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Abstract—This paper presents a fully Bayesian hierarchical
model for blind audio source separation in a noisy environment.
Our probabilistic approach is based on Gaussian priors for the
speech signals, Gamma hyperpriors for the speech precisions and
a Gamma prior for the noise precision. The time-varying acoustic
channels are modelled with a linear-Gaussian state-space model.
The inference is carried out using a variational Expectation-
Maximization (VEM) algorithm, leading to a variant of the multi-
speaker multichannel Wiener filter (MCWF) to separate and
enhance the audio sources, and a Kalman smoother to infer the
acoustic channels. The VEM speech estimator can be decomposed
into two stages: A multi-speaker linearly constrained minimum
variance (LCMV) beamformer followed by a variational multi-
speaker postfilter. The proposed algorithm is evaluated in a static
scenario using recorded room impulse responses (RIRs) with two
reverberation levels, showing superior performance compared to
competing methods.

Index Terms—Audio source separation, Variational EM.

I. INTRODUCTION

A fundamental problem in the field of audio signal process-
ing is the blind separation of multiple speakers from a mixture
signal, recorded in a noisy environment. A common solution
is to construct the multi-speaker MCWF beamformer, which
is the multichannel minimum mean squared error (MMSE)
estimator of the desired speakers, assuming that the signal
components are Gaussians [1]. The design of the MCWF
requires the estimation of several acoustic parameters, namely
the relative transfer function (RTF) matrix, the source power
spectral density (PSD) and the noise covariance matrix. These
parameters can be jointly estimated using the maximum like-
lihood (ML) or maximum a posteriori (MAP) criteria. When
the resulting optimization problem is complex, the Expectation
Maximization (EM) algorithm [2] is a solution that iteratively
decomposes the problem into several smaller optimization
problems involving subsets of parameters, which are solved
separately.

In the Bayesian framework, model parameters are viewed as
random variables having a prior probability density function
(PDF), rather than deterministic unknown parameters. This
approach allows us to include prior knowledge and to ex-
plore uncertainty in the model. Rather than point estimates,
the inference process is based on the entire posterior PDF,
and thus the obtained estimators are more robust and less
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sensitive to local maxima [3]. Hierarchical Bayesian models
use a multi-level modeling to capture important dependencies
among parameters. However, the posterior distribution might
be intractable in complex Bayesian models, and thus the EM
algorithm cannot be applied. The variational approach [3]–
[5] circumvents this difficulty by approximating the posterior.
Recently, several works utilized the VEM method for speech
enhancement [6]–[9] and speech dereverberation [10], [11].

In [12], the problem of blind audio source separation is
addressed using the EM algorithm, which simultaneously
estimates the speech signals and the model parameters. The
source signals in the short-time Fourier transform (STFT)
domain are modelled as complex-Gaussians, and their PSD
with a non-negative matrix factorization (NMF) model. The
acoustic transfer function (ATF) matrix, assumed to be time-
invariant, is modelled as a deterministic unknown parameter.
Bayesian extensions for the NMF factors can be found in,
e.g., [13], [14]. Adopting the NMF framework of [12], the
problem of separating moving sound sources is addressed in
[15], by modeling the time-varying ATF matrix as a set of
temporally-linked latent variables, parametrized with a first-
order Markov model. Due to the complex structure, the pos-
terior distribution is intractable, and the variational approach
is adopted. By modeling the speech signals and the acoustic
channels as latent variables, their posterior distribution are
jointly estimated in the E-step. However, the authors did not
adopt a fully Bayesian model, since the source PSD and
the noise covariance matrix are still deterministic unknown
parameters, for which point estimates are computed in the M-
step. Moreover, the results are highly sensitive to the initial
values of the NMF parameters. Note also that only the case
of spatially white noise field is considered in [12], [15].

Recently, several deep neural network (DNN)-based meth-
ods were proposed for source separation, e.g. [16], [17].
These methods require training data, specifically reverberant
utterances in multiple acoustic environments, thus motivating
the use of blind source separation techniques, as the proposed
method. Other common blind methods are independent vector
analysis (IVA) [18] and independent low-rank matrix analysis
(ILRMA) [19], which unifies IVA and NMF frameworks.

In this work, we propose a fully Bayesian model for
blind separation of moving speakers in noisy conditions. We
introduce a hierarchical model based on Gaussian priors for
the speech signals and Gamma hyperpriors for the speech
precisions. For the time-varying RTF, the probabilistic model



of [15] is adopted. The noise is modelled as a spatially
homogeneous sound field, and a Gamma prior is assumed
on the noise precision. As the precisions are modelled as
latent random variables, their posterior distribution are inferred
through a VEM algorithm. Inspired by the decomposition of
the multi-speaker MMSE estimator, i.e. the MCWF, into a
multi-speaker LCMV beamformer followed by a subsequent
multi-speaker Wiener postfilter [20], we show that the VEM
multi-speaker estimator has an analogous decomposition. Sim-
ilarly to the MCWF, it includes an LCMV beamformer as
an initial stage. However, the multi-speaker Wiener postfilter
is substituted by a variational multi-speaker postfilter, which
takes into account the uncertainty in the RTF estimate and
weights accordingly the LCMV outputs.

II. PROBLEM FORMULATION

A. Signal Model

Consider a mixture of J speakers received by N micro-
phones, in a noisy acoustic environment. We work in the STFT
domain, where k ∈ {1, . . . ,K} denotes the frequency band,
and ` ∈ {1, . . . , L} is the time frame. The N -channel mea-
surement signal x(`, k) = [x1(`, k), · · · , xN (`, k)]> writes

x(`, k) = A(`, k)s(`, k) + u(`, k), (1)

where s(`, k) = [s1(`, k), s2(`, k), · · · , sJ(`, k)]> is the vec-
tor of the speech signals as received by the first micro-
phone (designated as the reference microphone), A(`, k) =
[a1(`, k), · · · ,aJ(`, k)] is the N×J RTF matrix and u(`, k) =
[u1(`, k), · · · , uN (`, k)]> is the additive noise.

The J speech signals are modelled as independent
zero-mean Gaussian random variables, having distinct
precisions, denoted by τ (`, k) = [τ1(`, k), · · · , τJ(`, k)]>.
The PDF of the speech vector s therefore writes
p
(
s(`, k)|τ (`, k)

)
= Nc

(
s(`, k); 0, diag−1

(
τ (`, k)

))
.

The noise is modelled as a zero-mean multivariate Gaussian
with p

(
u(`, k)|Φu(k)

)
= Nc

(
u(`, k); 0,Φu(k)

)
. The noise

is assumed to be a spatially homogeneous sound field,
i.e. Φu(k) = β−1(k)Γ(k), where β(k) is the inverse
power of the noise and Γ(k) is a spatial coherence matrix,
assumed to be known. The conditional data distribution
is therefore given by p

(
x(`, k)|A(`, k), s(`, k), β(k)

)
=

Nc
(
x(`, k); A(`, k)s(`, k), β−1(k)Γ(k)

)
.

Let v(`, k) denote the column-wise vectorization of A(`, k),
i.e. v(`, k) , vec(A(`, k)) = [a>1 (`, k) · · ·a>J (`, k)]> ∈ CNJ .
In many realistic scenarios, the audio channel might be time-
varying. Thus, the RTF matrix is modelled as a set of
temporally-linked continuous latent variables, parameterized
with a first-order linear dynamical system (LDS), as in [15]:

p
(
v(1, k)

)
= Nc

(
v(1, k);µv(k),Φv(k)

)
, (2)

p
(
v(`, k)|v(`− 1, k)

)
= Nc

(
v(`, k); v(`− 1, k),Φv(k)

)
,
(3)

with the mean vector µv(k) ∈ CNJ and the covariance matrix
Φv(k) ∈ CNJ×NJ . For brevity, v(1:L, k) = {v(`, k)}L`=1

denotes the entire sequence of RTFs at frequency k.

aj(`), bj(`) τ (`) s(`)

µv,Φv v(`)

x(`) β c0, d0

v(`− 1)

Fig. 1: Graphical model (Frequency index is omitted).

B. Conjugate Priors

In the Bayesian framework, it is common to introduce
probabilistic priors over the latent variables, which allows us
to take into account the uncertainty in the model. We therefore
establish a generative hierarchical model by introducing priors
with unknown parameters on the precisions of the speakers and
the noise. The conjugate prior for the precision of a univariate
Gaussian is the Gamma distribution [5]. Hence, the prior for
the speech precisions is given by:

p
(
τ (`, k)

)
=

J∏
j=1

Gam
(
τj(`, k); aj(`, k), bj(`, k)

)
. (4)

Similarly, we assume a Gamma prior for the noise precision:

p
(
β(k)

)
= Gam

(
β(k); c0(k), d0(k)

)
. (5)

The proposed hierarchical model is illustrated in Fig. 1.

III. VARIATIONAL EM FOR SOURCE SEPARATION

In this work, the set of observations is denoted
by X = {x(`, k)}L,K`,k=1, the set of hidden variables

consists of H =
{
s(`, k),v(`, k), τ (`, k), β(k)

}L,K
`,k=1

,
and the parameter set consists of Θ ={
aj(`, k), bj(`, k), c0(k), d0(k),µv(k),Φv(k)

}L,K,J
`,k,j=1

.
Bayesian inference aims to infer the latent variables
according to their posterior mean (PM). To this end, it is
required to compute the posterior distribution of the hidden
variables p(H|X ; Θ) = p(X ,H; Θ)/p(X ; Θ). In our model,
the complete-data distribution writes

p(X ,H; Θ) =

L,K∏
`,k=1

[
p
(
x(`, k)|A(`, k), s(`, k), β(k)

)
× p
(
s(`, k)|τ (`, k)

) J∏
j=1

p
(
τj(`, k); aj(`, k), bj(`, k)

)]
×

K∏
k=1

[
p
(
β(k); c0(k), d0(k)

)
p
(
v(1, k);µv(k),Φv(k)

)
×

L∏
`=2

p
(
v(`, k); v(`− 1, k),Φv(k)

)]
. (6)

Due to the complex form of (6), the likelihood p(X ; Θ) =∫
p(X ,H; Θ)dH cannot be computed analytically and thus

exact inference becomes intractable. We therefore propose
a variational inference procedure, which approximates the
posterior q(H) ≈ p(H|X ; Θ). According to the mean field
theory [4], [21], we assume that the speech signals, RTF
matrix, speech precisions and noise precision are conditionally



independent given the observations. Hence, the approximate
posterior distribution can be factorized as:

q(H)=

L,K∏
`,k=1

[
q
(
s(`, k)

)
q
(
τ (`, k)

)] K∏
k=1

[
q
(
β(k)

)
q
(
v(1:L, k)

)]
.

(7)

The VEM procedure consists in iterating the following two
steps until convergence. In the E-Step, the approximate pos-
terior distribution of each subset Hi ⊂ H is computed by [5]:

ln q(Hi) = Eq(H/Hi)[ln p(X ,H; Θ)] + const, (8)

where q(H/Hi) is the approximate joint posterior distribution
of all latent variables, excluding Hi. In the subsequent M-
step, the expected log-likelihood of the complete-data L(Θ) =
Eq(H)[ln p(X ,H; Θ)] is maximized w.r.t. the parameters Θ.
For brevity, the frequency bin index k is henceforth omitted.

A. E-s Step

The approximate posterior PDF of the sources is obtained
from (6) and (8) by identifying the terms that depend on s(`):

ln q(s(`)) ∝ Eq(A(`))q(τ(`))q(β)

[
ln p
(
x(`)|A(`), s(`), β

)
+ ln p

(
s(`)|τ (`)

)]
. (9)

It can be shown that (9) yields a Gaussian distribution
q (s(`)) = Nc

(
s(`); ŝ(`),Σs(`)

)
, with

Σs(`) =
(
β̂E[AH(`)Γ−1A(`)] + diag

(
τ̂ (`)

))−1
, (10)

ŝ(`) = Σs(`)Â
H(`)β̂Γ−1x(`), (11)

where Â(`), β̂, τ̂ (`) are posterior statistics that will be defined
in the following sections. For brevity, let T̂(`) , diag

(
τ̂ (`)

)
.

The remaining expectation term in (10) can be simplified
as follows. Let Û(`) , E[AH(`)Γ−1A(`)] ∈ CJ×J [15].
In Section III-B, the vectorized PM of A(`) and the cor-
responding covariance matrix are defined by v̂(`) ∈ CNJ
and Σv(`) ∈ CNJ×NJ , respectively. Let Σrj

v (`) denote the
(r, j)-th N × N sub-block of Σv(`), where r, j = 1, . . . , J .
Note that

[
Û(`)

]
jr

= E[aH
j Γ−1ar(`)] = âH

j (`)Γ−1âr(`) +

Tr
[
Σrj

v (`)Γ−1
]
. We conclude that Û(`) = ÂH(`)Γ−1Â(`) +

Ψ(`), where Â is the matrix form of v̂, and [Ψ(`)]jr ,
Tr
[
Σrj

v (`)Γ−1
]
. It follows that

ŝ(`) =
(
ÂH(`)β̂Γ−1Â(`) + β̂Ψ(`) + T̂(`)

)−1
× ÂH(`)β̂Γ−1x(`). (12)

The speech signals can be estimated by the PM, namely ŝ(`),
with the covariance matrix Σs(`). The second-order posterior
moment is defined by Qs(`) = ŝ(`)ŝH(`) + Σs(`). Note that
in the single-speaker case, the solution reduces to that of [7].

The form of (12) resembles the multi-speaker MCWF [1]:

ŝMCWF(`) =
(
ÂH(`)β̂Γ−1Â(`) + T̂(`)

)−1
× ÂH(`)β̂Γ−1x(`), (13)

except the term β̂Ψ(`). In [20], the multi-speaker MCWF is
decomposed into a multi-speaker LCMV beamformer followed
by multi-speaker Wiener postfilter. In a similar way, ŝ(`) in
(12) can be recast as

ŝ(`)=
(
ÂH(`)β̂Γ−1Â(`) + β̂Ψ(`) + T̂(`)

)−1
ÂH(`)β̂Γ−1Â(`)︸ ︷︷ ︸

HH(`)

×
(
ÂH(`)Γ−1Â(`)

)−1
ÂH(`)Γ−1︸ ︷︷ ︸

WH
LCMV(`)

x(`). (14)

Due to RTF estimation errors, there might be a leakage
between sources at the output of the LCMV stage. The multi-
speaker Wiener postfilter reduces this leakage and enhances
the LCMV outputs [20]. However, it treats the RTF estimator
Â(`) as a point estimator, and ignores its uncertainty. In
contrast, the proposed method views the RTF as a random vari-
able, whose posterior distribution encapsulates the uncertainty
about the parameter. Thus, it includes a multi-speaker postfilter
H(`) that takes into account the uncertainty level, expressed
by Σv(`), and weights accordingly the LCMV outputs. When
Σv(`)→ 0, then Ψ(`)→ 0 and ŝ(`) reduces to ŝMCWF(`).

B. E-v Step

With (8), the joint posterior PDF of the RTF sequence writes

ln q(v(1:L)) ∝
L∑
`=1

Eq(s(`))q(β)
[

ln p
(
x(`)|A(`), s(`), β

)]
+ ln p

(
v(1:L)

)
. (15)

The first term of (15) can be reduced to a Gaussian
distribution [15] Nc

(
µL(`); v(`),ΦL(`)

)
, with µL(`) =

vec
(
x(`)ŝH(`)Q−1s (`)

)
, and ΦL(`) =

(
Q>s (`)⊗ β̂Γ−1

)−1
,

where ⊗ denotes the Kronecker product.1 Since the second
term of (15) is also a Gaussian, it follows that (15) is
a first-order LDS [5] over {v(`)}L`=1. Thus, the marginal
posterior PDF is Gaussian, q(v(`)) = Nc(v(`); v̂(`),Σv(`)),
which can be recursively calculated with the Kalman
smoother [5], using µL(`), ΦL(`) and Φv. Hence, the
RTF can be estimated by v̂(`), with uncertainty Σv(`).
The pair-wise joint posterior distribution of two succes-
sive frames, required to update Φv in Section III-E, is
obtained by marginalizing out all other frames in (15):
q
(
v(`),v(`−1)

)
= Nc

( [
v(`)>,v(`− 1)>

]>
; aξ(`),Σξ(`)

)
,

where aξ(`) ∈ C2NJ and Σξ(`) ∈ C2NJ×2NJ . The second-
order joint posterior moment is Qξ(`) = Σξ(`) + aξ(`)a

H
ξ (`).

C. E-τ Step

Using (8), the posterior PDF of the speech precisions writes

ln q(τ (`)) ∝ Eq(s(`))
[

ln p
(
s(`)|τ (`)

)]
+

J∑
j=1

ln p
(
τj(`); aj(`), bj(`)

)
, (16)

1The proof follows by standard properties of the Kronecker product [22].



which is a product of J independent Gamma distributions:

q(τ (`)) =
J∏
j=1

Gam
(
τj(`); ap,j(`), bp,j(`)

)
, with

ap,j(`) = aj(`) + 1 , bp,j(`) = bj(`) + ̂|sj(`)|2, (17)

where ̂|sj(`)|2 = [Qs(`)]jj . Thus, the PM estimate for the
precision of the jth speaker writes:

τ̂j(`) =
ap,j(`)

bp,j(`)
=

aj(`) + 1

bj(`) + ̂|sj(`)|2
, j = 1, . . . , J. (18)

Note that if τj(`) was modelled as a deterministic un-
known parameter, the following point estimator was ob-
tained τ̂j,D(`) = 1/ ̂|sj(`)|2. Interestingly, when using a non-
informative Gamma prior, i.e. aj(`) = bj(`) = 0 [5], the VEM
posterior estimate in (18) coincides with the deterministic
estimate.

D. E-β Step

Similarly, the posterior PDF of the noise precision writes:

ln q(β) ∝
L∑
`=1

Eq(s(`))q(A(`))

[
ln p
(
x(`)|A(`), s(`), β

)]
+ ln p(β; c0, d0), (19)

leading to a Gamma distribution: q(β) = Gam(β; cp, dp), with

cp = c0 +NL, (20)

dp = d0 +

L∑
`=1

(
xH(`)Γ−1x(`)− 2<

{
xH(`)Γ−1Â(`)ŝ(`)

}
+ Tr

[
Qs(`)

(
ÂH(`)Γ−1Â(`) + Ψ(`)

)])
. (21)

Hence, the PM estimate for the noise precision writes:

β̂ =
cp
dp

=
c0 +NL

dp
. (22)

Treating the inverse noise power as a deterministic unknown
parameter as in [15], leads to the following point estimator:

β̂−1D =
1

NL

L∑
`=1

(
xH(`)Γ−1x(`)− 2<

{
xH(`)Γ−1Â(`)ŝ(`)

}
+ Tr

[
Qs(`)

(
ÂH(`)Γ−1Â(`) + Ψ(`)

)])
. (23)

Note that dp = d0 + NLβ̂−1D , hence (22) becomes β̂ =
c0+NL

d0+NLβ̂
−1
D

. Letting c0, d0 approach zero, β̂ = β̂D.

E. M Step

The parameters are now estimated by maximizing the
expected log-likelihood of the completed data L(Θ) =
Eq(H) [ln p(X ,H; Θ)] w.r.t. Θ. We obtain the following up-

dates:

aj(`) = Ψ−1
[
Ψ(ap,j(`)) + ln

bj(`)

bp,j(`)

]
, j = 1, . . . , J

bj(`) =
aj(`)

ap,j(`)
bp,j(`), j = 1, . . . , J

c0 = Ψ−1
[
Ψ(cp) + ln

d0
dp

]
, d0 =

c0
cp
dp , µv = v̂(1),

Φv =
1

L

(
Σv(1) +

L∑
`=2

(
Qξ,11(`)−Qξ,12(`)−Qξ,21(`)

+Qξ,22(`)
))

, (24)

where Ψ(·) is the digamma function and Qξ,np(`), (n, p) ∈
{1, 2} are NJ ×NJ non-overlapping subblocks of Qξ(`).

IV. PERFORMANCE EVALUATION

A. Simulation Setup

Our experiments consist of two concurrent speakers in a
static scenario. Dynamic scenarios are left for future study.
Room impulse responses (RIRs) were downloaded from an
open-source database recorded in our lab [23]. The room
dimensions are 6 × 6 × 2.4 m and the reverberation time
was set to T60 ∈ {160, 360} msec. The RIRs correspond
to a uniform linear array (ULA) of N = 8 microphones
with inter-distances of 8 cm. Loudspeakers were positioned
at 1 m distance from the array, at different angles in the
set {−90◦,−75◦,−60◦, . . . , 90◦}. The measured signals were
generated by convolving the RIRs with TIMIT utterances [24].
The performance is evaluated by averaging over 10 mixtures
of two speakers, with randomly selected utterances and angles.
An artificial diffuse noise with speech-like spectrum was
generated by the method described in [25], with various signal
to noise ratio (SNR) levels. The sampling rate was 16 kHz and
the STFT frame length was 128 ms with 75% overlap.

B. Performance Measures and Competing Methods

The source separation performance is evaluated in terms of
two common objective measures, namely signal-to-distortion
ratio (SDR) and signal-to-interference ratio (SIR) [26]. The
reported results are average scores over the 2 sources and over
the 10 experiments described above.

The performance of the proposed algorithm is compared to
the method in [15], denoted as NMF-VEM.2 For both methods,
the RTF of each speaker was initialized with a simplified
RTF matrix, using only the time difference of arrival (TDOA)
w.r.t. the first microphone. The rest of the parameters were
initialized blindly, except for the NMF parameters in the NMF-
VEM, for which a semi-blind procedure was applied, where
each source was corrupted by adding the other source with
equal power [15]. The number of VEM iterations was 5.

We also compare the proposed method with ILRMA [19].3

Note that ILRMA is restricted to time-invariant mixing sys-

2Available at https://team.inria.fr/perception/research/vemove/
3Available at https://github.com/d-kitamura/ILRMA



TABLE I: SDR Scores

T60 = 160msec T60 = 360msec

Alg.\SNR −5dB 0dB 5dB 10dB −5dB 0dB 5dB 10dB

Unprocessed -6.39 -3.19 -1.25 -0.37 -6.36 -3.16 -1.24 -0.37
NMF-VEM [15] 3.88 6.69 8.75 9.94 2.06 4.20 5.53 6.18

ILRMA [19] -1.61 3.25 7.55 10.60 -2.37 1.99 5.64 7.90
Proposed 6.78 8.75 9.53 10.36 4.95 6.45 6.94 7.42

TABLE II: SIR Scores

T60 = 160msec T60 = 360msec

Alg.\SNR −5dB 0dB 5dB 10dB −5dB 0dB 5dB 10dB

Unprocessed 0.11 0.11 0.12 0.12 0.10 0.11 0.11 0.11
NMF-VEM [15] 12.47 12.63 12.57 12.48 10.29 10.39 10.35 10.29

ILRMA [19] 13.52 15.79 17.55 17.77 11.61 12.94 14.15 14.54
Proposed 23.82 23.74 20.61 20.74 21.06 21.24 18.13 18.19

tems. This method was initialized with the same information
that was used by the VEM-based methods, using the following
initialization procedure. First, we applied principal component
analysis (PCA) to reduce the over-determined problem to a
determined one, as in [19]. Then, the TDOA-based RTF matrix
was multiplied by the PCA projection matrix. The inverse of
the resulting square matrix was used as the initial demixing
filter. The number of spectral bases was 10 and the number of
iterations was 100. According to our tests, when using ILRMA
with a blind initialization, the optimal number of bases is
2, as was shown in [19]. However, with our informative
initialization, the use of 10 bases yields superior results.

C. Results

SDR and SIR scores are presented in Tables I and II,
respectively, for several SNR levels. The best results are
highlighted in boldface. The proposed method outperforms
the competing methods in all cases, except for the SDR at
SNR = 10dB. Audio examples are available on our website.4

V. CONCLUSIONS

In this paper, we presented a Bayesian hierarchical model
for blind audio source separation in a noisy environment. A
fully Bayesian approach is adopted, where the speech and the
noise precisions are included as part of the hidden data. The
inference of the latent variables is performed using a VEM
algorithm, leading to a variant of the multi-speaker MCWF for
separating and enhancing the individual speakers. The speech
estimate was decomposed into an LCMV beamformer fol-
lowed by a variational multi-speaker postfilter. The discussion
is supported by an experimental study in a room with two
reverberation times and various SNR levels, demonstrating the
advantage of the proposed method over competing methods.
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