by directing a beamformer towards the
estimated DOAs, and then applying a TF masking according
to the estimated associations. A comprehensive experimental
study demonstrates the benefits of the proposed algorithm in
both simulated data and real-life measurements recorded in our
laboratory.

Index Terms—Speaker tracking, speaker separation, factor
graphs, loopy belief propagation (LBP)

I. INTRODUCTION

Multiple-speaker separation is a well-known problem in
the speech processing community, aiming to separate the
measured microphone signal to its different sources. Another
problem of substantial interest is tracking of a moving speaker,
which can be used for separation tasks, and is also required
in other applications, including navigation, target acquisition
and beamforming. Both problems become challenging when
multiple moving speakers are concurrently active, as well as
when additive interference signals are also captured by the
microphone array.

Among the most common DOA estimation methods are
the steered response power (SRP)-phase transform (PHAT)
algorithm [1] and the multiple signals classification (MUSIC)
algorithm [2]. However, these techniques are not optimal
in the multiple-speaker case, and do not address dynamic
scenarios where the sources are moving during the recording.
For the separation task, existing algorithms can be roughly
divided into four groups: independent component analysis
(ICA) algorithms that assume independence of the original
source signals [3]; beamforming methods based on the spatial
diversity of the speakers [4]; algorithms based on nonnegative
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matrix factorization (NMF) of the speech power spectral
density (PSD); and methods that rely on the sparsity of speech
signals in the TF domain [5], [6]. In the latter, the main
assumption is that each TF bin is dominated by a single active
speaker. These algorithms usually estimate a separation mask
that assigns each TF bin to the active speaker, and use it for
separation by applying a mask to the PSD of the measured
signal. Comprehensive surveys of separation methods can be
found in [7]–[9].

Several algorithms address the joint problem of localization
and separation. In [10], the expectation-maximization (EM)
algorithm is implemented for estimating both the DOAs and
the separation masks of multiple static speakers with a single
microphone pair. The algorithm is based on a Mixture of
Gaussians (MoG) model defining a grid of possible DOA
candidates. Assuming a single dominant speaker in each TF
bin, the interaural phase differences (IPDs) from all TF bins
are clustered into groups associated with a particular speaker
from a candidate DOA. The E-step in the proposed EM
iterations provides a soft assignment of each observation to
both speaker and DOA. By marginalizing over the DOAs, a
separation mask is obtained. The weights of the Gaussians,
obtained by the M-step, define a probability distribution on
the candidate DOAs, and the DOAs of the active speakers
are estimated by selecting the candidates with the highest
probabilities. In [11], the algorithm was extended using a
Markov random field (MRF) model to promote smoothness
of the separation mask in both time and frequency, which
was shown to improve the separation results. In [12], a
dynamic scenario was addressed by two recursive EM (REM)
variants, applied to a multichannel extension of the model
in [10]: one based on Titterington recursive EM (TREM) [13]
and the second based on Cappé and Moulines recursive EM
(CREM) [14]. The separation task was not addressed in this
paper.

Tracking and separation of moving speakers was addressed
in [15]. In this paper, the basic model assumes static sources,
and the tracking is applied as a post processing step following
the static localization procedure. Here also, the IPDs are
used as feature vectors, and are modeled using wrapped
distributions. The DOA of each source is computed using
circular linear regression, which in the multiple-speaker case,
is solved by the EM algorithm. Similar to [10], the E-step
is used for estimating the separation mask, and the slopes of
the IPDs are transformed to DOAs using the prior knowledge
on the inter-channel delay. A dynamic scenario is addressed
by first finding the DOAs for each time-step, and then using
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the estimated DOAs as observations for a factorial wrapped
Kalman filter.

The above mentioned papers use the IPD features for the
localization task, however with these features, the presence of
additive measurement noise is not directly addressed. In [16]–
[18], the phase-related feature vectors were substituted by
the raw short-time Fourier transform (STFT) observations. In
addition, the noise (or reverberation) was explicitly modeled,
resulting in improved performance in noisy (or reverberant)
scenarios. The observations at the microphone array were
modelled as a mixture of multivariate complex-Gaussians
with zero-mean, and a spatial covariance matrix consisting
of both the speech and the noise PSDs. Furthermore, it was
shown in [17] that the PSDs of the candidate speakers can
be estimated in advance (prior to the application of the EM
algorithm) from the outputs of a set of minimum variance
distortionless response (MVDR)-beamformers (BFs).

The algorithm in [17] was extended in [19] to address
dynamic scenarios. First, it was shown that the raw observation
features can be substituted by new features, which are the
likelihood ratio test (LRT) at each candidate DOA indicating
whether the MVDR-BF output at this DOA dominated by
either speech or noise. The utilization of these new features,
results in a lower computational burden that is beneficial in
online and real-time tracking applications. Second, a tracking
procedure was proposed by applying the CREM algorithm.

The above algorithms do not provide an explicit DOA
estimate, but rather a probability map over the candidate
DOAs. While for the static localization task the actual DOA
can be found relatively easily by finding the peaks in the
probability map, in a dynamic case the peaks should be
calculated for each time-step rendering the explicit trajectory
inference difficult.

Another approach to address the tracking task is to substitute
the MoG model with an Hidden Markov Model (HMM). In
this approach, the DOAs of the speakers are also discretized to
a finite set of candidates. The model assumes that the dynamics
of the sources is governed by a Markov process, with higher
probability for switching from one candidate to an adjacent
candidate at each time-step, thus allowing small changes in
the DOA [6], [20], [21]. In [6] this model was extended to
full 2D tracking rather than DOA-only tracking.

The tasks of tracking and separation depend on each other.
The reason is that when the DOAs of the speakers are known,
we can identify the dominating DOA in each TF bin and
associate it with the corresponding speaker, and thus extract
it by masking. In the opposite direction, given the association
map that relates each TF bin to its dominating speaker, we
can use the set of TF bins attached with each speaker to
infer its corresponding DOA. Examples of using the outcomes
of localization to perform separation can be found in [10],
[12], [17], [22], and for the other direction in [23], [24]. In
this paper, we handle the case where both the DOA and the
associations are unknown, and solve both tasks simultaneously
without pre-initialization.

A simultaneous tracking and separation algorithm was pro-
posed in [6], [21], the latter apply a Bayesian approach. The
definition of the hidden variables here is different from that

defined in [10]. In [10] each TF observation is associated with
both a DOA and a speaker, whereas in [21] each observation
is associated only with a speaker, and the speaker is associated
with a DOA. This approach uses fewer hidden variables, hence
reducing the computational requirements, while modeling real
scenarios more accurately. The continuous movement of the
speakers is reflected by modelling the DOAs of the speakers
as Markov processes. Since an exact inference of the hidden
variables from the observations is intractable, a variational
inference was applied.

In the current contribution, we present a novel algorithm
for simultaneous tracking and separation of multiple speakers
based on a factor graph model. Factor graph models [25] are
used in many complex tasks in various signal processing fields,
such as communication [26], sonar detection [27] and robotics
[28], [29]. To the best of our knowledge, this model was
not used for the task of speaker tracking and separation. In
our paper, we define the hidden data as in [21] using two
groups of latent variables. The first group consists of the
DOA of the sources that are modeled as separated Markov
chains for each source, where the transition probability is
set to allow only small changes in the DOAs in subsequent
time steps. The second group consists of the associations of
the TF bins to the different sources, which can be modeled
by an i.i.d. distribution or, following [11], using an MRF
model to smooth the associations in time and frequency.
Given both the DOAs and the associations, the observations
are modeled as a complex-Gaussian distribution, which is a
function of the unknown speech PSD that can be estimated
using the maximum likelihood (ML) criterion. We then show
that the posterior of the latent variables given the observations
defines a factor graph, and derive a novel inference method for
simultaneously estimating all latent variables, using the loopy
belief propagation (LBP) inference algorithm [30].

The remainder of this paper is organized as follows. In
Section II the problem of simultaneous tracking and separation
is defined. In Section III the statistical model is defined and
a factor graph model is formulated. The inference algorithm
based on the LBP algorithm is derived in Section IV. An
experimental study that demonstrates the capabilities of the
proposed algorithm, can be found in Section V. Conclusions
are outlined in Section VI.

II. PROBLEM FORMULATION

In this section we formulate the problem addressed in this
paper. Similar formulation can be found in [6], [21]. Consider
an array of N microphones, receiving signals of J moving
speakers. At each time step, each speaker is located at a
specific DOA on a grid of M possible DOAs [ϑ1, . . . , ϑM ].
Due to the dynamic nature of the problem, the DOAs may
vary from one time step to the other. The proposed method
is applied in the STFT domain with t = 1, . . . , T denoting
the time index and k = 1, . . . ,K denoting the frequency
index. Let dt(j) be a categorical random variable denoting
the DOA index of the jth speaker at time index t, i.e.
dt(j) ∈ [1, . . . ,M ]. Assuming that only a few speakers are
mixed and relying on the W-disjoint orthogonality (WDO)
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property of speech signals in the STFT domain [5], each TF
bin is dominated by a single active speaker. Let at,k be a
categorical random variable denoting the active speaker at the
(t, k)th bin, i.e. at,k ∈ [1, . . . , J ]. Following these definitions,
the nth microphone signal is given by:

z
(n)
t,k = g

(n)
k (dt(at,k))st,k(dt(at,k)) + v

(n)
t,k , (1)

where dt(at,k) ∈ [1, . . . ,M ] is the DOA index of the active
speaker at the (t, k)th bin, g(n)k (m) is the relative transfer
function (RTF) associated with the mth candidate DOA and
defined between the nth microphone and the reference micro-
phone, st,k(m) is the speech signal from the mth candidate
as measured by the reference microphone, and v(n)t,k denotes a
stationary ambient noise at microphone n ∈ [1, . . . , N ].

In low-reverberation environments, the RTF approximately
corresponds to the direct path between the source and the
microphone:

g
(n)
k (m) = exp

(
−ι2πk

K

τm,n
Ts

)
(2)

where Ts denotes the sampling period, and τm,n denotes the
known time difference of arrival (TDOA) between the nth
microphone and the reference microphone, associated with the
mth candidate DOA. Note that in the algorithm derivation we
assume a far-field and free-field scenario, such that the RTF
of the different candidates can be solely determined by the
TDOA. In the experimental study, we empirically demonstrate
that the derived algorithm can also perform well in reverberant
environments.

The measured signals (1) can be written in a vector form
as:

zt,k = gk(dt(at,k))st,k(dt(at,k)) + vt,k (3)

where

zt,k =
[
z
(1)
t,k , z

(2)
t,k , . . . z

(N)
t,k

]T
gk(m) =

[
1, g

(2)
k (m), . . . , g

(N)
k (m)

]T
vt,k =

[
v
(1)
t,k , v

(2)
t,k , . . . , v

(N)
t,k

]T
.

assuming, without loss of generality, that the first microphone
is chosen as the reference microphone. The generation of the
observation by the defined model is illustrated in Figure 1.

Our goal is to estimate the DOAs of the speakers at
each time-step and to separate the measured signals into
the source signals of each of the speakers. To this end, we
define a statistical model and present an inference scheme that
simultaneously estimates the speaker associations at,k and the
DOAs dt(j).

III. FACTOR GRAPH MODEL

We consider the speaker associations at,k and the DOAs
dt(j) as latent variables that we would like to infer from the
observations zt,k. Applying Bayes rule, the posterior of the
latent variables is given by:

P (d,a|z) =
P (z|a,d)P (a)P (d)

P (z)
(4)
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Fig. 1: An illustration of the generation of the observations
by the presented model. The first part is the selection stage.
The variable at,k representing the active speaker, is used for
selecting the DOA associated with the active speaker. The
chosen DOA candidate is used for selecting both the RTF
and the input speech signal that are associated with this
candidate. The second part describes the actual generation of
the observations by an LTI system model, in which the chosen
speech signal is filtered by the chosen RTF and noise is added.

where a = vect,k{at,k}, d = vect,j{dt(j)}, z = vect,k{zt,k},
and we assume independence between the DOAs d and the
associations a.

The main task of this paper is to find the marginal posterior
of the variables, namely P (at,k|z) ∀t, k, and P (dt(j)|z) ∀t, j.
However, an exact computation of these marginal distributions
is intractable. In [21] this posterior was approximated by a
product of probabilities from known families, and the vari-
ational inference was used for estimating the parameters of
these probabilities. In the current paper, we present a statistical
model in which the posterior is given in a form of a factor
graph. We then propose to use the LBP inference algorithm
in order to find the marginal posterior for each variable.

In this section, we define the prior probabilities of the
hidden variables P (a) and P (d), as well as the probability of
the observations given the hidden variables P (z|a,d), and use
them to form the factor graph of the posterior probability (4).
The inference algorithm that is applied to this factor graph
model is described in Section IV. A brief general review on
factor graph models and their inference methods is given in
Appendix B.

A. The DOA model

Following [20], [21] the prior probabilities of the DOAs of
each of the speakers are modeled as separated and independent
Markov chains. The state of the Markov process associated
with each speaker is the DOA index of the corresponding
speaker at each time step. The transition probabilities are set in
a way that allows the DOA of each speaker to vary smoothly
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over time. Accordingly, the joint probability of d is given by:

P (d) =
J∏
j=1

[
Ωj(d1(j))

T∏
t=2

Ψ(dt−1(j), dt(j))

]
(5)

where we have defined the following potential functions:

Ψ(m1,m2) = P (dt(j) = m2|dt−1(j) = m1) (6a)

Ωj(m) = P (d1(j) = m) (6b)

where P (dt(j) = m2|dt−1(j) = m1) is the probability to
switch from one DOA to another in subsequent time steps,
and P (d1(j) = m) is the initial probability of the jth speaker
at time t = 1. In order to achieve a continuous trajectory, the
transition probability is set as:

P (dt(j)|dt−1(j)) ∝


1 if dt(j) = dt−1(j)

exp(−α) if dt(j) = dt−1(j)± 1

0 otherwise
(7)

where α > 0 is a hyper-parameter which controls the smooth-
ness of the trajectory. The initial DOA probability is assumed
to be known. However, we observed in our experiments (see
Sec. V-C) for a case with three speakers) that it may also be
randomly initialized, hence a prior knowledge on the initial
DOA is in practice unnecessary.

B. The association model

For the prior probability of the association variables a, we
propose two alternative models. The simple model is an i.i.d.
distribution where an independence between the associations
in different TF bins is assumed, and each of them is uniformly
distributed, namely:

P (a) =
∏
t,k

1

J
=

1

JTK
(8)

which is a constant expression. In the following, we derive the
inference algorithm for this model.

An alternative model is described in Section IV-F following
[11]. This model takes into account the speech activity pattern
across time and frequency, and represents the relation between
adjacent TF bins using a Markov random field (MRF). The
MRF model provides a more accurate description of the
behavior of the association variables across time and frequency
compared to the uniform model (8), at the cost of slightly
increasing the complexity of the inference scheme. In the
experimental part in Section V, we show that the MRF model
has a slight advantage over the uniform model in terms of the
actual performance. By describing both models, we would like
to further demonstrate the flexibility of the proposed statistical
framework that facilitates the use of various models for the
associations with only small adjustments to the proposed
inference algorithm.

C. The observation model

We will now define the statistical model of the observations
given the hidden variables P (z|a,d). The speech signal is
modeled as a zero-mean complex-Gaussian random variable
with a time-varying PSD:

P (st,k(dt(at,k))) = N (st,k(dt(at,k)); 0, φs,t,k(dt(at,k)))
(9)

where N (·; ·, ·) denotes the complex-Gaussian probability and
φs,t,k(dt(at,k)) is the unknown PSD of the speech signal
received from the DOA of the active speaker at the (t, k)th
bin. The noise is modeled as a zero-mean complex-Gaussian
random vector with a time-invariant covariance matrix Φv,k:

P (vt,k) = N (vt,k; 0,Φv,k) . (10)

It is assumed that the noise covariance matrix is known in
advance, or can be estimated during speech-absent segments,
due to the noise stationarity.

Following equations (3), (9) and (10), the conditional proba-
bility density function (p.d.f.) of the (t, k)th observation given
the DOA of the active speaker at this bin can be expressed as

P (zt,k|dt(at,k)) = N (zt,k,0,Φz,t,k(dt(at,k))), (11)

with:

Φz,t,k(m) = gk(m)gHk (m)φs,t,k(m) + Φv,k, (12)

where the speech and noise signals are assumed to be statis-
tically independent.

Since φs,t,k(m) does not directly depend on the identity of
the active speaker but on its DOA, we can estimate it prior
to the algorithm application using the maximum likelihood
estimator (MLE) (as detailed in Appendix A1). Next, we
factorize the conditional p.d.f. as follows:

P (zt,k|dt(at,k)) = Tt,k(dt(at,k)) ·Gt,k (13)

where Tt,k(m) consists of all terms that depend on the candi-
date DOA m, and Gt,k consists of the remaining terms that are
independent of m, and therefore is ignored in the following
derivations that are based on non-normalized distributions. The
function Tt,k(m) represents the likelihood ratio test (LRT) that
tests whether the signal from the mth candidate is associated
with noise or with a speaker (see Appendix A1). The LRT is
defined based on the output of an MVDR-BF directed towards
the mth candidate:

ŝw,t,k(m) ≡ wH
k (m)zt,k (14)

and the MVDR-BF is defined by:

wk(m) =
Φ−1v,kgk(m)

gHk (m)Φ−1v,kgk(m)
. (15)

The computation of Tt,k(m) is described in Algorithm 1,
and the full derivation can be found in Appendix A. Finally,
assuming independence between the observations given the
latent variables, the likelihood of the observations is given by:

P (z|a,d) =
∏
t,k

Tt,k(dt(at,k)) ·Gt,k. (16)
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Algorithm 1 Likelihood calculation
• Calculate the MVDR-BF wk(m) ∀k,m using (15)
• Calculate the output of the MVDR-BF ŝw,t,k(m) ∀t, k,m

using (14)
• Calculate the PSD of the residual noise ∀k,m:

φv,k(m) ≡ 1

gHk (m)Φ−1v,kgk(m)

• Calculate the SNR at the output of the MVDR-BF
∀t, k,m:

ηt,k(m) =
|ŝw,t,k(m)|2

φv,k(m)

• Calculate the LRT ∀t, k,m:

Tt,k(m; φ̂s,t,k(m)) =
1

ηt,k(m)
exp (ηt,k(m)− 1)

D. The observation factor

For the factor graph model, we need to explicitly define a
factor for each observation as a function of all the associated
latent variables. Thus, we rewrite (16) as:

P (z|a,d) =
1

Cz

∏
t,k

Υt,k(at,k, dt(1) . . . dt(J)) (17)

where 1
Cz
≡
∏
t,kGt,k is a constant normalization and:

Υt,k(at,k, dt(1) . . . dt(J)) ≡ Tt,k(dt(at,k)). (18)

We denote this function as the observation factor. Note that
while Tt,k(·) is a function of a single variable dt(at,k) ∈
[1 . . .M ], the potential function Υt,k(·, . . . , ·) is a function of
J+1 variables, namely, at,k and dt(1) . . . dt(J). The definition
of Υt,k(·, . . . , ·) is necessary as the factor graph model requires
that the factors are presented as direct functions of each of
the individual hidden variables separately. Note also that in
contrast to the DOA factor Ψ (7), which is fixed along time,
the observation factor varies across time and frequency, since
it is determined by the specific observation in each TF bin.

E. The Factor Graph

We can now express the posterior P (a,d|z) as a factor
graph. Substituting (5), (8) and (17) into (4), we obtain:

P (d,a|z) =
1

C

∏
t,k

Υt,k(at,k, dt(1) . . . dt(J))

×
J∏
j=1

Ωj(d1(j))
T∏
t=2

Ψ(dt−1(j), dt(j)) (19)

where the factors Ψ(·, ·), Ωj(·) and Υt,k(·, . . . , ·) are defined
in (6a),(6b) and (18) respectively, and C ≡ Cz ·JTK ·P (z) is
a normalization constant. The factor graph model is illustrated
in Fig. 2.

Fig. 2: The proposed factor graph. Here, J = 2 speakers K =
3 frequencies, and T = 3 time-frames, for simplicity. Only
three out of T ×K observation factors are drawn. The gray
dashed lines and the factors Φ correspond to the modified
factor graph presented in Section IV-F, which is based on the
MRF model for the associations. For the uniform distribution
model of the associations (8) these connections and factors are
ignored.

IV. INFERENCE USING THE LBP

The obtained factor graph contains loops, as can be seen
in the illustrative example in Fig. 2, and therefore the loopy
belief propagation (LBP) [31] can be used for its inference.
In this section, we derive the LBP algorithm to approximate
the marginal posteriors of the latent variables given the ob-
servations. The final DOA trajectory and the separated signals
are then obtained based on the computed marginals. In the
LBP, messages are sent from the factors to the variables and
vice versa (see Appendix B). In the proposed model there are
three groups of factors: i) Ω (connected to d1(1), . . . , d1(J));
ii) Ψ (connected to d); and iii) Υ (connected to all variables).
The messages are functions of the corresponding variable
(either source or destination), and are calculated using the
general equations (54a) and (54b). However, these general
equations can be simplified in our case to achieve more
efficient formulas, as shown in the sequel.

A. Notation

In the following derivations we use a simplified set of
notations. The messages from Ψ to dt(j) are denoted by−→
ψ (dt(j)) and

←−
ψ (dt(j)) for the forward and backward mes-

sages, respectively. For the completeness of the notation we
use this notation also for t = 1 and t = T , where for t = 1
the forward message of the factor Ψ is replaced with the
corresponding Ω factor, and for t = T the backward message
is fixed to uniform, as there is no backward message to the
last variable. For the observation factor, we use υt,k(·) for
the outgoing messages from the observation factor to each of
the variables connected to it, where the destination variable
is deduced from the term in the brackets, i.e. υt,k(dt(j))
refers to messages to the DOA variables and υt,k(at,k) refers
to messages to the association variables. The messages from
dt(j) to the observations are denoted by δt,k,j(dt(j)). The
different types of messages are illustrated in Fig. 3.
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Fig. 3: The messages in the proposed LBP algorithm. The
arrows are pointing from the sending variable/factor to the
receiving variable/factor, and the notation of the associated
message is written above/below the arrow.

B. Messages from the DOA factors

In general the factors send messages to their neighbor vari-
ables (the outgoing messages), where these messages depend
on the incoming messages from variables to the factors (the
incoming messages). However, for Ψ and Ω, the factor is a
function of only a single or two variables and it has only
a single incoming message. Therefore, we do not explicitly
define the incoming messages for these factors. Instead, we
substitute the incoming message with its definition (54a).
As a result, each of the outgoing messages is expressed in
terms of the outgoing messages of its neighbor factors to the
corresponding variable.

The forward messages of Ψ for t > 1 are given by:

−→
ψ (dt(j)) =∑
dt−1(j)

Ψ(dt−1(j), dt(j))
−→
ψ (dt−1(j))υt−1(dt−1(j)) (20)

where
υt(dt(j)) =

∏
k

υt,k(dt(j)) (21)

is the message of all K observations to dt(j). For t = 1 the
message is given by:

−→
ψ (d1(j)) = Ωj(d1(j)). (22)

The backward message
←−
ψ (dt(j)) is symmetric, where for t =

T it is set to uniform for completeness.

C. Message from and to the observation factors

The incoming messages from the DOA variables dt(j) to the
observations Υ are given by the multiplication of the incoming
messages of each DOA variable (54a), namely:

δt,k,j(dt(j)) =
−→
ψ (dt(j))

←−
ψ (dt(j))

∏
k̃ 6=k

υt,k(dt(j)). (23)

The full derivation of the outgoing messages from the ob-
servation factors to their neighbor variables can be found in
Appendix C. In order to simplify the messages, we first define

the correlation between Tt,k(:) and the normalized incoming
message δt,k,j(:) as:

ρt,k(j) =
M∑
m=1

Tt,k(m)δ̃t,k,j(m) (24)

where δ̃t,k,j(m) =
δt,k,j(m)∑
m δt,k,j(m) is the normalized message.

The correlation measures the similarity between δt,k,j(:),
which is the current estimate of the jth speaker DOA, and
Tt,k(:), which is the (t, k)th bin DOA likelihood based on
the observation. The obtained ρt,k(j) is therefore a non-
normalized association of the (t, k)th bin to a speaker based
on the similarity between the observed DOA and the estimated
DOA of each of the speakers, namely, a higher value is given
to the speaker whose estimated DOA matches the observed
DOA, and vice versa. This process is illustrated in Fig. 4.

Using the definition of ρt,k(j), the message from the
observation factor to the association variable is given by:

υt,k(at,k) = ρt,k(at,k) (25)

and the message from the observation factor to the DOA
variables is given by:

υt,k(dt(j)) = Tt,k(dt(j)) +
∑
`6=j

ρt,k(`). (26)

The meaning of the message conveyed by Υ to the jth
speaker DOA is as follows. The message consists of two
terms: Tt,k(dt(j)) that depends on the DOA value dt(j), and∑
`6=j ρt,k(`), which is independent of dt(j). If one of the

other speakers is active with high probability at this TF bin,
then the value of the second term is high, and the message is
close to uniform with respect to dt(j), i.e. does not indicate
any preference to a certain DOA. Otherwise, the jth speaker is
probably active at this TF bin, and the message is dominated
by the first term Tt,k(dt(j)), which is the DOA likelihood
based on the (t, k)th bin observation.

In the next step, the messages from all frequencies are
integrated together for each speaker in υt(dt(j)) (21) to
determine its new DOA. In this integration, uniform messages
do not add any information. Therefore the integrated message
for the jth speaker, contains only the information from the
relevant frequencies where the jth speaker is active. The
calculation of the messages υt(dt(j)) is illustrated in Fig. 5.

Note that while the message to the variable at,k de-
pends on the incoming messages from all other variables
ρt,k(1), . . . , ρt,k(J), the message to the DOA variable dt(j)
of the jth speaker depends on the message from all other vari-
ables ρt,k(1), . . . , ρt,k(j − 1), ρt,k(j + 1), . . . , ρt,k(J) except
for the jth speaker message ρt,k(j), since by the definition
of the LBP algorithm, the message to a particular variable
depends on all incoming messages except for the message
from this variable itself.

Three additional notes on the differences between the gen-
eral formulation of the message (54b) in Appendix B and
the simplified message (26) are in place. 1) Instead of the
raw incoming messages δt,k,1(:), . . . , δt,k,J(:), the outgoing
messages use ρt,k(1), . . . , ρt,k(J) defined by the correlation
between the incoming messages and the observations (24);
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Fig. 4: Illustration of the calculation of ρt,k(j). The vectors represent the probabilities over the candidate DOAs, where darker
elements correspond to more probable candidates. The case of two speakers is illustrated by blue and orange vectors representing
the current DOA estimate of the each of the speakers. The observation-based DOA likelihood vectors (in gray) are correlated
with the estimated DOA of the speakers, resulting in ρt,k(j), which represents the association of the (t, k)th bin to either of
the speakers based on the observation.

2) The message from the association variable a does not
appear here since this variable has no connected factor except
the observation; and 3) The obtained messages involve only
Tt,k(:), and not the entire factor Υt,k, since this is all the
information that the factor contains (18).

D. The inference algorithm
The full inference algorithm is as follows. We first initialize

all messages to be uniform, then we iterate over all the
variables and update their incoming messages from their
associated factors using equations (20, 22, 23, 25, 26). The
iterations of the LBP algorithm are stopped when the following
stopping criterion is satisfied: the maximum change in the log
messages between subsequent iterations is smaller than ε or
when the number of iterations reaches Nmax, which is defined
as the maximum number of iterations.

The final stage is to compute the marginals, using the
following equations:

P (dt(j)|z) ∝
−→
ψ (dt(j))

←−
ψ (dt(j))υt(dt(j)) (27a)

P (at,k|z) ∝ υt,k(at,k) (27b)

where υt(dt(j)) is defined in (21) and the sign ∝ implies
that an additional normalization step is required. The inference
algorithm is summarized in Algorithm 2.

Algorithm 2 Loopy belief propagation (LBP) for simultaneous
tracking and separation
Initialize all messages to uniform
while Stopping criterion not satisfied do

for t=1:T do
update Ψ messages ∀j using (20 or 22)
compute δ̃t,k,j(dt(j)) ∀j, k using (23)

compute υt,k(at,k) and υt,k(dt(j)) ∀j, k using
(25,26)

end
end
compute the marginals using (27a,27b)

E. Tracking and separation

Applying the inference procedure, the marginals of all the
hidden variables are computed. The trajectory of each speaker
is obtained by selecting the most probable value for each dt(j):

d̂t(j) = argmax
m∈{1,...,M}

P (dt(j) = m|z). (28)

The association variables provide the separation mask, which
can be used in order to separate the signal to its different
sources. Following [17, Eq. (15)], the individual speech signal
can be estimated by spatial multichannel filtering followed by
single channel post-filtering (see e.g. [32]):

Ŝt,k(j) = P (at,k = j|z)ŝw,t,k(d̂t(j)) (29)

where P (at,k = j|z) is responsible for enhancing the jth
speaker and attenuating the other speakers and ŝw,t,k(d̂t(j))
defined in (14) is the output of the MVDR-BF directed towards
the estimated DOA of the jth speaker, and is responsible for
reducing the ambient noise.

F. MRF model for the associations

In this section, we replace the uniform model of the asso-
ciation variables (8) by a more complex statistical model as
suggested in [11], and describe the corresponding modifica-
tions to the factor graph and the inference algorithm. It was
shown in [11] that in order to smooth the associations, and
to reduce musical noise, it is more reasonable to model the
dependency between the association variables in adjacent time
and frequency indexes using the Markov random field (MRF)
model. For this model, the joint probability of the association
variables is given by:

P (a) =
1

Ca

∏
t,k

∏
t̃,k̃∈G{t,k}

Φ(at,k, at̃,k̃) (30)

where G{t, k} = {(t− 1, k), (t+ 1, k), (t, k − 1), (t, k + 1)}
is the group of the indexes couples, Ca is a normalization
constant, and Φ(j1, j2) is usually defined as:

Φ(j1, j2) = exp(βδK(j1, j2)) (31)
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where δK(·, ·) is the discrete Kronecker delta function, and
β > 0 is a hyper-parameter of the algorithm. This model
encourages nearby TF bins to be associated to the same source,
and makes the association map smoother. The parameter β
controls this smoothness, where the map becomes smoother
as β increases.

Incorporating this model, the factor graph is given by:

P (d,a|z) =
1

C

∏
t,k

Υt,k(at,k, dt(1) . . . dt(J))

J∏
j=1

Ωj(d1(j))
T∏
t=2

Ψ(dt−1(j), dt(j))∏
t,k

∏
t̃,k̃∈G{t,k}

Φ(at,k, at̃,k̃). (32)

In the LBP we add
−→
φ t(at,k) and

←−
φ t(at,k), for the backward

and forward messages of the MRF factors Φ in the time
dimension and

−→
φ f (at,k) and

←−
φ f (at,k), for the messages in

the frequency dimension. The outgoing messages of the factor
Φ are given by:
−→
φ t(at,k) =

∑
at−1,k

Φ(at−1,k, at,k)

−→
φ t(at−1,k)

−→
φ f (at−1,k)

←−
φ f (at−1,k)υt,k(at−1,k). (33)

The other three messages are defined similarly, and the edge
messages are set to uniform. We also define the incoming
message from the association variables to the observation:

qt,k(at,k) =
−→
φ t(at,k)

←−
φ t(at,k)

−→
φ f (at,k)

←−
φ f (at,k). (34)

This modifies the incoming message (26) from the observation
factor to the DOA variable dt(j) as follows:

υt,k(dt(j)) = Tt,k(dt(j)) +

∑
`6=j qt,k(`)ρt,k(`)

qt,k(j)
(35)

Compared to (26), the second constant additive term now
measures the activity of the other speakers in the current
TF bin based on both ρt,k(j) that measures the association
based on the current speaker DOA estimation, and qt,k(j)
that measures the association based on the information from
neighbor TF bins. The final inference of the DOA variables
remains unchanged (27a), and the inference of the associations
variable (27b) is modified to include also the MRF messages:

P (at,k|z) ∝
−→
φ t(at,k)

←−
φ t(at,k)

−→
φ f (at,k)

←−
φ f (at,k)υt,k(at,t).

(36)

G. Complexity and computation time

The complexity of the proposed algorithm depends on the
number of microphones (N ), number of DOA candidates
(M ), number of frequencies (K), number of time-frames (T ),
number of speakers (J) and number of the LBP iterations
(denoted as Niter). The algorithm is implemented in two stages.
In the first, we calculate the likelihood ratio test (LRT) function
Tt,k(m) as described in Algorithm 1. Then, we run LBP
inference procedure from Algorithm 2.

The calculation of Tt,k(m) consist of:
1) Calculate the MVDR-BF: K times N × N matrix

inversion and K ·M multiplication of N × N matrix
with N×1 vector, multiply the results with N×1 vector,
and K scalar divisions - O(K ·N3 +K ·M ·N2 +K).

2) Apply the MVDR-BF on the signal: T · K · M dot
products of two N × 1 vectors - O(T ·K ·M ·N).

3) Calculate the residual noise: Already calculated for the
MVDR-BF.

4) Calculate the LRT: O(T ·K ·M) operations.
In total the order of magnitude of the required operations:

O(K ·N3 +K ·M ·N2 + T ·K ·M ·N). (37)
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For each iteration in the LBP and for each time-step we
have the following computations:

1) Compute the messages Ψ: J ·(K+1) times element-wise
multiplication of M×1 vectors. Multiply the results with
M ×M matrix - O(J ·K ·M + J ·M2).

2) Compute δ̃t,k,j(·): J · (K + 1) times element-wise
multiplication of M × 1 vectors - O(J ·K ·M).

3) Compute ρt,k(·): K ·J dot product of two M×1 vectors
- O(K · J ·M)

4) Compute υt,k(·) for associations: Simple assignment. No
computations required.

5) Compute υt,k(·) for DOAs: (J − 1)×K operations for
the sum computation and then K · J additions of this
sum to an M × 1 vector - O(K · J ·M).

In total the order of magnitude of the required operations:

O(Niter · T · (J ·K ·M + J ·M2)). (38)

The final inference algorithm consists of M · J · T for (28)
and K · J · T for (29), which is included in the complexity
of (38). The actual computation time for typical parameters,
is reported in the experimental section V-D.

V. EXPERIMENTAL STUDY

The proposed algorithm was evaluated using both simulated
time-varying scenes and real recordings carried out at the Bar-
Ilan University (BIU) acoustic lab.

A. Parameters, evaluation methods and baseline algorithm

In our experiments we used a linear array, therefore the
TDOA in (2) can be calculated in advance from the predefined
grid of DOA candidates and the array constellation. Assuming
that the sources are located far from the array (far-field condi-
tion), the TDOA in (2) is given by τm,n = 1

cs
· (rn cos (ϑm)),

where ϑm is the mth candidate DOA, cs is the sound velocity
and rn is the distance between the nth microphone and the
first microphone. Note that we use the far-field assumption
to analytically specify the RTF of the candidates, however, in
the experiments we show that the proposed algorithm is not
restricted to the reverberation-free far-field case, but can rather
be applied in reverberant environments.

The parameters used in the implementation of our algorithm
are as follows. The signals are sampled at 16 kHz. The STFT
frame-length is set to 64 ms with 75% overlap. The grid
of possible azimuth angles ranges between −900 and 900,
with resolution of 2◦. The noise PSD matrix was estimated
in advance using a clean noise recording.

In our experiments, we observed that the optimal HMM
parameter α highly depends on the signal to noise ratio (SNR)
of the experiment. We therefore select the value of α in each
experiment to be in the same order of magnitude of Tt,k,
namely:

α =

∑
t,k (maxm log Tt,k(m)−minm log Tt,k(m))

T ·K
. (39)

The parameter of the MRF model was set to β = 0.5, which
was selected using a grid search. The LBP algorithm was
stopped either after Nmax iterations, or when the maximum

change in the log messages between subsequent iterations was
smaller than ε = 10−3, where Nmax = 20 or 50, for the
simulation and lab experiments, respectively.

We have two options of how to define the initial DOA
message Ωj(m). The first option is to assume that the initial
DOA is known, so in Ωj(m) the known initial DOA is
assigned with probability one and the other DOAs are assigned
with zero probabilities. The second option is to assume that
the initial DOA is unknown, to randomly generate the values
of Ωj(m), and to normalize them so they sum to one. In this
option, we avoid using a uniform message since it may cause
the estimates to collapse to one track.

In order to assess the performance of the algorithm, we
evaluated both the tracking accuracy and the separation results.
The tracking estimation error was first evaluated for each
speaker using the root mean square error (RMSE) measure,

namely ed(j) =
√

1
T

∑T
t=1(d̂t(j)− dt(j))2. The final score

is obtained by averaging this value for all speakers. For the
separation performance, we used the source to distortion ratio
(SDR), source to interference ratio (SIR) and source to artifacts
ratio (SAR) scores, evaluated by the BSS-Eval Toolbox [33].

As a baseline method we used the variational-based tracking
algorithm proposed in [21]. In this algorithm the covariance
matrix of the RTF is a priori defined, and we set it to Σa =
10I. The transition matrix was defined as in (7) with α = 0.
This algorithm requires the oracle initial DOA of the speakers
for the RTF initialization. For fair comparison, we initialized
both algorithms with the true DOA, and separately examined
the performance of the proposed algorithm also with random
initialization. For the same reason, we implemented the same
separation procedure using (29) for both methods.

In addition, we report the separation results obtained using
the oracle DOA in the construction of the MVDR-BF as well
as the oracle separation mask, which was computed using the
known separated speech signals. It is the best performance
that may be achieved with the separation procedure defined
in (29), and can therefore serve as an upper bound for the
performance of the proposed algorithm.

B. Simulation experiment

For the simulated data, clean anechoic speech signals were
drawn from the TIMIT database [34]. The speakers were
randomly selected from a subset of 26 speakers. Speech
utterances of the same speaker were concatenated to obtain a
5 s long speech signal. Note that the proposed method cannot
perform well when long silence periods exist, since it stops
tracking the speaker whenever he is inactive. However, the
proposed method can tolerate small natural silence periods.
Therefore, long silence segments were removed, so that all
the speakers are almost simultaneously active during the entire
signal.

To simulate moving sources, we used the signal genera-
tor.1 The room dimensions were set to 6 × 4 × 3 m with
reverberation time T60 ∼ 200 ms. The signals were captured
by an eight-microphone linear array with inter-distances of

1www.audiolabs-erlangen.de/fau/professor/habets/software/
signal-generator
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Fig. 6: An illustration of the simulation setup.
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Fig. 7: Comparison of TF associations of the first speaker
in the simulation experiment. The ground truth (left) and the
estimated associations (right) are depicted.

[3, 3, 3, 8, 3, 3, 3] cm. The array center was positioned in the
center of the room, in coordinates (3, 2, 1) m. The measured
signals were contaminated by an additive babble diffuse noise
with various SNR levels. The diffuse noise sound-field was
generated using the noise generator software.2

Three moving speakers were simulated, with initial DOAs
set to 36◦, 90◦ and 144◦, respectively. The speakers moved
from their initial positions along an arc of a circle with a radius
of 1 m from the array center. Their time-varying DOA has a
sinusoidal form, with time period randomly selected between
1−2.5s, and amplitude also randomly selected between 5◦−8◦.
The simulated setup is depicted in Fig. 6.

An example of the estimated TF associations as compared
with the true associations of one of the speakers is given in
Fig. 7. For the clarity of the demonstration we focus on a short
segment of 2 s. We observe a good match between the true
and the estimated associations, indicating that the proposed
algorithm successfully recovers the TF activity of the speakers.

An example of the DOA estimation and the separation
results obtained by the proposed algorithm is illustrated in
Fig. 8. It can be seen that the proposed algorithm successfully
recovers the trajectory of all speakers. True and estimated
spectrograms of all the speakers are also depicted, demon-
strating good separation performance.

The tracking and separation results were evaluated on 200
Monte-Carlo (MC) trials with different speakers and different

2www.audiolabs-erlangen.de/fau/professor/habets/software/
noise-generators

trajectories for 3 SNR levels: 5 dB, 10 dB and 25 dB. The
statistics of the obtained scores are reported in boxplots in the
top row of Fig. 9 with outliers omitted for clarity. It can be
seen that for the proposed algorithm the results of the uniform
and the MRF models are comparable, and that they outperform
the reference algorithm [21] on both tracking and separation
tasks.

In addition, we examined the performance of the proposed
method with respect to different room environments. Here,
we fixed the SNR to 25 dB, and examined three reverber-
ation times: 200 ms, 400 ms and 600 ms, and two source
distances with respect to the center of the array: 1 m and
1.5 m. The tracking and separation results were averaged
over 100 MC trials with different speakers and different
trajectories. The results of this experiment are reported in
Fig. 10. We observe a decrease in the separation scores and
an increase in the DOA RMSE for higher reverberation levels
or larger source-microphone distance. The difference in the
performance between 1 m and 1.5 m distance becomes more
significant for higher reverberation levels, apparently due to
the fact that in high reverberation the direct-to-reverberant
power ratio becomes much lower as the source-microphone
distance increases.

C. Laboratory experiment

In addition to the simulated experiment, we evaluated the
proposed algorithm using real recordings carried out at the
BIU acoustic lab. We first defined two limited arcs on a circle
with radius of ∼ 2 m: the first arc between 20◦-75◦ and
the other between 120◦-165◦. Seven speakers participated in
our experiment, five males and two females. Each speaker
moved back and forth while speaking with a natural random
trajectory on each of the defined arcs. The length of each
recording was approximately 30s. The signals were captured
by an eight-microphone linear array with inter-distances of
[3, 3, 3, 6, 3, 3, 3] cm. The array was located in the center of
the designated circle, in a distance of approximately 1.5 meters
from one of the walls. A photograph of the room configura-
tion is given in Fig. 11. The reverberation time was set to
T60 ∼ 450ms by adjusting the controllable room panels. A
diffuse babble noise was also separately recorded by the same
array using 4 loudspeakers facing the room corners. Finally,
after discarding few utterances due to technical problems in the
recordings, we generated 29 combinations of different pairs of
speakers with noise added with different SNR levels.

In order to evaluate the results we need both the clean
speech for the separation evaluation, and the ground-truth
trajectory for the tracking evaluation. For the separation evalu-
ation we used the separately recorded speech signals in the first
microphone as a reference. For the ground-truth DOA of the
speakers we used Marvelmind indoor navigation system.3 This
system consists of a single mobile device and four stationary
devices. The coordinates of the mobile device are reported
w.r.t. the stationary devices with reported measurement error
of ±2 cm. In practice, we observed that occasionally this
device introduces small glitches, apparently due to noise or

3https://marvelmind.com/product/starter-set-hw-v4-9/
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Fig. 8: An example of the simulation results. True DOA in dashed line and estimated DOA in solid line (a), first microphone
mixed signal spectrogram (b), clean and estimated spectrogram of the first speaker (c+d), the second speaker (e+f) and the
third speaker (g+h).
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Fig. 9: Simulation and lab experiment: separation and tracking performance measures for various SNRs for simulation (top)
and lab experiments (bottom). The results are reported for the reference variational method [21] and for the two versions of
the proposed method, with the simple uniform prior of the associations (Prop.) and with the more complex MRF-model as
described in Section IV-F (Prop.-MRF). In addition, we report the separation results obtained using the oracle DOA in the
construction of the MVDR-BF as well as the oracle separation mask, which was computed using the known separated speech
signals.

measurement instability. In the beginning of our experiment,
we measured the microphone locations, and then each par-
ticipant held the mobile device during his recording session.
The ground-truth DOA is computed as the angle between the
microphone array and the line connecting the center of the
array and the speaker location.

An example of the DOA estimation obtained by the pro-
posed method with random DOA initialization is shown in
Fig. 12 (a). The estimated trajectory is close to the ground
truth trajectory as measured by the indoor navigation system.
Note that although the estimated DOAs of one of the speakers

deviates from the true trajectory around t = 25s, the algorithm
successfully traces back the true trajectory after few seconds.
Figure 12 (b) shows an example of the DOA estimation
obtained with random DOA initialization for a case with three
speakers that two of them have close trajectories. It can be
seen that the proposed algorithm successfully tracks the three
speakers for almost the entire signal duration. The estimated
trajectories deviate from the ground truth at the end of the
signal when two speakers get closer to each other.

The statistics of the 29 different 2-speakers scenarios are
reported in boxplots in the bottom row of Fig. 9. While
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Fig. 10: Separation and tracking performance measures for
three reverberation times: 200 ms, 400 ms and 600 ms, and two
source distances with respect to the center of the array: 1 m
and 1.5 m, averaged over 100 MC trials, with SNR= 25 dB.

Fig. 11: A photo of the experimental setup at the BIU lab.

the proposed algorithm outperforms the reference algorithm
in the separation task for all SNR values, in the tracking
task it obtains higher errors. Comparing the uniform and the
MRF models in the proposed algorithm, we observe a slight
advantage to the latter in terms of the SIR measure as reflected
from the median and the 75 percentile. This advantage is more
pronounced in the 5 dB SNR case. Note that the DOA-RMSE
might be biased due to measurement errors in the ground-truth
DOA, as mentioned above. Note also that the ground-truth
separated speech signals, taken as the measurements of the
first microphone, cannot serve as a perfect reference as well,
which may explain the relatively low separation scores. For
subjective evaluation, the reader is referred to our website.4

We also examined the sensitivity of the proposed algorithm
to the DOA initialization. A comparison of the DOA RMSE
obtained by the proposed algorithm with either ground truth
or random initialization is given in Fig. 13. It is observed that
the error is increased by approximately 1 degree for most of
the readings. This small increase in the error indicates that

4http://www.eng.biu.ac.il/gannot/speech-enhancement/
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Fig. 12: Examples of the tracking results in the lab experiment:
two distant speakers in a full 30 s recording (left) and three
speakers, two of them close to each other, in a segment of
5 s recording (right). Dashed and solid lines correspond to
ground truth (obtained by the indoor navigation system) and
estimated trajectories, respectively. The initial DOAs were set
randomly. In the three speakers case the estimated trajectories
deviate from the ground truth at the end of the signal when
two speakers get closer to each other.

the proposed algorithm can track the speakers without prior
knowledge on their initial position.
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Fig. 13: Comparing DOA estimation performance with random
and oracle initialization.

We also examined the dependency of separation quality
measures on the gender of the speakers. We compared mix-
tures of same gender speakers, i.e. male and female, with
mixtures of male and female speakers. Analyzing the results,
did not show any significant differences. This conclusion might
need further investigations, as the number of examples is
small.

D. Computation time

In this section, we report the average computation time of
each iteration and the performance of the proposed algorithm
and the baseline algorithm as a function of the number of
iterations for the simulation experiment. The computation
time was calculated using 2.3 GHz Intel Core i9 single
CPU, with 16 GB 2400 MHz DDR4 memory. The algorithm
was implemented using Matlab c©, without using the parallel
computing utility. In our experiments, the recording length
was 30 seconds. The parameters were: N = 8, K = 513,
J = 3, M = 91, T = 309 and Nmax = 50. The average
computation time was roughly 3.8 s per iteration per second of
input signal, compared to an average of 6.6 s for the reference
algorithm. Note also that the total computation time linearly
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depends on the number of iterations. In Fig. 14, we report the
tracking and separation performance measures as a function
of the number of iterations. It is demonstrated that in terms of
the separation performance, the proposed algorithm converges
within 5 iterations, compared to 15 iterations required by the
reference algorithm, and also obtains better SIR scores after
convergence. For the DOA estimation, the proposed algorithm
converges after 35 iterations to a lower RMSE compared to
that achieved by the reference algorithm, which converges
after 20 iterations. Note also that the DOA RMSE obtained by
the proposed algorithm decreases to 3◦ − 4◦, already within
5 iterations. Therefore, when the available computation time
is limited, we can run only 5 iterations of the proposed
algorithm to obtain maximal separation performance and low
DOA RMSE of less than 5◦.
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Fig. 14: Tracking and Separation performance of a particular
scenario as function of the number of iterations.

VI. CONCLUSIONS

In this paper, we introduced an algorithm for simultaneous
tracking and separation of multiple speakers using multiple
microphone observations, utilizing the factor graph model.
The difficulty of this problem rises from the cross dependency
between the tasks, since the estimation of the DOA of each
speaker relies on the set of TF bins associated with each
speaker, and the associations of the TF bins to the speakers
can be inferred when the DOA of each speaker is known.
Many state-of-the-art separation and tracking algorithms as-
sume some prior knowledge on either of the tasks, or comprise
two successive algorithms for solving each task separately. In
this paper, we simultaneously solved both tasks by defining a
factor graph model and deriving a novel inference algorithm,

based on the LBP scheme. Although in this paper we focused
on the practical problem of speaker tracking and separation,
the proposed inference algorithm solves a general graphical
model, which consists of parallel Markov chains and multiple
observations, where the associations of the observations to
the Markov chains are unknown. This type of model can be
applied in various other problems.

The proposed algorithm was evaluated using both simulated
data and real recordings measured in our lab in natural
conditions, demonstrating the capabilities of the proposed
algorithm in various conditions, including different SNR and
reverberation levels, source to microphone distances and DOA
velocities. The proposed algorithm outperformed a reference
algorithm, based on variational inference, in almost all cases
and for all evaluation metrics. Moreover, we have shown that
these results can be achieved with lower computation time and
without relying on any prior knowledge on the initial speakers’
DOAs.

We conclude that the proposed algorithm presents a new
methodology for solving the challenging task of simultaneous
separation and tracking, which achieves efficient high-quality
performance, and can also be adopted in other domains. Future
research should be focused on extending the algorithm to
highly reverberant environments, unknown noise characteris-
tics, and scenarios with unknown microphone locations or a
moving array.

APPENDIX

A. Observation Likelihood

In this section, we simplify the conditional probability of the
observations given the hidden variables (11). We first estimate
the speech PSD using the maximum likelihood estimator
(MLE), and then we factorize the probability and substitute
the estimated PSD to obtain the final expression (13). Here
we denote bt,k ≡ dt(at,k) ∈ [1 . . .M ] for simplicity.

1) Speech PSD estimation: We estimate the unknown pa-
rameters φs = vect,k,m{φs,t,k(m)} using ML. To this end,
we write the marginal distribution of the observations, by
marginalizing out the hidden variables:

P (z;φs) =
∑
b

∏
t,k

P (zt,k|bt,k)P (b) (40)

where b = vect,k{bt,k} and P (b) is the prior probability of
b which depends on the priors P (a) and P (d).

The MLE for φs,t̃,k̃(m) is obtained by maximizing (40)
w.r.t. φs,t̃,k̃(m). We first rearrange the marginal distribution
by excluding the (t̃, k̃)th observation from the product and
summation:

P (z;φs) =
∑
bt̃,k̃

[
P (zt̃,k̃|bt̃,k̃)

∑
b\
bt̃,k̃

∏
t,k\
(t̃,k̃)

P (zt,k|bt,k)P (b)

]
.

(41)
Substituting (11) into (41), and explicitly writing the first
summation over all candidates, we have:

P (z;φs) =

M∑
w=1

N (zt̃,k̃,0,Φz,t̃,k̃(w)) · C (42)
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where C ≡
∑

b\bt̃,k̃

∏
t,k\(t̃,k̃) P (zt,k|bt,k)P (b) denotes

a positive term, independent of the parameter of interest
φs,t̃,k̃(m). Then, taking the derivative w.r.t φs,t̃,k̃(m) we get:

∂P (z;φs)

∂φs,t̃,k̃(m)
=
∂N (zt,k,0,Φz,t,k(m))

∂φs,t̃,k̃(m)
· C. (43)

By setting this derivative to zero we get the MLE for φs,t,k(m)
[35]:

φ̂s,t,k(m) = |ŝw,t,k(m)|2 − φv,k(m). (44)

where ŝw,t,k(m) is the MVDR-BF output defined in (14), and
φv,k(m) is the PSD of the residual noise at the output of the
MVDR-BF, and is given by:

φv,k(m) ≡ 1

gHk (m)Φ−1v,kgk(m)
. (45)

2) Likelihood factorization: We factorize the likelihood of
the observation to obtain a simpler expression. We first define
the a posteriori SNR of the signal impinging the array from
the mth candidate position as:

ηt,k(m) =
|ŝw,t,k(m)|2

φv,k(m)
(46)

and the a priori SNR as:

ζt,k(m;φs,t,k(m)) =
φs,t,k(m)

φv,k(m)
. (47)

According to (11), the conditional distribution of a single
observation given the hidden data is given by:

N (zt,k,0,Φz,t,k(m)) =

1

πN det(Φz,t,k(m))
exp(−zH (Φz,t,k(m))

−1
z). (48)

Using the definition of Φz,t,k(m) (12) and Sylvester’s deter-
minant theorem, the determinant can be written as:

det(Φz,t,k(m))

= det(Φv,k) · det(1 + φs,t,k(m)gHk (m)Φ−1v,kgk(m))

= det(Φv,k) · (1 + ζt,k(m;φs,t,k(m))).

In addition, using the Woodbury identity, the inversion of
Φz,t,k(m) can be written as:

Φz,t,k(m)−1 = Φ−1v,k−
Φ−1v,kgk(m)gHk (m)Φ−1v,k

φs,t,k(m)−1 + gHk (m)Φ−1v,kgk(m)
.

By substituting these relations into the p.d.f., we can factorize
it as following:

N (zt,k,0,Φz,t,k(bt,k)) = Tt,k(bt,k;φs,t,k(bt,k)) ·Gt,k (49)

where Gt,k aggregates all terms which do not depend on m:

Gt,k =
1

πN det(Φv,k)
exp

(
−zHΦ−1v,kz

)
≡ N (zt,k,0,Φv,k)

(50)

and Tt,k(m;φs,t,k(m)) aggregates the other terms:

Tt,k(m;φs,t,k(bt,k)) =
1

1 + ζt,k(m;φs,t,k(m))

· exp

(
zHΦ−1v,kgk(m)gHk (m)Φ−1v,kz

φs,t,k(m)−1 + gHk (m)Φ−1v,kgk(m)

)
.

Using (14),(45), (46) and (47) we can write Tt,k(m;φs,t,k(m))
in a simple way:

Tt,k(m;φs,t,k(m)) =

1

1 + ζt,k(m;φs,t,k(m))
exp

(
ζt,k(m;φs,t,k(m))ηt,k(m)

1 + ζt,k(m;φs,t,k(m))

)
.

(51)

Note that Tt,k(m;φs,t,k(m)) is the LRT, as presented in [36,
Eq. (14)]. The LRT tests whether zt,k is either associated with
a speaker located in the mth candidate DOA or with noise
only. Using the estimator of φs,t,k(m) we can further simplify
Tt,k(m;φs,t,k(m)). Dividing (44) by φv,k(m) and using the
definitions in (46) and (47), we obtain: ζt,k(m; φ̂s,t,k(m)) =
ηt,k(m)−1. Finally, by substituting this relation into (51), we
obtain:

Tt,k(m; φ̂s,t,k(m)) =
1

ηt,k(m)
exp (ηt,k(m)− 1) . (52)

B. Factor Graphs

In this section, we briefly review the definition of factor
graphs and their inference methods based on [25], [37].

1) Definition: Let {x1, x2, ..., xQ} be a set of Q discrete-
valued random variables. We consider the joint probability
mass function P (x) = P (x1, x2, ..., xQ), which is assumed
to be factored into a product of functions:

P (x) =
1

C

∏
u∈U

fu(xu) (53)

where u is an index that labels the functions from a
set U , where each function fu(xu) has arguments xu ⊂
{x1, x2, ..., xQ}. We assume that the functions fu(xu) are
non-negative and finite, so that P (x) is a well-defined proba-
bility distribution. Here, C is a normalization constant.

A factor graph is a bipartite graph that expresses the
factorization structure in (53). A factor graph has a variable
node (which we draw as a circle) for each variable xi, and a
factor node (which we draw as a square) for each function fu,
with an edge connecting variable node xi to factor node u if
and only if xi ∈ xu.

2) Inference: For a given graph with given factors, one
may be interested in two different goals. The first is to
find the marginals of each variable, i.e. P (xi) ∀i, and the
other is to find the most probable state, i.e. argmaxx P (x).
An exact inference for factor graphs is obtained using the
belief propagation (BP) algorithm. When implemented for
computing the marginal p.d.f., the BP algorithm is also known
as the sum-product algorithm, and when implemented for
finding the most probable state, it is called the max-product
algorithm. In the sum-product algorithm messages are sent
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from the factors to the variables and vice-verse, using the
following equations:

ni→u(xi) =
∏

c∈G{xi}/u

mc→i(xi) (54a)

mu→i(xi) =
∑
xu/xi

fu(xu)
∏

j∈G{u}/xi

nj→u(xj) (54b)

where ni→u(xi) is the message from the ith variable to the
uth factor, mu→i(xi) is the opposite direction message, G{xi}
is the set of neighbouring factors of xi and G{u} is the set of
neighbouring variables of u. We can then obtain the marginal
probability of a particular variable xi using:

P (xi) ∝
∏

u∈G{xi}

mu→i(xi) (55)

where the sign ∝ means that one should normalize this
expression to obtain the final distribution. In the max-product
algorithm summations are replaced by the max operator. The
max-product algorithm is out of the scope of this article.

The sum-product algorithm is proved to converge to the true
marginals in tree-structured graphs [38]. However, when the
graph contains loops this algorithm is not proved to coverage
to the true marginal. The loopy belief propagation (LBP) [31]
is an extension of the BP algorithm for loopy graphs, in
which messages are updated repeatedly, in an arbitrary order,
until a termination condition is met. In practice, it has been
observed that this algorithm often provides good estimates of
the marginals.

C. Derivation of the Messages from the Observation Factors

In this section, we derive the messages from the observation
factors to its neighboring variables. For general derivation,
we assume here that each variable sends a message to the
observations. We denote by δt,k,j(:) and qt,k(:) the messages
from the DOA and the association variables, respectively.

1) The message from the observations to the association
variables: Using (54b) the messages to at,k are given by:

υt,k(at,k) =∑
dt(1)

∑
dt(2)

. . .
∑
dt(J)

Υt,k(at,k, dt(1) . . . dt(J))
J∏
i=1

δt,k,i(dt(i)).

Substituting the definition of Υt,k (18) we obtain:

υt,k(at,k) =
∑
dt(1)

∑
dt(2)

. . .
∑
dt(J)

Tt,k(dt(at,k))
J∏
i=1

δt,k,i(dt(i)).

(56)
Note that the expression Tt,k(dt(at,k)) is constant for all
summations except for the sum over dt(at,k), hence we
rearragne the summations as follows:

υt,k(at,k) =
∑

dt(at,k)

Tt,k(dt(at,k))
∑

dt(:)/dt(at,k)

J∏
i=1

δt,k,i(dt(i)).

Since each message δt,k,i(dt(i)) is influenced by only one
summation, we can switch the sum and product operations:∑
dt(at,k)

Tt,k(dt(at,k))·δt,k,at,k(dt(at,k))
∏
i6=at,k

∑
dt(i)

δt,k,i(dt(i)).

In order to further simplify this expression, we multiply and
divide it by the term

∑
dt(at,k)

δt,k,at,k(dt(at,k)) to obtain∑
dt(at,k)

Tt,k(dt(at,k)) · δt,k,at,k(dt(at,k))∑
dt(at,k)

δt,k,at,k(dt(at,k))

∏
i

∑
dt(i)

δt,k,i(dt(i))︸ ︷︷ ︸
Const

.

(57)
Since the messages are not normalized anyway, we can ignore
the constant term, and we finally obtain:

υt,k(at,k) ∝
∑
m Tt,k(m) · δt,k,at,k(m)∑

m δt,k,at,k(m)
≡ ρt,k(at,k) (58)

2) The messages from the observations to the DOA
variables: The incoming messages are coming from
dt(1), . . . , dt(j − 1), dt(j + 1), . . . , dt(J) and at,k, therefore:

υt,k(dt(j)) =∑
at,k

∑
dt(:)/dt(j)

Tt,k(dt(at,k))qt,k(at,k)
∏
i6=j

δt,k,i(dt(i))

where qt,k(at,k) is uniform for the uniform distribution
model (8) or defined by (34) for the MRF model (30). We split
the first summation over all possible values of at,k ∈ [1 . . . J ]
to a sum over j and summations over all other values:

=
∑

dt(:)/dt(j)

Tt,k(dt(j))qt,k(j)
∏
i6=j

δt,k,i(dt(i))︸ ︷︷ ︸
(*)

+
∑
at,k 6=j

qt,k(at,k)
∑

dt(:)/dt(j)

Tt,k(dt(at,k))
∏
i6=j

δt,k,i(dt(i))︸ ︷︷ ︸
(**)

.

This expression consists of two terms. In (∗) the term
Tt,k(dt(j))qt,k(j) depends on dt(j), hence we take it out of
the summation and switch the order of the sum and product
operations to obtain:

(∗) = Tt,k(dt(j))qt,k(j)
∏
i6=j

∑
dt(i)

δt,k,i(dt(i))

The term (∗∗) is same as (56) and similarly to (57) it can
simplified to:

(∗∗) = ρt,k(at,k)
∏
i6=j

∑
dt(i)

δt,k,i(dt(i)).

The overall message is now given by:

= Tt,k(dt(j))qt,k(j)
∏
i6=j

∑
dt(i)

δt,k,i(dt(i))︸ ︷︷ ︸
const

+
∑
at,k 6=j

ρt,k(at,k)qt,k(at,k)
∏
i6=j

∑
dt(i)

δt,k,i(dt(i))︸ ︷︷ ︸
const

.
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Dividing the message by the constant
qt,k(j)

∏
i6=j
∑
dt(i)

δt,k,i(dt(i)), we finally obtain:

mt,k(dt(j)) ∝ Tt,k(dt(j)) +

∑
at,k 6=j qt,k(at,k)ρt,k(at,k)

qt,k(j)
.

(59)
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