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Abstract—This paper develops a semi-supervised algorithm to
address the challenging multi-source localization problem in a
noisy and reverberant environment, using a spherical harmonics
domain source feature of the relative harmonic coefficients. We
present a comprehensive research of this source feature, including
(i) an illustration confirming its sole dependence on the source
position, (ii) a feature estimator in the presence of noise, (iii)
a feature selector exploiting its inherent directivity over space.
Source features at varied spherical harmonic modes, representing
unique characterization of the soundfield, are fused by the
Multi-Mode Gaussian Process modeling. Based on the unify-
ing model, we then formulate the mapping function revealing
the underlying relationship between the source feature(s) and
position(s) using a Bayesian inference approach. Another issue
of the overlapped components is addressed by a pre-processing
technique performing overlapped frame detection, which in turn
reduces this challenging problem to a single source localization. It
is highlighted that this data-driven method has a strong potential
to be implemented in practice because only a limited number of
labeled measurements is required. We evaluate this proposed
algorithm using simulated recordings between multiple speakers
in diverse environments, and extensive results confirm improved
performance in comparison with the state-of-art methods. Ad-
ditional assessments using real-life recordings further prove the
effectiveness of the method, even at unfavorable circumstances
with severe source overlapping.

Index Terms—Semi-supervised multiple source localization,
relative harmonic coefficients, source feature estimator, Gaussian
Process regression, Multi-Mode Gaussian Process.

I. INTRODUCTION

KNOWLEDGE of the positions of sound sources within
a given area is a fundamental requirement by many

spatial acoustic techniques and applications, including tele-
conferencing systems, source dereverberation [1], speech sep-
aration [2], automatic speech recognition [3] and automated
camera steering [4]. As a consequence, the topic of sound
source localization and tracking [5] has attracted a significant
attention in the research community as well as in the industry.
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A. Literature Review

Most early localization methods, such as the generalized
cross-correlation phase transform (GCC-PHAT) [6], require
the time difference of arrival (TDOA) between microphone
pairs [7]. Another type of solutions to source localization is
the steered response power (SRP) [8] and SRP-phase transform
(SRP-PHAT) [9] based algorithms, which explore all possible
directions over the two-dimensional space to search the areas
with higher response power. Aforementioned methods provide
accurate direction of arrival (DOA) estimates in scenes where
only a single sound source is active. The task becomes more
challenging when multiple sound sources are present in the
environment [10]. Subspace methods, utilizing the spatial
covariance/correlation matrix of the recordings, are more
suitable under such circumstances. Typical subspace methods
comprise the adaptive eigenvalue decomposition [11], multiple
signal classification (MUSIC) [12], [13] and estimation of
signal parameters via rotational invariance (ESPRIT) [14],
[15]. However, their localization accuracy degrades severely in
a complex acoustic environment where the original recordings
are contaminated by the multi-path reverberation resulting
from strong reflections from objects in the enclosure as well
as the noise with low signal-to-noise ratios.

In recent years, data-driven source localization algorithms
have been widely investigated to address the degraded accu-
racy in the complex environments. In [16], a single-source
DOA estimation was realized using a multi-layer neural net-
work, which takes the generalized cross-correlation as the
inputs. A deep neural network (DNN) based phase difference
enhancement for multi-source DOA estimation was presented
in [17]. Another approach in [10] used a convolutional recur-
rent neural network (CRNN) to estimate the DOAs of multiple
sound sources using a first-order Ambisonics source feature.
Chakrabarty et al. used the phase component of the short-time
Fourier transform (STFT) coefficients of the received micro-
phone signals as the input feature to a convolutional neural
network (CNN) for supervised multi-speaker DOA estimations
[18]. More recently, Fahim et al. also achieved multi-source
DOA using a CNN to learn the modal coherence patterns of an
incident soundfield through the measured spherical harmonic
coefficients [19]. Aforementioned approaches use different
types of source features, which are vital to the algorithm’s
accuracy as they contain relevant characteristics of the sound
source to be localized. Intuitively, a source feature suitable
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for source localization shall better convey/represent the source
position, and be less dependent on the time-varying source
signal.

In recent decade, the relative transfer function (RTF) [20]–
[22] has been proved to be another promising source feature
for source localization as it serves as an acoustic finger-
print related to the source’s location. Early use of RTF for
source localization in [7] was to extract the TDOA of source
signal in the first stage, which was then used for single
source localization in the second stage. An investigation in
[23] reveals that the RTF is intrinsically embedded in a
low-dimensional manifold which is solely governed by its
source position. Assuming a static reverberant environment,
the source position is the only varying degree-of-freedom of
the set of RTFs in the enclosure, thus it is capable of recovering
the unknown source position. Using pairs of microphones,
Laufer-Goldshtein et al. have exploited the RTF for both semi-
supervised single source localization [24]–[27] and source
tracking [28], respectively. With a binaural microphone setup,
Li et al. achieved a supervised multiple source localization
using the direct-path RTF where only a single source is active
[29]. Thereafter, an online scheme using the RTF to track
multiple moving speakers in a reverberant environment was
presented in [30]. More recently, Brendel et al. exploited
the RTF to propose an expectation-maximization (EM) based
algorithm, achieving a joint speaker number counting and
localization in adverse acoustic conditions [31]. Opochinsky
et al. then fed the RTF into a deep-learning network for
a weakly-supervised ranking-based source localization [32].
Motivated by the wide applications of RTF relating two
individual microphones, a preliminary research in [33] studied
a source feature called as relative harmonic coefficients in the
spherical harmonics domain [34] (i.e., modal domain in [35]).
This feature is generally more appropriate for higher-order
microphone arrays, such as spherical and circular microphone
arrays. The microphone arrays are capable of recording and
analyzing the soundfield over a large spatial area, thus have
been widely used in recently proposed localization methods
[36]–[41].

B. Contribution by This Paper

This paper aims to address the multiple source localiza-
tion in a noisy and reverberant environment by proposing a
data-driven approach using the relative harmonic coefficients.
Aforementioned deep learning based algorithms, such as [17]–
[19], [32], accomplish source localization by classifying the
desired source DOA into one of the candidate directions over
the two dimensional space. Our proposed approach adopts
a regression scheme, i.e., a Bayesian inference approach of
Gaussian Process Regression (GPR) [42], because it suits more
to localize the continuous variable of the source positions
(i.e., x, y, z coordinates). Traditional GPR requires a single
Gaussian Process modeling, while this paper adapts the Multi
Gaussian Process modeling [27] to the spherical harmonics
domain (called as Multi-Mode Gaussian Process (MMGP)), in
order to fuse the relative harmonic coefficients over the varied
spherical harmonic modes. Data-driven source localization is

often criticized as a cumbersome task because it requires a
large training set. To overcome the drawback, we are adopting
the semi-supervised paradigm, previously used in [25]–[27],
where only a small number of labeled samples is required.
However, [25]–[27] only addressed the single-source scenario.
Multiple source localization becomes much more challenging
because the overlapped components, especially significantly
overlapped recordings, hinder an accurate localization of the
original sources. Recent studies [29], [31] addressed this issue
using a pre-processing tool to detect and isolate the overlapped
components. Motivated by this strategy, our paper simplifies
the challenging multi-source localization into a single source
localization problem by developing a new overlapped frame
detector using the relative harmonic coefficients.

Some preliminary research in [33], [43] investigated sound
source localization using the relative harmonic coefficients.
However, [33] only addressed a single sound source and
[43] addressed the multi-source localization while its accuracy
degraded severely in noisy and reverberant environments. In
comparison with [33], [43], additional contributions by this
paper are briefly summarized as follows: (i) we study a semi-
supervised multi-source localization approach, only using a
small number of labeled training samples, (ii) we present a
theoretical proof confirming the defined source feature only
depends on its source position, (iii) we propose a new source
feature estimator under noisy conditions, (iv) we develop a
metric selecting the spherical harmonic modes that suits for
source localization in a given area, (v) we provide a data-
driven overlapped frame detection, (vi) we add more in-depth
evaluations and analysis. The remaining part of the paper is
structured as follows. We first formulate the problem addressed
by this paper and then introduce the relative harmonic coef-
ficients in Section II. Section III presents the source feature
selector exploiting its inherent directivity. Section IV derives
the mapping function that fuses the selected source features.
Section V summarizes the block-diagram of the algorithm and
explains the data-driven overlapped frame detection. There-
after, extensive experimental results are reported in Section
VI. Finally, conclusions are drawn and future directions are
discussed in Section VII.

II. SYSTEM MODEL

This section first briefly describes the problem to be
addressed by this paper. Then, we introduce the spherical
harmonics domain source feature called relative harmonic
coefficients from several aspects, which will be used by the
proposed source localization approach.

A. Problem Formulation

Let there be Q active sound sources inside the reverberant
room (e.g., see Figure 1), whose Cartesian coordinates are
pq = [xq, yq, zq]

T (q = 1, · · · , Q) with respect to the
room origin of O = [0, 0, 0]T . Consider a higher-order
microphone array with M microphones that are located at xj
(j = 1, · · · ,M ) with respect to the array origin Or. The sound
pressure, measured by the j-th microphone of the array at the
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Fig. 1. Multiple source localization using a higher-order microphone array
in a noisy and reverberant environment (top view).

k-th frequency bin, is represented by:

P̄ (xj , k) = P(xj , k) + V (xj , k), j = 1, · · · ,M

=

Q∑
q=1

Sq(k)Aq(xj , k) + V (xj , k)
(1)

where k = 2πf/c is the wavenumber, f is the frequency
bin, c is the speed of sound, Sq(k) is the q-th source signal,
Aq(xj , k) denotes the acoustic transfer function (ATF) from
the q-th sound source to the j-th microphone, P (xj , k) and
P̄ (xj , k) denote the clean and noisy sound pressure and
V (xj , k) represents the additive noise signal at the j-th
microphone. Given the multi-source recordings of P̄ (xj , k),
this paper aims to accurately recover the positions of the sound
sources, i.e., pq where q = 1, · · · , Q. In addition, we have
ND = NL+NU measurements in advance within a predefined
source area of interest, consisting of NL labeled samples
whose known positions are p = {p1, · · · ,pNL

}, and NU
unlabeled samples randomly located at unknown positions.
Note that the additive noise in (1) is assumed to be non-
directional, otherwise, the directional noise could be treated
as additional sources to be localized.

B. Relative Harmonic Coefficients (RHC)

The sound pressure at an arbitrary point microphone xj =
(r, θj , φj), j = 1, · · · ,M within the recording area can be
represented in the spherical harmonics domain [44],

P(xj , k) =
N∑
n=0

n∑
m=−n

αnm(k) bn(kr)Ynm(θj , φj) (2)

where n(> 0) and m are integers, N = dkre is the truncated
order of the soundfield [34],

Ynm(θ, φ) =

√
(2n+ 1)

4π

(n−m)!

(n+m)!
Pnm(cos θ)eimφ (3)

is the spherical harmonic function, Pnm(·) represents the
associated Legendre function, and bn(·) is the function based
on the configuration of the spherical microphone array,

bn(kr) =

jn(kr), for an open array

jn(kr)− j
′
n(kR)

h′n(kR)
hn(kr), for a rigid array

(4)

where R denotes the radius of the spherical microphone array,
j
′

n(·) and h
′

n(·) denote the partial derivatives of spherical

Bessel and Hankel functions, respectively.
The αnm(k) in (2) denotes the spherical harmonic coef-

ficients which characterize/describe the measured soundfield
in the spherical harmonics domain. Assume the soundfield
decomposed by (2) originates from a single sound source.
Preliminary research in [33], [43], [45]–[47] define the relative
harmonic coefficients (RHC) of order n and mode m, as the
ratio between αnm(k) and α00(k),

βnm(k) =
αnm(k)

α00(k)
. (5)

Let the frequency band of interest be [kmin, kmax]. Then, we
propose a F × 1 feature vector for each (n,m) mode,

βnm =
[
βnm(k1), βnm(k2), · · · , βnm(kF )

]T
(6)

where kmin 6 k1, · · · , kF 6 kmax. We combine feature vectors
of all the spherical harmonic modes to obtain F × (N + 1)2

matrix of relative harmonic coefficients as,

B =
[
β00,β1,−1, · · · ,βNN

]
(7)

where the F ×1 feature vector β00 = [1, · · · , 1]T because the
β00(k) = 1 by the definition in (5). Note that, we mainly use
abbreviation of relative harmonic coefficients i.e., RHC, when
referring to the defined source feature in the following.

C. Illustration of the Source Feature

This subsection illustrates the composition of relative har-
monic coefficients by deriving its theoretical expression in
both free and reverberant environments, which confirm to be
only dependent on its source position.

1) Free-field: Assume the q-th sound source, located at
pq = [xq, yq, zq]

T with respect to the room origin O in
Figure 1, has the polar coordinate of (rq, θq, φq) with respect
to origin of the microphone array Or. Its spherical harmonic
coefficients due to the incoming direct-path recordings are
given by [35],

αdir
nm(k) = Sq(k)ikhn(krq)Y

∗
nm(θq, φq) (8)

where hn(·) is the spherical Hankel function of the first kind
and ∗ denotes the conjugate operator. Following the definition
in (5), we derive its RHC of order n and mode m:

βdir
nm(k) =

2
√
πhn(krq)Y

∗
nm(θq, φq)

h0(krq)
(9)

which only depends on the source position (rq, θq, φq).
2) Reverberant-field: Assuming the case of a reverberant

soundfield produced by the q-th sound source, its spherical
harmonic coefficient over the recording area is represented as,

αrev
nm(k) = αdir

nm(k)+
N∑

v=0

v∑
u=−v

α̂vu
nm(k)Sq(k)ikjv(krq)Y

∗
vu(θq, φq)︸ ︷︷ ︸

Reverberant-path
(10)

where α̂vunm(k) is the coupling coefficients that is independent
of the time-varying source signal [48]. Note that (10) considers
an arbitrary acoustic environment so that the coupling coeffi-
cients have no explicit expression. Following the definition in
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(5), we have the corresponding RHC,

βrev
nm(k) =

hn(krq)Y ∗nm(θq,φq)+
N∑

v=0

v∑
u=−v

α̂vu
nm(k)jv(krq)Y ∗vu(θq,φq)

h0(krq)Y ∗00(θq,φq)+
N∑

v=0

v∑
u=−v

α̂vu
00 (k)jv(krq)Y ∗vu(θq,φq)

(11)
which also only depends on the source position in a static
acoustic environment where the settings of the environment
and microphone array are assumed to remain fixed/unchanged.

D. Biased Source Feature Estimator

This subsection proposes a method to estimate the source
feature in the presence of noise. We focus on the estimation
at a single frequency bin as estimations over a wide frequency
band follow a similar process. It is of common technique to
measure the spherical harmonic coefficients for a spherical
microphone array [34] (also measurable using multiple circular
microphone arrays [49], and a planar microphone array [50]),

ᾱnm(k) =
1

bn(kr)

M∑
j=1

ajP̄ (xj , k)Y ∗nm(θj , φj) (12)

in which aj works as the weight of each microphone (known
in advance) to ensure the error between the measured and
theoretical estimations is as small as possible. The measured
ᾱnm(k) contains non-negligible noise components,

ᾱnm(k) = αnm(k) + γnm(k) (13)

where αnm(k) and γnm(k) denote the spherical harmonic
coefficients of the source and noise signal, respectively. As-
suming the recordings originate from a single sound source
(e.g., the q-th source in Figure 1), we can rewrite ᾱnm(k) as,

ᾱnm(k) = βnm(k)α00(k) + γnm(k) (14)

where βnm(k) denotes the defined relative harmonic coeffi-
cients that relate to the α00(k). However, we only have the
noisy ᾱ00(k) in practice,

ᾱ00(k) = α00(k) + γ00(k). (15)

Note that βnm(k) is independent of the source signal, thus it is
constant over the time-varying signal. Inspired by the estimator
of aforementioned RTF based source feature [27], we exploit
the power spectral density (PSD) and cross PSD (CPSD) of
the measured signals to alleviate the negative effects caused
by the noise when calculating the βnm(k),

Sᾱnmᾱ00
(k)

Sᾱ00ᾱ00
(k)− Sγ00γ00(k)

=
βnm(k)Sα00α00

(k)

Sα00α00
(k)

= βnm(k)

(16)

where

Sᾱnmᾱ00
(k) = E

{
ᾱnm(k)ᾱ∗00(k)

}
Sᾱ00ᾱ00

(k) = E
{
ᾱ00(k)ᾱ∗00(k)

}
Sγ00γ00(k) = E

{
γ00(k)γ∗00(k)

}
Sα00α00

(k) = E
{
α00(k)α∗00(k)

} (17)

where E
{
·
}

denotes the statistical expectation over the time-
varying signal. Note that (16) exploits the fact that the spher-

ical harmonic coefficients of source signal and noise signal
are uncorrelated because their corresponding sound pressure
are assumed to be uncorrelated. However, the noise PSD of
Sγ00γ00(k) at the denominator of (16) is still unknown. Some
state-of-art power spectral density techniques [51] are available
to update the Sγ00γ00(k). For simplicity, we adopt a biased
feature estimator by neglecting the noise PSD in (16). Thus,
the source feature is estimated using

βnm(k) ≈ Sᾱnmᾱ00
(k)

Sᾱ00ᾱ00(k)
. (18)

III. SOURCE FEATURE SELECTOR

This section first shows that the proposed spherical har-
monic domain feature has a unique directivity pattern over
space. Thus, we then develop a quantitative metric to select a
subset of the spherical harmonic modes that are suitable for
source localization within a limited-size source area of interest.

A. Directivity Pattern Analysis

The studied RHC based source feature has a unique di-
rectivity pattern over the three dimensional space because of
its direct relation with the spherical harmonic function (e.g.,
see the theoretical expressions in (9) and (11)). Figure 2
exhibits some examples at the spherical harmonic modes of
(1,−1) and (2,−1), respectively, each representing a distinct
characterization/description of the soundfield. The RHCs over
the remained modes are not exhibited due to the space limit. A
unique directivity pattern generally assists in distinguishing the
sound sources located at the area (i.e., active area) where the
source features have a large difference. By contrast, the source
features at any given harmonic mode also have an inactive
area where they have little differences (i.e., the directivity
pattern is not significant within some areas). The following
are some examples: (i) (n,m) = (0, 0): the source features
equal to 1 wherever the source locates. (ii) (n,m) = (1,−1):
the source features are close to zero for the sources located
around the plane where y = 0 (Figure 2 (a) and (c)). (iii)
(n,m) = (2,−1): when the sources are located on the
horizontal plane where z = 0, their features are inactive
(Figure 2 (b) and (d)).

In practice, a data-driven source localization often imple-
ments within a limited region predefined in advance. Given the
estimated source features up to the N -th order, we expect to
select a subset of the spherical harmonic modes whose active
area covers the given source area. As explained in the next
subsection, this paper achieves the spherical harmonic modes
selection by proposing a statistical metric based on the training
feature set over this area.

B. Spherical Harmonic Modes Selector Using the Training Set

Assume the coordinates of the predefined sound source area
for localization are, e.g.,

Φ =
{

(x, y, z) : x1 < x < x2, y1 < y < y2, z1 < z < z2

}
(19)

in which x1, x2, y1, y2, z1, z2 are some constants. Consider
ND training samples distributed within Φ have been measured
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Fig. 2. Real part of the source features at the spherical harmonic modes of (1,−1) and (2,−1), respectively. The (a)-(b) denote the source features using
direct-path recordings without any room reverberations. By contrast, (c)-(d) denote the reverberant features whose T60 = 500 ms with a room reflection order
of ten. The red and cyan portions represent regions where the values of the features are positive and negative, respectively. The distance of the surface from
the origin indicates the absolute value of the features in angular direction over space. We generate the source features using the estimator given the simulated
recordings in a 6 × 4 × 3 m room in the presence of noise at 25 dB. We simulate a set of sound sources located on a spherical shell with respect to a
spherical microphone array at the origin of the shell, i.e., Φ2 = {(r, ϑs, ϕs) : r = 1, 0 < ϑs ≤ π, 0 < ϕs ≤ 2π}. Twenty frequency bins approximately
ranging from 1500 Hz to 2500 Hz are used, which records the soundfield up to the 2nd order. Note that the presented figures denote the mean values over
this wide frequency band. We notice the source features in a reverberant environment appear to be less smoothly distributed over space, caused by the random
interfering signals of the room reverberation.

and the corresponding training source features are estimated.
We then construct a vector by collecting the relative harmonics
coefficients at the mode of (n,m) for all the samples,[

β1
nm(k), β2

nm(k), · · · , βND
nm (k)

]T
. (20)

As analyzed, the sound sources within the active area appear
with more different values, i.e., the source features distribute
more decentralized. For a quantitative measurement, we ex-
ploit the index of dispersion (i.e., Variance to Mean Ratio)
[52] with respect to the vector of (20),

λnm(k) =

∣∣∣∣σ2
nm(k)

µnm(k)

∣∣∣∣ (21)

where

µnm(k) =
1

ND

ND∑
n`=1

βn`
nm(k)

σ2
nm(k) =

1

ND − 1

ND∑
n`=1

|βn`
nm(k)− µnm(k)|2

(22)

denote the mean and variance of the elements in (20) (note
that µnm(k) 6= 0), respectively, and 1 ≤ n` ≤ ND denotes
the index number. Note that above calculation only uses the
source feature at the k-th frequency bin. In the case of a wide
frequency band (e.g., F frequency bins), we then compute the
mean number as,

λ̄nm =
1

F

F∑
i=1

λnm(ki). (23)

The measure of dispersion is successively applied for all the
(N + 1)2 spherical harmonic modes to produce a vector as,[

λ̄00, λ̄1,−1, · · · , λ̄NN
]T
. (24)

Intuitively, we select the spherical harmonic mode exhibiting a
larger index of dispersion, i.e., the source features have larger

differences when the sources are located differently,

λ̄nm > ζ (25)

where ζ is a positive threshold empirically specified as long as
it performs with sufficient localization accuracy. For example,
λ̄00 = 0, thus source features at this spherical harmonic mode
(n,m) = (0, 0) are discarded.

Up to now, we have estimated the training source features
and selected a subset of the spherical harmonic modes that well
suit to localize the sources within the given area. As explained
in the next section, we show how to use the training features to
formulate a mapping function that recovers the testing source’s
unknown position.

IV. MAPPING FUNCTION FORMULATION

This section aims to formulate the mapping function re-
vealing the underlying relation between the source feature(s)
and source position(s). We first use the Multi-Mode Gaussian
Process (MMGP) to model the variable of source position,
fusing/merging the features at the selected spherical harmonic
modes. Then, we use the MMGP based Gaussian Process Re-
gression (GPR) to recover the unknown source position. Note
that the proposed GPR based source localization approach
localizes the source x, y, z-coordinate separately because the
Gaussian Process modeling mainly applies into scalar variable
[42]. Hence, the source position variable p used in this section
denotes a scalar of px, py or pz . Finally, we claim in advance
that the underlying theory discussed in this section is a direct
inspiration and adaptation of a recently proposed method in
[27]. The original method exploits the RTFs for the mapping
function formulation while this section uses the RHCs defined
in the spherical harmonic domain.

A. Multi-Mode Gaussian Process (MMGP)

Assume an arbitrary sound source whose feature matrix is
B ∈ CF×V where V ≤ (N + 1)2 denotes the number of
the selected spherical harmonic modes. Using a single feature
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vector at the v-th mode, we model the variable of its source
position by a zero mean Gaussian Process,

p(v)(β) ∼ GP(0,K) (26)

where p(v) denotes the source position variable at the v-th
mode, β ∈ CF×1 denotes the feature vector containing all
the F frequency bins at this mode, K denotes the kernel or
covariance function that specifies the Gaussian Process. We
adopt the manifold-based covariance function [27], where the
relation between two sources is not only a function of the
current two samples, but also exploits the information of the
entire training set,

cov(p(v)
ni
, p(v)
nj

) ≡
ND∑
n`=1

K(βni
,βn`

)K(βnj
,βn`

) (27)

where subscript of ni and nj denotes the index of two arbitrary
sources, n` is the index of the training sources and K(·) is the
kernel function between any pair of features. Theoretically, a
series of kernel functions is applicable as long as its covariance
matrix is positive semi-definite and symmetric [42]. We use
the squared exponential (SE) covariance function as,

K(βni
,βn`

) = exp

(
−
‖βni

− βn`
‖2

2σ2
y

)
, 1 6 ni, n` 6 ND

(28)
where ‖ · ‖ represents the Euclidean `2 norm, and σy de-
notes the characteristic length-scale hyperparameter that is
initialized with a random value and then optimized using the
marginal likelihood [42].

Note that the Gaussian Process modeling above only uses a
single feature vector at the v-th spherical harmonic mode. By
contrast, the MMGP fuses all the source features by modeling
source position p as the mean of the Gaussian Processes
between all the V spherical harmonic modes, i.e., the ni-th
source final position pni equals to the average value of all the
estimations,

pni
=

1

V

(
p(1)
ni

+ p(2)
ni

+ · · ·+ p(V )
ni

)
. (29)

We emphasize the difference between the Multi-Node Gaus-
sian Process in [27] that fused recordings from the distributed
microphone pairs and our proposed method in which we fuse
the features of different spherical harmonic modes given by
a higher-order microphone array1. Due to the assumption that
the processes are jointly Gaussian, p also follows a zero-mean
Gaussian Process, whose covariance between two arbitrary
source positions is computed as,

cov(pni
, pnj

) = K̄(Bni
,Bnj

)

=
1

V 2
cov

(
V∑
z=1

p(z)
ni
,
V∑
w=1

p(w)
nj

)

=
1

V 2

V∑
z,w=1

cov(p(z)
ni
, p(w)
nj

) (30)

1Please note that the Multi-Mode Gaussian Process refers to the proposed
method by this paper while the Multi-Node Gaussian Process refers to the
method in [27].

in which K̄(·) denotes the kernel function of the MMGP, Bni

and Bnj are the feature matrix containing all the V modes,
and z and w are the index of spherical harmonic mode. This
paper defines the covariance of variables between two different
modes as,

cov(p(z)
ni
, p(w)
nj

) ≡ cov(p(z)
ni
, p(z)
nj

)cov(p(w)
ni
, p(w)
nj

) (31)

where cov(p
(v)
ni , p

(v)
nj ) denotes the covariance function in (27)

using all the training samples at the v-th mode where v =
z, w. Substituting (31) into (30), the final calculations of the
covariance between the variables pni and pnj are,

cov(pni
, pnj

) = K̄(Bni
,Bnj

)

=
1

V 2

V∑
z,w=1

cov(p(z)
ni
, p(z)
nj

)cov(p(w)
ni
, p(w)
nj

)

(32)

Note that above calculations of the covariance between the
positional variables only use the source features (i.e., source
positional information is not required). Hence, both the labeled
and unlabeled training samples are exploited. In the next
subsection, we show how to estimate the unknown testing
source position using a GPR tool.

B. Estimate Unknown Source Position Using GPR

Based on the MMGP, localization of a single sound source,
located at an unknown source position, can be reviewed as a
regression problem,

p̄n`
= pn`

+ εn`

= f(Bn`
) + εn`

, n` = 1, · · · ,NL
(33)

where n` is the index of labeled training sources, p̄n`
and pn`

denote the measured and desired source position, respectively,
f(Bn`

) is the mapping function between the n`-th source
feature Bn`

and source position pn`
and εn`

∼ N (0, σ2)
denotes a zero-mean Gaussian noise (i.e., the calibration inac-
curacies originating from inevitable errors such as imprecise
positional measurements). Given the feature matrix B? of a
testing source, feature set of the labeled training samples,
i.e., B̂ = [Bn1 , · · · ,BnNL

], and their positional information
p = [pn1

, · · · , pnNL
]T , we recover the unknown testing source

position using a standard Bayesian approach,

Pr(f?|B?, B̂) =

∫
Pr(f?, f |B?, B̂)df

=

∫
Pr(f?|f,B?, B̂)Pr(f |B?, B̂)df (34)

in which f and f? denote source position of f(B̂) and f(B?),
respectively. For the sake of clarity, we directly present the
probability distribution of Pr(f?|B?, B̂), which follows a
Gaussian distribution [27],

N
(
K∗(K + σ2I)−1p,K∗∗ −K∗(K + σ2I)−1K∗

T
)

(35)

where I denotes an Identity matrix, σ2 is the noise variance
in (33), K∗ ∈ RNT×NL is the covariance matrix containing
the covariance of two arbitrary positional variables between
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the training and testing sources, K ∈ RNL×NL and K∗∗ ∈
RNT×NT represent the covariance matrix for the training and
testing sources, respectively. Note that NT above denotes the
total number of tastings based on the recordings from a single
source. Hence, the unknown positions of the testing source
p∗ = [p∗1, · · · , p∗NT

]T is given by the mean value of the
Gaussian distribution in (35) as the probability reaches its
global maximum,

p∗ = K∗(K + σ2I)−1p (36)

which can be interpreted as linear combination of the source
positions in the labeled training set, i.e., p∗ = wTp where
wT = K∗(K + σ2I)−1 are the linear weights. Alternatively,
the estimator of (36) can also be reviewed as a linear combi-
nation p∗ = K∗u, whose weights are u = (K + σ2I)−1p.

Some necessary comments are given with respect to the
mapping function above:

• The mapping function is semi-supervised as it requires
no positional information of the unlabeled samples. Al-
though the unlabeled samples do not appear explicitly in
(36), they play a part in the calculations of the covariance
between positional variables (i.e., they appear in (27)
which is used in (32)). Usage of the unlabeled samples
enables a more precise measurement of the covariance
for the MMGP modeling. Additionally, they exert a
negligible influence on the practicality of the algorithm as
we can easily obtain the unlabeled samples by randomly
sampling the source area.

• There still remain some unknown parameters in the
estimated position of (36), i.e., parameters of the co-
variance function and noise covariance. This paper uses
the marginal likelihood [42] to specify those parameters.
However, its non-convexity easily leads to local optimal-
ity with non-negligible errors from the global optimal
results. To tackle this issue, we adopt the empirical
method of cross-validation [42] to split the training set
into two disjoint sets, one of which is used for training,
and the other set, i.e., the validation or reference set, is
used to monitor performance.

• The number of parameters in our mapping function de-
pends on the total number of spherical harmonic modes.
A larger number of parameters make it more difficult
to optimize them simultaneously, as well as reducing
the practicality of this approach. From this point of
view, the spherical harmonic modes selector not only
increases validity of the source features, but also reduces
the algorithm complexity.

Source 1

Source 2

Source 3

Source 1

Source 2

Source 3

Fig. 3. An example of overlapped multi-source recordings by 3 sound
sources. The cyan color denotes the periods where a sound source is active.

V. PROPOSED MULTIPLE SOURCE LOCALIZATION

A. Framework of the Algorithm

Multi-source localization in this paper mainly considers the
overlapped recordings as they are very common in practice,
such as conversational recordings between several speakers
[31]. Figure 3 exhibits the overlapped recordings with a 40%
overlapped ratio (i.e., the percentage of the overlapped periods
among the recording). Figure 4 presents a compact block
diagram of the proposed multi-source localization algorithm,
which mainly consists of two disjoint stages, i.e., a training
stage and testing stage.
Training stage:

(i) Select NL labeled and NU unlabeled training samples
within the defined reverberant sound source area of interest
(e.g., Φ). (ii) Measure the recordings due to each training
source separately using a higher-order microphone array and
then collect the training feature set by estimating the features
using the estimator given in (18). Note that, since the feature is
independent of the source signal, we can use any given source
signal (e.g., speech sentences or random signal) to drive the
loudspeakers placed at different positions within the source
area. (iii) Implement the defined metric of (25) to select a
proper subset of spherical harmonic modes. (iv) Formulate the
mapping function using the MMGP, optimize and specify the
parameters required by the test stage.
Testing stage:

(i) Record the overlapped recordings from multiple sources
(e.g., Q > 1 sources) within the source area of Φ, divide them
into source frames in time domain (e.g., T frames in total and
each lasting 0.5 s), and then obtain their source features using
the feature estimator of (18). (ii) Use the overlapped frame
detection, as explained in the next subsection, to detect and
isolate the components overlapped by multiple sources. (iii)
Only preserve the source features at the single source frames
(e.g., NT single source frames where 1 6 NT 6 T ), and
estimate their positions using the mapping function of (36)
obtained during the training stage. (iv) collect all the estimated
positions of the single-source frames and use a clustering tool
(e.g., K-means [53]) for the final estimates. The final estimated
positions correspond to the centered location of each cluster.

B. Overlapped Frame Detection Using the Training Set

This subsection explains the last step of the algorithm in
Figure 4, i.e., the overlapped frame detection that simplifies
the multi-source localization into a single source localization.

Let us assume that the t-th frame originates from a single
source located at pq . Due to the direct relation between source
feature(s) and position(s), its featureB?

t has a strong similarity
to features of the training samples located close to pq . By
contrast, if the given source frame is overlapped by multiple
sources, the similarity is much weaker since the feature now
is constructed from a time-varying combination of acoustic
features. From this discussion, the single-source frames have
a stronger similarity with a subset of the training features,
while the overlapped frames, on the contrary, have a weaker
similarity. Hence, we can separate the overlapped and single
source frames by introducing a proper metric measuring the
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Fig. 4. Block diagram of the proposed multiple source localization approach, which mainly comprises of a training and test stage respectively.

similarity. For that, we use a distance function T (·) to measure
the similarity between the source features,

d(t, n`) = T (B?
t ,Bn`

) (37)

where 1 ≤ t ≤ T denotes the index of the segmented
source frames in the time domain, Bn`

denotes the n`-th
training feature matrix where 1 ≤ n` ≤ ND. Note that
above-mentioned SE kernel function in (28), with unknown
parameters, cannot be used as the distance function in (37).
Several theoretical distance metrics can be used, such as the
normalized Euclidean distance in (43) used in the experimental
study. Intuitively, a smaller distance denotes the inputs have a
stronger similarity. Then, we use a repetitive calculation over
all the training samples to generate a vector,

d(t) =
[
d(t, 1), d(t, 2), · · · , d(t,ND)

]T
(38)

where both the labeled and unlabeled training samples are used
because positional information is not required. A small subset
of elements in d(t) is used to compute the distance,

d(t) =
1

I

I∑
i=1

ds
i(t) (39)

where ds(t) denotes the ascending sorted vector of d(t). This
measure is successively applied for all T frames to produce,

d =
[
d(1), d(2), · · · , d(T )

]T
. (40)

Intuitively, given the vector of d, we choose the overlapped
source frames, to be isolated from source localization, that
satisfy the following inequality,

d(t) > η, t = 1, · · · , T (41)

where η denotes a user defined threshold that is empirically
specified. We emphasize the difference between a recently
proposed detector in [43], as the current one in this paper
requires a training feature set. Note that the detection here
directly uses the source features, not requiring the source
position information, so that both the labeled and unlabeled

training samples are exploited.

VI. EXPERIMENTS

A. Experimental Methodology
This section presents experimental results for multi-source

localization in noisy and reverberant environments using both
the simulated and real-life source recordings. The experiments
are implemented following the procedures presented in Fig-
ure 4. As said, the source localization approaches localize
the source x, y, z-coordinates separately. For simplicity, the
following localization scheme focuses on x-coordinate of the
sources as localization of other coordinates follows a similar
procedure. Performance of our localization system is evaluated
using a quantitative metric of mean absolute estimated error
(MAEE) over the source’s x-coordinate,

1

Q

Q∑
q=1

|xori(q)− xest(q)| (42)

where Q denotes the number of the sound sources presented in
the environment, xori(q) and xest(q) represents the original and
estimated x-coordinate of the q-th sound source with respect
to the origin of the room (not the microphone array). Note
that the distance function of T (·) in (37), required by the
overlapped frame detection, has not been specified yet. Here,
we choose to use the normalized Euclidean distance function,

T (B?
t ,Bi) =

||B?
t −Bı||2

||B?
t ||2||Bi||2

(43)

in which ||·||2 represents a `2 norm of the input feature matrix.
Note that other distance metrics can be equally used for (43).

The experiment adopts two additional source localization
approaches for comparison. (i) The distance function of (43),
measuring the similarity between the source features of the
testing and labeled training sources, is used. For this method,
the estimated position corresponds to the labeled training
source which locates closest to the testing source. (ii) The
other is the state-of-art Multi-Node Gaussian Process based
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source localization approach using the RTF based source
feature. The original algorithm recently proposed in [27] aims
at single source localization and uses RTF between all pairs
of microphones. For a fair comparison, we adjust and estimate
the RTFs between all the pressure on the surface of the array
and the one at the origin of the array, and then apply it to
the multi-source localization assisted by the overlapped frame
detector. Note that, some structured spherical arrays, such as
the rigid spherical arrays, only have microphones on the array
surface. For such a case, we approximate the pressure at the
array origin as the addition of the ones on the surface for the
RTF based localization method.

B. Simulated Recordings

The size of the simulated reverberant room is 6 × 4 × 3
m for the length, width and height, respectively. We set the
left-front-bottom corner of the room as the reference origin
for the source coordinates, i.e., (0, 0, 0). We simulate a open-
sphere spherical microphone array (32 channels and radius
4.2 cm), and place it at an unknown position in the room.
Note that, although a spherical microphone array is used, the
theory developed by this paper is equally applicable for other
microphone arrays as well, such as a planar microphone array
and circular microphone array. The time-domain room impulse
response from the sound sources to the microphone array
is generated using an available toolbox2 that implements the
image source method [54]. Speech signal randomly selected
from the TIMIT database at the sampling frequency of 8 KHz
is used as the input source signal. We use a convolution
operation between the simulated room impulse response and
speech signals to generate the measured recordings. After that,
Gaussian white noise is added into the time domain recordings.
Then, the measured noisy recordings are segmented into
0.5s frames with a 50% overlapping. The segmented time
domain recordings are first transferred into the STFT domain
and then decomposed into the spherical harmonics domain.
Finally, the proposed estimator in (18) is used to compute
the RHCs for all the segmented frames. Thirty frequency
bins approximately ranging from 1500 Hz to 2500 Hz are
exploited, which records the soundfield up to the 2nd order
as N = dkre (i.e., 9 spherical harmonic modes). By contrast,
lower frequency bins reduce the uniqueness of the RHC vector
whose dimension is reduced to 4 (i.e., 4 spherical harmonic
modes). The other drawback at low frequencies is the “Bessel
zero problem”, causing erroneous estimations of the desired
spherical harmonics coefficients because the noise signal can
be easily amplified [55]. Higher frequency bins contain less
valid speech components.

TABLE I
MAEE OF SINGLE SOURCE LOCALIZATION USING DIFFERENT NUMBERS

OF LABELED TRAINING SAMPLES.

Number 20 33 49 66 86
MAEE/m 0.380 0.314 0.248 0.238 0.223

2https://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-
generator
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Fig. 5. Top view of the simulated source distribution. The labeled and
unlabeled samples are represented by the red and blue points respectively.

1) Sound Source Area for Localization: In the exper-
iments, we apply the proposed method to common scenes
of group conversations between multiple speakers. Consider
a specific scenario to localize the speakers in a conference
room. Hence, the sitting area around the conference table is
taken as the source area for localization. Our first task is to
select a number of labeled and unlabeled training samples
over the defined source area. We address the problem using
two separate steps as follows: (i) labeled samples selection:
Intuitively, the number of labeled training samples involves
a trade-off: increasing the number generally leads to higher
localization accuracy, while in return it increases the com-
plexity of the system. This algorithm’s overall practicality is
considered by this paper. Hence, we select a relatively small
number of labeled samples, while still achieving acceptable
localization accuracy. Table I reports the accuracy of single
source localization using an increasing number of labeled
samples. From the results, we set the labeled training number
to 49 because the accuracy starts to degrade severely when
using a smaller number. (ii) Unlabeled samples selection: As
explained, the unlabeled training samples are much easier
to acquire, for simplicity, we directly select 250 unlabeled
samples randomly distributed within the defined sound source
area.

TABLE II
ACCURACY OF OVERLAPPED FRAME DETECTOR UNDER VARIOUS

REVERBERATION TIMES, WHERE THE SNR LEVEL IS 25 DB.

T60/ ms 300 400 500 600 700
Accuracy/% 75.0 73.3 71.7 68.3 65.0

TABLE III
ACCURACY OF OVERLAPPED FRAME DETECTOR UNDER VARIOUS SNR

LEVELS, WHERE THE REVERBERATION TIME IS 700 MS.

SNR/dB 5 10 15 20 25
Accuracy/% 46.7 55.0 58.3 61.7 66.7

Figure 5 exhibits the sound source area filled by the selected
training samples, which encircles the conference table whose
radius is 0.75 m. The microphone array, placed at the center
of the table, records the incoming soundfield in the rever-
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berant room. In the training stage, we measure the simulated
soundfield due to each training source separately, and estimate
the respective source feature using the feature estimator in
(18). After that, we implement the spherical harmonic modes
selection using the metric in (25), and for this particular
example, we preserve four spherical harmonic modes in total,
whose indexes of (n,m) are (1,−1), (1, 1), (2,−2), (2, 2),
respectively.

2) Accuracy of Overlapped Frame Detection: The local-
ization scheme proposed in this paper exploits a pre-processing
step of the overlapped frame detector. Hence, accuracy of the
detection has a direct influence on the eventual localization
performance. Prior to source localization, let us evaluate
the effectiveness of the detector. We measure conversational
recordings due to three speakers within the defined source
area. The recordings, lasting 30 seconds in total, are measured
in a reverberant room where T60 = 700 ms, and are then
contaminated by Gaussian white noise with a SNR of 25
dB. The overlapped ratio by the mixed recordings in the
time domain is approximately 30%. Note that the overlapped
frame detector in (39) has a parameter I . The exact number
I depends on the total trainings samples used by the detector.
Throughout the simulations, we set at I by around 2% of
all the training samples. Hence, I = 6 when we use around
300 training samples in simulations. Figure 6 exhibits the
conversational recordings. The 4-th sub-figure presents the
calculated distance of the source frames to the training set. The
5-th sub-figure at the bottom displays the detected overlapped
periods. The results confirm the detector has successfully dis-
covered most of the overlapped components. In the meanwhile,
we notice that the detector occasionally detects the frames
where the speech is weak or silent, i.e., absent or inactive
speech. This is because the source feature is not accurately
estimated there, thus has a larger distance to the training set.
The capability to detect and remove the weak/inactive speech
frames is beneficial for source localization because it ensures
the selected frames contain valid speech signal.

We then examine the proposed detector using conversational
recordings in diverse environments. We generate the multi-
source recordings in different acoustic environments, involving
simultaneously three speaker positions, with a 30% overlap
ratio. Table II and III reports the performance of the detector
at different reverberation and SNR levels, respectively. Note
that, for each tested room reverberation time, we re-simulated
all the training samples and re-calculate all the training feature
set. For consistent results, we implement the evaluations up
to five times. For each case, the three speakers originate
from randomly selected source positions and use randomly
selected speech sentences. Hence, each number in both Table
II and Table III denotes the mean detection accuracy of the
five groups of evaluations. The results demonstrate that the
accuracy gradually degrades in a more complex environment.
Under most scenarios, it is capable to recognize more than
50% of all the overlapped frames.

Finally, we confirm the direct influence of the overlapped
frame detection on the localization accuracy. Five repetitive
examinations are conducted in the T60 = 700 ms reverber-
ant room where the SNR level is set at 25 dB. We still

adopt three speakers whose overlapped ratio is 30%. We
then segment the mixed recordings into 0.5 s frames, and
then apply the overlapped frame detection to recognize the
isolate the overlapped frames. Finally, we apply the proposed
semi-supervised localization method to estimate the unknown
speakers’ positions. The average MAEE over the five groups of
evaluations using the overlapped frame detection is 0.205 m.
by contrast, the MAEE without the overlapped frame detection
is degraded to 0.255 m.

Fig. 6. Conversation between three speakers (30s long), and the performance
of the overlapped frame detector. The distance, calculated by (43), denotes
the similarity between the features of the testing frame and training set. A
larger distance implies this frame is more likely to be an overlapped one.

TABLE IV
MAEE OF MULTIPLE SOURCE LOCALIZATION UNDER VARIOUS

REVERBERATIONS, WHERE THE SNR LEVEL IS 15 DB.

MAEE/m Reverberation time (/ms)
Methods 300 400 500 600 700

RTF 0.183 0.214 0.253 0.240 0.265
Euclidean 0.301 0.288 0.259 0.296 0.298
All modes 0.207 0.237 0.229 0.259 0.285
Proposed 0.179 0.166 0.186 0.194 0.228

TABLE V
MAEE OF MULTIPLE SOURCE LOCALIZATION UNDER VARIOUS SNR

LEVELS, WHERE THE REVERBERATION TIME IS 700 MS.

MAEE/m SNR levels (/dB)
Methods 5 10 15 20 25

RTF 0.333 0.301 0.279 0.273 0.244
Euclidean 0.311 0.327 0.315 0.289 0.250
All modes 0.336 0.282 0.289 0.267 0.260
Proposed 0.246 0.221 0.232 0.192 0.204

3) Performance of Multi-source Localization: Let us now
evaluate the proposed localization method in comparison with
the baseline methods. As introduced at the beginning of this
section, one baseline is the RTF based method using Multi-
Node Gaussian Process modeling in [27]. The other baseline
directly uses a distance metric in (43). In addition, we also
examine the proposed method without the spherical harmonic
modes selection in order to analyze the proposed feature
selector’s influence on the localization accuracy. Therefore,
four localization approaches are implemented, whose abbre-
viations used below for convenience are denoted by ‘RTF’,
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‘Euclidean’, ‘All modes’ and ‘Proposed’, respectively. To
increase the reliability of the results, under each acoustic
environment (i.e., SNR and room reverberation time), ten
successive examinations are implemented. And, each case
uses three speakers with randomly selected source positions
within the source area and randomly selected speech sentences.
Hence, the values presented below denote the mean number
over the ten successive evaluations.

Diverse acoustic environments are simulated. We first an-
alyze the impacts of reverberation on the localization al-
gorithms. Table IV displays the performance in different
reverberation time ranging from 300 ms to 700 ms. In each
varied reverberation, we re-simulated the training samples,
optimized the parameters, and then applied the settings to the
test stage. As expected, we observe that a longer reverberation
time has negative impact on the localization accuracy. A
longer reverberation time implies an increased complexity of
the acoustic path from the sound sources to the recording
area, increasing the difficulty to accurately model the relation
between the source features and source positions. We then
evaluate the algorithms under various noisy conditions (SNR
level ranging from 5 dB to 25 dB). Table V depicts the
results. We recognize slightly degraded localization accuracy
when the SNR level decreases. The strong robustness to noise
is a result of the proposed biased feature estimator in (18),
which has already alleviated some noise components. Since
the estimator has not fully cancelled the noise, the algorithms
have non-negligible errors when the SNR level becomes very
low. These results confirm the superiority of the proposed
algorithm over the baseline methods. The improved accuracy
when using selected harmonic modes, compared with that
using all spherical harmonic modes, validates the effectiveness
of the spherical harmonic modes selection.

TABLE VI
TIME COST BY TEN REPETITIVE EXECUTIONS AT THE TEST STAGE.

Methods Number of views Time
RTF 32 239.5s

All modes 9 69.3s
Proposed 4 30.4s

4) Algorithm Complexity Analysis: In addition to the
localization accuracy, it is of necessity to evaluate the data-
driven localization algorithm’s computational complexity. Sev-
eral factors determine the proposed algorithm’s complexity,
such as the number of labeled and unlabeled training samples,
microphone channels in the array, and the soundfield order.
Both our proposed method and the baseline using RTF adopt
multi Gaussian Process modeling so that they generally fol-
low similar procedures. Note that the RHC and RTF based
methods use the Multi-Mode Gaussian Process and Multi-
Node Gaussian Process, respectively. Both methods can be
interpreted as an effort to capture or describe the acoustic event
using multiple views. Thus we refer to them with the common
terminology “Multi View Gaussian Process”.

However, the numbers of views for the RHC and RTF
based methods differ a lot, causing major consequences on
the algorithm complexity. For validations, we evaluate the
computational complexity of the algorithms by directly mea-

suring their average time cost, using a Matlab implementation
on a standard desktop (CPU Intel Core i7-4790 Quad 3.6
GHz, RAM 16 GB). Table VI presents the speed of the
algorithms as well as their numbers of view. The proposed
method is much faster than the baseline as it only has 4 views
in total. Intuitively, a smaller number of views implies that
less parameters should be adjusted. A comparison between
the method using either selected number of modes or all
the modes confirms the advantage of selecting modes on the
computational complexity.
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Fig. 7. MAEE of multiple source localization when room reverberation level
is changed during the test stage (SNR is 25 dB). The different room reflection
orders are with T60 = 700 ms.

5) Robustness to Test Environment Changes: As assumed,
the source feature solely depends on the source position in a
static room environment. Hence, aforementioned assessments
assumed that the acoustic environment did not change between
the train and test stages. However, this assumption hardly
holds in practice. It occasionally happens that the setup of the
room changes during the test stage. For example, the doors
and windows may be opened or closed, or someone may
walk around in the room. To meet practical requirements, our
localization method should be robust to changes in the room
characteristics. Hence, let us examine our method’s robustness.
Figure 7 reports the localization errors for room environments
that are different between test and training stages. We simulate
the changes in the test environment by using different room
reverberation time as well as varied room reflection orders
when T60 = 700 ms. In the training stage, we generate the
training samples at the reverberation T60 = 700 ms, using
a full reflection order. The examination results, presented in
Figure 7, demonstrate slightly degraded accuracy when the
test environment is not significantly different from that in the
training stage. Hence, the localization method, learning the
cues for localization in the training stage, is still applicable
in the different/changed test environments. Additional evalu-
ations at different reflection orders confirmed the improved
localization accuracy at a higher reflection order. The reason
is the testing source feature at a higher reflection order match
more to the training features that captured a full reflection
pattern. However, the Figure 7 implies the performance
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Fig. 8. (a): The setup for practical acoustic measurements used by our source localization approach in a reverberant room. (b): The commercial EigenMike
and the mini-loudspeaker. (c): Top view of the defined source area in experiments, i.e., a 1m circle.

degrades more if the testing environment has more different
characteristics in comparison with the training environment.
And, it is recognized with dramatically reduced localization
accuracy when the testing room environments change a lot
(e.g., more than 0.35 m error when T60 = 300 ms or with
room reflection order 5).

Additionally, the testing environment’s temperature or air
humidity also occasionally changes, which could be simulated
by changing the speed of sound value by a few percent. Hence,
we now change the speed of sound in the testing stage and
examine the performance of the algorithm for both the training
and testing stages the room reverberation time is T60 = 700
ms and the SNR level is 25 dB. Table VII presents the
proposed method’s MAEE with various sound speeds ranging
from 336 m/s to 350 m/s. Note that the reference temperature,
in the training stage, is 20 ◦C and the corresponding speed
is 343 m/s. We observe that with varying values of speed
(caused by changes in room temperature), the localization
accuracy sometimes degrade. However with common indoor
temperatures, the degradation is minimal.

TABLE VII
LOCALIZATION PERFORMANCE USING DIFFERENT SOUND SPEEDS IN THE

TEST STAGE.

Speed (m/s) 336 339 343 346 350
Temperature (/◦C) 8 14 20 25 30

MAEE/m 0.207 0.184 0.157 0.174 0.192

C. Real Recordings
This subsection validates the availability of the proposed

algorithm under real-life scenarios, using practical recordings
measured in the acoustic lab of Australian National University.

1) Experimental Setup: Figure 8 presents the setup for
the practical measurements, a spherical microphone array
called EigenMike and a circular source area, respectively. The
EigenMike is a rigid 32-microphone array with a similar size
as the above simulated open-sphere array. An advantage using
a rigid array is avoiding the division by very small values in
(12) at low frequencies, alleviating the aforementioned “Bessel
zero problem”. The defined source area only comprises of
10 labeled training samples along with 80 unlabeled training
samples. The EigenMike, placed at the center of the source
area, measures the incoming soundfield. The experiment room

dimensions are [3.54, 4.06, 2.70] for the length, width and
height, respectively, with the reverberation time around T60 =
330 ms. The same frequency band used by the simulated
recordings, ranging from 1500 Hz to 2500Hz, is exploited for
the real recordings.

Note that we obtain the real recordings using a convolu-
tion operation between the measured room impulse response
(RIR) and the source signal. Hence, it is of great necessity
to ensure high-quality RIR measurements. During practical
recordings, the system time delay, caused by the hardware for
example, is unavoidable. It degrades the spatial measurements
accuracy if the unknown delay is large. Here, we provide a
calibration technique to measure the delay by attaching a mini-
loudspeaker (Manufacturer: VISATON, External Diameter:
16mm) close to the EigenMike (see Figure 8 (b)). Specifically,
when driving the desired loudspeaker, we simultaneously drive
the mini-loudspeaker using a known labeled signal. Since
the two speakers are driven synchronously, the delay can be
detected by location of the labeled signal within the measured
recordings. Note that we just measure the system delay once
as it generally keeps constant. When the delay is known, we
then extract the source recordings right after the delay time
where contains valid source signal.
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Fig. 9. Real parts of the features for sources located at different positions.
Note that, for convenience, the presented values denote the average over the
wide frequency band.
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2) Validation of the Illustration in the Section II-C:
Before presenting the localization accuracy, we first use real-
life recordings to validate the illustration that the RHCs are
independent of the particular source signal. We first compare
the source features generated by the same sound source while
using different source signal. For generality, ten pieces of
random signal lasting around 0.5 second are used. For each
signal, we calculate the mean values of the RHCs over a wide
frequency band ranging from 1500 Hz to 2500 Hz. Figure 9 (a)
depicts the real part of source features, using a sound source
whose polar coordinates are (r1, θ1, φ1) = (1, 1.57, 3.63) with
respect to the EigenMike’s origin. For this sound source, its
source feature is repetitively estimated using ten random sig-
nals. The observed consistency of the features using different
random signal confirms its independence from the specific
signal. Note that the curves presented in Figure 9 (a) also
contain a slight inconsistency. One possible reason is the
feature estimator in (18) uses a short frame windowing, which
cannot cover the full reverberated test signal and therefore
causes slight inconsistency on the estimated RHC.

TABLE VIII
AVERAGE MAEE OF MULTI-SOURCE LOCALIZATION USING 10 GROUPS.

Methods RTF Euclidean All modes Proposed
MAEE/m 0.159 0.205 0.181 0.120

TABLE IX
MAEE OF MULTIPLE SOURCE LOCALIZATION USING STRONG

OVERLAPPED RECORDINGS.

MAEE/m Overlapped ratio (%)
Methods 50 60 70 80 90

RTF 0.192 0.187 0.193 0.206 0.214
Euclidean 0.217 0.223 0.244 0.214 0.209
All modes 0.191 0.195 0.202 0.211 0.205
Proposed 0.141 0.143 0.146 0.161 0.175

Then, we expect to see whether source feature significantly
changes if placing the sound source at a different source posi-
tion. Figure 9 (b) depicts the real part of source features, due to
the sound source located at a new position, i.e., (r2, θ2, φ2) =
(1, 1.57, 0.56) with respect to the array origin. We use the
same setting to estimate the source features as the case in
Figure 9 (a). We observe much greater differences between
the source features in sub-figure (a) and (b), representing the
sources located at different positions have different source
features. Above analysis confirms, in a real-life reverberant
room, the defined feature is mostly source-independent and
changes significantly when the source position changes.

Finally, we add a quantitative study on how the RHC
changes when the source moves to different positions. We
first pick one reference position located at (1, 1.57, 3.21)
within the source area in Figure 8. Then, we move the
source to the different positions with respect to the reference
position and examine how the feature changes. For simplicity,
the movement is carried along the azimuth axis only while
elevation and distance are fixed. Note that we drive the source
using a randomly generated signal and then use the proposed
estimator to calculate the corresponding RHC. For quantitative
evaluations, we use the normalized Euclidean distance function
in (43) to measure the features’ change. A larger distance
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Fig. 10. The changes of the source feature with an increasing change of the
source azimuths.

value denotes the feature changes more significantly. Figure 10
denotes the changes of RHC against increasing value of
the source azimuth change. It is observed that the RHC
changes proportionally to the deviation of source azimuth.
Aforementioned analysis using real recordings verifies the
arguments that the defined feature is source-independent and
mainly depends on the source position. Thus, we conclude that
the RHC contains relevant cues to localize the source position.

3) Localization Using Conversational Recordings: We ex-
actly follow the steps summarized in Figure 4 to complete both
the training and test stages. We use ten measurement groups,
each containing three sound sources at randomly selected
positions within the circular area. Each source uses a unique
speech sentence lasting around 20 s, and the mixed multi-
source recordings measured by the array have an overlapped
ratio of about 30%. Table VIII presents the performance using
all the algorithms. Each number denotes the mean MAEE over
the ten measurements. Improved localization accuracy over the
baselines confirms the relevance of the proposed multi-source
localization approach under real-life scenarios.

4) Localization Using Significantly Overlapped Record-
ings: The aforementioned examinations of the algorithms are
limited to conversational recordings, whose overlapped ratios
are generally mild (e.g., overlapped ratio is 30% or less). In
the remained content, we implement the proposed method at
some unfavorable circumstances where the recordings have
a severe overlapped ratio (e.g., higher than 50%). Figure
11 demonstrates significantly overlapping recordings. Then,
we use the proposed detector to recognize the overlapped
frames. The 4-th and 5-th sub-figure present the calculated
distance to the training set and the detected overlapped periods,
respectively. The results confirm that it successfully detects
most of the overlapped components. We further evaluate the
algorithm’s localization accuracy using such severely over-
lapped recordings. We use ten measurement groups where each
consists of three sound sources. The measured multi-source
recordings have varied overlapped ratios ranging from 50%
to 90%. Table IX reports the localization accuracy using all
the algorithms. The results show slightly degraded localization
accuracy when the overlapped ratio gradually increases. The
reason is the overlapped frame detection accurately isolates
most invalid frames (even when the overlapped ratio is up to
90%), thus all the approaches are then capable to localize the
sources successfully. Being consistent with above evaluations,
the proposed algorithm outperforms the baselines by achieving
improved localization accuracy.
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Fig. 11. Overlapped frame detector for significantly overlapped recordings.
Around 70% of the recordings, in the middle, are overlapped by the three
sources sending out random source signal.

VII. CONCLUSION

This paper has presented a semi-supervised multi-source
localization algorithm in a noisy and reverberant environment,
using a spherical harmonics domain source feature of the
relative harmonic coefficients. Extensive simulations showed
that the proposed algorithm achieved improved localization
accuracy in comparison with the baseline methods tested in
this study. Real-life evaluations confirmed the capability of
this method even at unfavorable cases of severe source over-
lapping recordings. Several aspects of the proposed method are
highlighted: (i) A comprehensive investigation of the relative
harmonic coefficients: including a feature estimator in the
noisy environment, a data-driven feature selector as well as
an overlapped frame detector. (ii) The Multi-Mode Gaussian
Process modeling (MMGP) nicely fuses the source features
at the selected spherical harmonic modes, each represent-
ing a distinct/unique description of the soundfield. (iii) The
unlabeled training samples not only enable a more precise
measurement of the covariance for the MMGP modeling,
but also play an active role in the source feature selection
and overlapped frame detection, while exerting a negligible
influence on the algorithm practicality. While the proposed
method performs better than similar data based methods, some
inherent limitations of it include: (i) the studied biased feature
estimator with relatively short window frames may not fully
cover a strong reverberation, which causes some inconsistency
between the testing and training features in strong reverberant
environments; (ii) current paper mainly considers the over-
lapped recordings so that is unusable for the simultaneous
multi-source recordings, i.e., with an overlapped ratio of
100%. In the near future, we intend to propose a new feature
estimator that better suits for strong noisy and reverberant
environments and then achieve sufficient localization accuracy
for simultaneous multiple source recordings in the complex
environments.

ACKNOWLEDGMENT

The authors would like to thank Lachlan Birnie who assisted
us to record the measurements in the acoustic lab at the
Australian National University and also thank the anonymous
reviewers for their valuable comments and suggestions that
helped to improve the clarity and quality of this manuscript.

REFERENCES

[1] N. Antonello, S. E. De, M. Moonen, P. A. Naylor, and W. T. Van, “Joint
source localization and dereverberation by sound field interpolation
using sparse regularization,” in 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 6892–6896.

[2] A. Fahim, P. N. Samarasinghe, and T. D. Abhayapala, “PSD estimation
and source separation in a noisy reverberant environment using a
spherical microphone array,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 2018.

[3] F. Asano, M. Goto, K. Itou, and H. Asoh, “Real-time sound source
localization and separation system and its application to automatic
speech recognition,” in Seventh European Conference on Speech Com-
munication and Technology, 2001.

[4] Y. Hu, J. Benesty, and G. W. Elko, “Passive acoustic source localization
for video camera steering,” in 2000 IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), vol. 2, pp. 909–912.

[5] C. Evers, H. Loellmann, H. Mellmann, A. Schmidt, H. Barfuss, P. Nay-
lor, and W. Kellermann, “The LOCATA challenge: Acoustic source
localization and tracking,” arXiv preprint arXiv:1909.01008, 2019.

[6] C. Knapp and G. Carter, “The generalized correlation method for
estimation of time delay,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 24, no. 4, 1976.

[7] T. Dvorkind and S. Gannot, “Time difference of arrival estimation
of speech source in a noisy and reverberant environment,” Signal
Processing, vol. 85, no. 1, pp. 177–204, 2005.

[8] K. Yao, J. C. Chen, and R. E. Hudson, “Maximum-likelihood acoustic
source localization: experimental results,” in 2002 IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
vol. 3, pp. 2949–2952.

[9] M. Brandstein and D. Ward, Microphone arrays: signal processing
techniques and applications. Springer Science, 2013.

[10] L. Perotin, R. Serizel, E. Vincent, and A. Guérin, “CRNN-based multiple
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