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Abstract—A data-driven approach for multiple speakers lo-
calization in reverberant enclosures is presented. The approach
combines semi-supervised learning on multiple manifolds with
unsupervised maximum likelihood estimation. The relative trans-
fer functions (RTFs) are used in both stages of the proposed
algorithm as feature vectors, which are known to be related to
source positions. The microphone positions are not known. In the
training stage, a nonlinear, manifold-based, mapping between
RTFs and source locations is inferred using single-speaker
utterances. The inference procedure utilizes two RTF datasets: A
small set of RTFs with their associated position labels; and a large
set of unlabelled RTFs. This mapping is used to generate a dense
grid of localized sources that serve as the centroids of a Mixture
of Gaussians (MoG) model, used in the test stage of the algorithm
to cluster RTFs extracted from multiple-speakers utterances.
Clustering is applied by applying the expectation-maximization
(EM) procedure that relies on the sparsity and intermittency
of the speech signals. A preliminary experimental study, with
either two or three overlapping speakers in various reverberation
levels, demonstrates that the proposed scheme achieves high
localization accuracy compared to a baseline method using a
simpler propagation model.

Index Terms—Manifold-learning, semi-supervised inference,
mixture of Gaussians

I. INTRODUCTION

Speaker localization is an essential component in vari-
ous audio applications, e.g. automated camera steering and
teleconferencing systems, speaker separation [1] and robot
audition [2]. The problem of localizing (and tracking) speakers
has therefore attracted the attention of the research community
for more than two decades. Localizing speakers “in the wild”,
namely in scenarios characterized by noise, reverberation and
multiple competing speakers, is still a challenge. A recent
special issue in IEEE Selected Topics in Signal Processing
[3] was dedicated to audio source localization in real-life
scenarios. Moreover, a recently introduced community-wide
challenge enables fair comparison between various methods
using a common dataset [4]. In the current contribution we
will focus on the problem of multiple concurrent speaker
localization in reverberant environment. We will restrict the
discussion to static scenarios.

Recent years have witnessed a change of paradigm in the
localization literature, with the introduction of learning-based
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methods, many of these are based on supervised learning
of deep neural networks (DNNs) [5]–[8]. Time-frequency
masking is used in [9] to circumvent the need to train the
network with spatial information. Weak supervision employing
ranking-loss is proposed in [10] for reducing the requirements
for labelling the acoustic data.

Each of the above learning-based methods use different
spatial features as the input to the network. In this contribution,
we will use the RTF, as it is known to provide a meaningful
acoustic “fingerprint” uniquely characterizing the source po-
sition [11]. We have also demonstrated that the collection of
RTFs pertain to a low-dimensional acoustic manifold, which
intrinsic degrees of freedom (DoF) are limited to a small
number of variables, namely that the acoustic manifold is
smooth [12]. In a fixed environment and microphone constel-
lation, these acoustic responses intrinsically differ only by the
source position, and can hence be used to infer a nonlinear
mapping from an RTF to source position. This observation
led to the introduction of a dual microphone semi-supervised
localization scheme based on Gaussian process regression
[13]. This concept was later extended to multiple microphone
pairs [14]. The use of multiple features in the Gaussian process
regression was proposed in [15].

While these schemes outperform state-of-the-art methods,
they are still limited to the localization of a single speaker. In
this paper, we extend the manifold-based approach to the case
of multiple speakers with overlapping activity. Our proposed
approach utilizes [14] to generate a dense grid of localized
RTFs using a small amount of labelled data and a large
set of unlabelled acoustic features. Following [16], we show
that these localized RTFs can serve as the centroids of a
MoG model instead of the original centroids, which are only
taking into account the direct sound propagation. Simulation
study demonstrates that the proposed method outperforms the
baseline method [16], especially in high reverberation levels.

II. PROBLEM FORMULATION

Consider an array of M microphone pairs. The microphone
signals in the short-time Fourier transform (STFT) domain are
given by zm,j(t, k) =

∑S
s=1 am,j(t, k,qs)vs(t, k)+nm,j(t, k)

with j = 1, 2 and m = 1, . . . ,M . The speech signals
emanating from speaker s = 1, . . . , S located at position
qs are denoted vs(t, k). The number of speakers S ≥ 1 is
assumed to be a priory known. The acoustic transfer functions
(ATFs) am,j(t, k,qs) are describing the propagation from qs



to microphone j at pair m, and nm,j(t, k) are the additive
noise signals as received by the microphones. The time index
is t = 0, . . . , T − 1 and the frequency bin index is k. These
measurements can be recast in terms of the relative transfer
functions (RTFs):

zm,2(t, k) =

S∑
s=1

hm(t, k,qs)zm,1(t, k) + ñm,2(t, k) (1)

with the first microphone zm,1(t, k) of each node serving as
the reference microphone and ñm,2(t, k) a noise term related
to the noise signals at the microphones. The RTF hm(t, k,qs)
is defined as [17]:

hm(t, k,qs) =
am,2(t, k,qs)

am,1(t, k,qs)
. (2)

We further assume a static scenario, namely hm(t, k,qs) =
hm(k,qs) and define a frequency concatenated vector:

hm(qs) = [hm(k1,qs), . . . , hm(kF ,qs)]
> (3)

with k1, . . . , kF a pre-defined frequency range of length K =
kF − k1 + 1, where reliable RTF estimates can be expected.
Finally, let

h(qs) =
[
h1>(qs), . . . ,h

M>(qs)
]>

(4)

denote the aggregated RTF (aRTF), which is a concatenation
of the RTF vectors of all pair of microphones. The RTF and the
aRTF vectors in (3) and (4), respectively, are known to provide
meaningful fingerprinting for the acoustic environment and are
particularly useful for source localization [11], [12].

III. A COMBINED SEMI-SUPERVISED AND UNSUPERVISED
LOCALIZATION SCHEME

In this section we present a method for localizing sources
with overlapping activity. The method consists of two stages.
In the first, training stage, a sparse grid of RTFs with known
locations and a denser grid of unlabeled RTFs is generated.
These labeled and unlabeled points are jointly used to localize
a dense grid of RTFs by applying the multiple-manifold
Gaussian process (MMGP) algorithm [14]. The outcome of
this training stage is a dense grid of RTFs with associated
positions (although the location information obtained by the
localizer may not be perfectly accurate). In the second stage,
the actual localization of multiple (concurrent sources) is
carried out, by employing the MoG model [16], with the
previously localized dense grid as the Gaussians’ centroids.

A. The Feature Vectors

We have already defined in (3) the RTF-based feature vector
(at the mth node), hm(qs), which is associated with speaker
s ∈ {1, . . . , S}, located at position qs. Since in our scenario
multiple speakers can be concurrently active, we do not have
access to the separated sources and hence cannot estimate
the RTFs using the entire utterance. Instead, we define the
instantaneous RTF (iRTF), which was shown to facilitate
tracking of a single acoustic source [18], and in our case will

facilitate localization of arbitrary activity patterns of multiple
overlapping speakers.

The iRTF at node m and time-frequency bin (t, k) is
estimated as:

ĥm(t, k) =
1

2L+1

∑t+L
i=t−L zm,1(i, k) · z∗m,2(i, k)

1
2L+1

∑t+L
i=t−L |zm,1(i, k)|2

, (5)

where the denominator and numerator are the power spectral
density (PSD) and the cross-PSD (cPSD) estimates at node m,
respectively, using Bartlett method with L ≥ 0 to robustify
the PSD estimation accuracy. If only a single (static) source
is present in the scene, L can be increased to cover the entire
speech utterance. In that case, ĥm(t, k) in (5) will converge
to the RTF hm(t, k,qs) in (2) of the active speaker located in
qs. If more than one source is active in the scene, i.e. S > 1,
then L should be kept small enough to capture the activity of
all sources. In the training phase only one source is active,
therefore we use L � 1. In the test phase when concurrent
speaker activity is assumed we use a small value for L.

Similarly to the RTFs and aRTF defined in (2) and (4),
respectively, their respective instantaneous estimate can now
be defined:

ĥm(t) =
[
ĥm(t, k1), . . . , ĥm(t, kF )

]>
(6a)

ĥ(t) =
[
ĥ1>(t), . . . , ĥM>(t)

]>
. (6b)

Utilizing the W-disjoint orthogonality (WDO) property of
speech signals [19] and assuming high signal-to-noise ratio
(SNR), the frequency bins of the iRTF are assumed to be
dominated by at most a single speaker RTF (see also [20]).
This property will be the basis of the MoG clustering ap-
proach, discussed in Sec. III-C. Note that although we focus
on static scenarios, i.e. hm(t, k,qs) = hm(k,qs), the iRTF
is time-varying to enable capturing the speakers’ intermittent
activities.

B. Manifold-based Grid Generation

In the training stage we use the MMGP algorithm [14]
to generate a dense grid of positions associated with RTFs.
The MMGP algorithm starts with a sparse grid of labelled
points, namely RTF with associated positions. As measuring
positions in a room is a tedious task, only a small number
of labeled points is assumed to be available. The role of the
MMGP algorithm is therefore to generate a much denser grid
of points. For that, it will use many utterances of speech
signals from random positions in the region of interest (RoI),
without measuring their precise positions. The algorithm in
[14] is only capable of localizing a single source and will
therefore require a subsequent localization stage that will be
applied in the test phase.

For localizing a source, we first define a mapping function,
associated with the mth node, fm : Mm → R, which
maps the ith RTF sample hm

i ∈ Mm to the corresponding
source position, namely pmi ≡ fm(hm

i ). This mapping is
independently applied for each Cartesian coordinate. The



coordinate index is omitted for brevity. Note that although the
position of the source does not depend on the specific node,
the notation pm is used to express that the mapping is obtained
from the point of view of the mth node. We also assume that
the mapping function fm(·) obeys a Gaussian process.

We further define the scalar function f : ∪Mm=1Mm → R
which attaches an aRTF sample hi with the (coordinate of the)
source position, pi ≡ f(hi). To fuse the different perspectives
presented by the different nodes, we define the multiple-
manifold Gaussian process (MMGP) pi as the mean of the
Gaussian processes of all the nodes, i.e. each position pi drawn
from this process, is given by:

pi =
1

M

(
p1i + p2i + . . .+ pMi

)
. (7)

Due to the assumption that the processes are jointly Gaussian,
the process pi is also Gaussian with zero-mean and covariance
k̃:

pi ∼ GP(0, k̃). (8)

The covariance between two positions pr and pl is given by:

cov(pr, pl) ≡ k̃(hr,hl) =

1

M2

n∑
i=1

M∑
q,w=1

kq(hq
r,h

q
i )kw(hw

l ,h
w
i ). (9)

where n = nL + nU is the total number of training points
including nL labelled points and nU unlabelled points.

In (9), km is a standard pairwise function km : Mm ×
Mm −→ R, often termed “kernel function”. A common
choice is the Gaussian kernel, with a scaling factor εm:

km(hm
i ,h

m
j ) = exp

{
−
‖hm

i − hm
j ‖2

εm

}
. (10)

The definition of the covariance in (9), induces a new type
of manifold-based kernel that takes into account all training
points and all points of view of the different nodes.

Define the set of measured positions PL = {p̄i}nL
i=1 of the

labelled set arising from a noisy observation model, given by:

p̄i = pi + ηi; i = 1, . . . , nL (11)

where ηi ∼ N (0, σ2
p) i = 1, . . . , nL are i.i.d. Gaussian noises,

independent of pi. The noise in (11) reflects uncertainties
due to imperfect measurements of the source positions while
acquiring the labelled set. Note that since the Gaussian vari-
ables pi and ηi are independent, they are jointly Gaussian.
Consequently, pi and p̄i are also jointly Gaussian.

To localize the position of a new test RTF ht of source
from an unknown position, we propose an estimator based
on the posterior probability Pr(pt = f(ht)|PL,HL,HU ),
where HL,HU are the set of labelled and unlabelled RTFs,
respectively. According to (11) and (8), the function value at
the test point pt and the concatenation of all labelled training
positions p̄L = [p̄1, . . . , p̄nL

]
> are jointly Gaussian, with

probability density function (p.d.f.):[
p̄L

pt

] ∣∣∣∣HL,HU ∼ N
(

0nL+1,

[
Σ̃L + σ2

pInL
Σ̃Lt

Σ̃>Lt Σ̃t

])
(12)

where Σ̃L is an nL × nL covariance matrix defined over the
function values at the labelled samples inHL, Σ̃Lt is an nL×1
covariance vector between the function values of the labelled
RTFs in HL and pt, Σ̃t is the variance of pt, and InL

is
the nL×nL identity matrix. This implies that the conditional
distribution Pr(pt|p̄L,HL,HU ) is a multivariate Gaussian with
the following mean and variance:

p̂t = Σ̃>Lt

(
Σ̃L + σ2

pInL

)−1
p̄L (13a)

Var(p̂t) = Σ̃t − Σ̃>Lt

(
Σ̃L + σ2

pInL

)−1
Σ̃Lt. (13b)

Although the unlabelled samples do not appear explicitly
in (13a),(13b), they do take a role in the computation of the
correlation terms, as implied by (9). In fact, the unlabelled
samples are an essential component in inferring the manifold
structure, hence facilitating a more accurate representation of
the high-dimensional RTF samples. The training procedure
can be applied to any point in the region of interest. In our
implementation it is used to localize all RTFs in the unlabelled
set HU , resulting in a set of associated positions PU .

The entire MMGP algorithm for a single source localization
is summarized in Algorithm 1.

Input : Microphone signals from a single source
zm,i(t, k); m = 1, . . . ,M, i = {1, 2}

Data: Set of labelled RTFs in HL associated with a
set of (noisy) positions PL; Set of unlabelled
RTFs in HU ; Test RTF ht

Output: Position estimate p̂t associated with ht

1 Estimate RTFs using (5),(6a),(6b) with L� 1
2 Calculate multi-manifold covariance matrix entries

Σ̃lr = cov(pr, pl) using (9)
3 Localize the source using (13a):

p̂t = Σ̃>Lt

(
Σ̃L + σ2

pInL

)−1
p̄L

Algorithm 1: MMGP algorithm for single source
localization. The algorithm can be applied to any
point in the RoI, including all ht ∈ HU , resulting
in a set of associated positions PU .

C. Multiple Sources Localization using MoG Clustering

In the test phase, we wish to localize multiple sources
with overlapping activity patterns. According to the WDO
property of the speech signals [19], even if multiple sources
are concurrently active, each of the time-frequency (TF) bins
of the received microphone signals in the STFT domain is
dominated by only a single source. This property can be
utilized to cluster feature vectors using any unsupervised
clustering approach, e.g. by maximizing the likelihood of the
parameters of a MoG model. Following [1], [16], we do not
estimate the centroids of the Gaussians in the MoG model,
but rather assume that they are set in advance to a predefined
grid points. While originally [16], the grid points were set
according to a regular grid of positions, here we use the set of



RTFs that were localized in the training stage. We therefore
define the set of grid points as all hm(t, k,p), m = 1, . . . ,M
in the labelled and unlabelled sets with p ∈ P = PL ∪ PU .
As these RTFs are already localized in the training stage, they
can be organized according to their position, and thus serve as
the centroids of Gaussians. Assuming independence across the
TF bins and between nodes, the p.d.f. of the entire utterance
can be written as:

f(ĥ(t = 1, . . . , T )) =

T∏
t=1

kF∏
k=k1

. . .

∑
p∈P

ψp

M∏
m=1

N c(ĥm(t, k);hm(t, k,p), σ2) (14)

with

N c(ĥm(t, k);hm(t, k,p), σ2) =

1

πσ2
exp

(
−|ĥm(t, k)− hm(t, k,p)|2

σ2

)
. (15)

Note the difference between the labelled and unlabelled points.
While the former are accurately localized with small measure-
ment noise σ2

p, the latter are only known up to the localization
accuracy of the training stage, as given in (13b). For simplicity,
we neglect this difference and assume fixed variance for all
Gaussians and that these localized RTFs can indeed serve as
grid points in the clustering scheme. Furhermore, this variance
σ2 is not estimated by the algorithm but rather set empirically.

Now, the EM procedure can be straightforwardly applied
to estimate the parameters of MoG model. As all other
parameters are set in advance, the only parameters to be
determined are ψp, p ∈ P .

For applying the EM procedure we define the hidden data as
x(t, k,p), the indicator function associating each TF bin of the
iRTF ĥm(t, k) to one of the grid positions hm(t, k,p). The E-
step at iteration ` = 1, . . . , L then estimates a soft association
of a TF bin to a grid point:

µ(`)(t, k,p) , E
{
x(t, k,p)|ĥ(t); ψ̂(`−1)

p

}
=

ψ̂
(`−1)
p

∏
mN c(ĥm(t, k);hm(t, k,p), σ2)∑

p ψ̂
(`−1)
p

∏
mN c(ĥm(t, k);hm(t, k,p), σ2)

(16)

and the M-step provides an estimate the MoG weights:

ψ̂(`)
p =

∑T
t=1

∑kF

k=k1 µ
(`)(t, k,p)

T ·K
. (17)

As the number of active sources in the scene are assumed
to be known in advance, their position can be estimated by
finding the S highest peaks of the weight map after the last
EM iteration:

ps = argmax
p

ψ
(L)
p , s = 1, . . . , S. (18)

The weight map is uniformly initialized in the RoI, namely
ψ
(0)
p = 1

|P| . An alternative method to utilize the intermittent

activity of the speakers is presented in [21]. The method
incorporates a diarization stage and a data reliability measure
to improve the MoG-based clustering.

Note that in the original unsupervised localization scheme
in [16], the feature vectors are selected as the pair-wise relative
phase ratios (PRPs), namely zm,1(t,k)

zm,2(t,k)
· |zm,2(t,k)|
|zm,1(t,k)| and the

Gaussian centrods as

exp

(
−j 2πk

K

·(||p− pm,2|| − ||p− pm,1||)
c · Ts

)
. (19)

IV. EXPERIMENTAL RESULTS

A. Setup

1) Signal and Room Parameters: A room with dimensions
5.2×6.2×3.5 m was simulated. Defining the left lower corner
of the room as the origin of the coordinate system, the RoI is
defined as [2, 4]× [2, 4] m in both the x and y axes and 1.5 m
in the z-axis. Eight pairs of microphones with microphone
inter-distance of 0.2 m were placed in the perimeter of the
RoI. The speech measurements were simulated by convolving
speech utterances drawn from the TIMIT corpuswith impulse
responses simulated by a room impulse response (RIR) gener-
ator.1 A spatially and spectrally white Gaussian noise (WGN)
was added to all microphone signals with SNR=20 dB. The
signals were analyzed by an STFT with 1024 frequency bins
and 75% overlap between frames. Only bins corresponding to
the frequency range 150− 1500 Hz were considered.

2) Algorithm Parameters: In the training phase, the algo-
rithm starts with a sparse grid of nL = 49 labelled samples,
creating a uniform grid with 33 cm resolution in both x-axis
and y-axis. The RTFs associated with the labelled positions
were estimated using a WGN signal. We then estimated
nU = 400 unlabelled RTFs, by transmitting speech signals
from random positions in the RoI. The kernel variance εm
was set to 5000 for all nodes. The standard deviation of the
labelled positions was set to σp = 0.71 cm.

In the test stage, two- and three-speakers’ scenarios were
considered. The source signals were randomly drawn from
the TIMIT database. The source positions were randomized
in the RoI with minimum distance between sources of 0.3 m.
The variance of all Gaussians in the MoG model were set to
σ2 = 1. For estimating the iRTFs we used L = 3.

B. Results

As a baseline method we selected the unsupervised method
described [16]. In Table I the position estimation error (in
meters), averaged over 100 Monte-Carlo trials, is depicted.
First, the localization accuracy as a function of the activity
overlap between the sources for the two speakers scenario in
mild reverberation level T60 = 0.3 s is depicted, demonstrating
that the algorithm gracefully degrade as the overlap percentage
between the sources’ activity increases. We then depict the
localization accuracy with full activity overlap (concurrent
speakers) for both two and three speakers scenarios and
for three reverberation levels: T60 = 0.3, 0.5, 0.7 s. It is

1Available at https://github.com/ehabets/RIR-Generator



TABLE I: Comparison between the proposed method and
the baseline method [16], averaged over 100 trials. T60 =
0.3, 0.5, 0.7 s, two- or three-speakers and various overlap
percentage. SNR=20 dB, M = 8 for all tests.

T60 [s] S [#] Overlap [%] Proposed [m] Baseline [16] [m]

0.3 2 0 0.11 0.33
0.3 2 25 0.11 0.35
0.3 2 50 0.13 0.38
0.3 2 75 0.14 0.41
0.3 2 100 0.15 0.44
0.5 2 100 0.18 0.50
0.7 2 100 0.20 0.69
0.3 3 100 0.20 0.44
0.5 3 100 0.21 0.54
0.7 3 100 0.23 0.69

(a) (b)

(c) (d)
Fig. 1: Probability maps ψp. The red ‘+’ marks denote the
ground-truth speakers locations. T60 = 0.3 s. Both two-
speakers (a)+(b) and three-speakers (c)+(d) scenarios are pre-
sented. The maps of a clustering algorithm using nL = 49
labelled points as centroids, are presented in (a)+(c) and using
n = 449 labeled and unlabeled points in (b)+(d).

clearly demonstrated that the proposed method maintains high
estimation accuracy even in high reverberation level and that it
outperforms the baseline, unsupervised, method in all scenar-
ios. Recall that the method in [16] requires the microphone
positions. The probability maps ψp after the Lth iteration
of two trials are depicted in Fig. 1 for both the two- and
three-speakers scenarios for T60 = 0.3 s. It can be verified
that the probability maps peak at the correct source positions.
As a comparison we also present the interpolated probability
maps using similar EM-based clustering that only uses the
labelled RTFs as centroids. Despite the lower resolution, these
maps still peak close to the correct positions. Only a small
advantage of the higher resolution maps is demonstrated.
Future study will investigate the robustness of the proposed
two-stage approach to the grid density and the noise level.
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