
Received March 24, 2021, accepted May 9, 2021, date of publication June 9, 2021, date of current version June 18, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3087697

Semi-Supervised Source Localization
in Reverberant Environments With
Deep Generative Modeling
MICHAEL J. BIANCO 1, (Member, IEEE), SHARON GANNOT 2, (Fellow, IEEE),
EFREN FERNANDEZ-GRANDE 3, (Member, IEEE), AND
PETER GERSTOFT1, (Senior Member, IEEE)
1Marine Physical Laboratory, University of California San Diego, San Diego, CA 92093, USA
2Faculty of Engineering, Bar-Ilan University, Ramat-Gan 5290002, Israel
3Department of Electrical Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

Corresponding author: Michael J. Bianco (mbianco@ucsd.edu)

This work was supported in part by the Office of Naval Research under Grant N00014-11-1-0439, and in part by the European Union’s
Horizon 2020 Research and Innovation Program under Agreement 871245.

ABSTRACT Localization in reverberant environments remains an open challenge. Recently, supervised
learning approaches have demonstrated very promising results in addressing reverberation. However, even
with large data volumes, the number of labels available for supervised learning in such environments is
usually small. We propose to address this issue with a semi-supervised learning (SSL) approach, based on
deep generative modeling. Our chosen deep generative model, the variational autoencoder (VAE), is trained
to generate the phase of relative transfer functions (RTFs) between microphones. In parallel, a direction of
arrival (DOA) classifier network based on RTF-phase is also trained. The joint generative and discriminative
model, deemed VAE-SSL, is trained using labeled and unlabeled RTF-phase sequences. In learning to
generate and classify the sequences, the VAE-SSL extracts the physical causes of the RTF-phase (i.e., source
location) from distracting signal characteristics such as noise and speech activity. This facilitates effective
end-to-end operation of the VAE-SSL, which requires minimal preprocessing of RTF-phase. VAE-SSL is
compared with two signal processing-based approaches, steered response power with phase transform (SRP-
PHAT) and MUltiple SIgnal Classification (MUSIC), as well as fully supervised CNNs. The approaches are
compared using data from two real acoustic environments - one of which was recently obtained at Technical
University of Denmark specifically for our study. We find that VAE-SSL can outperform the conventional
approaches and the CNN in label-limited scenarios. Further, the trained VAE-SSL system can generate new
RTF-phase samples which capture the physics of the acoustic environment. Thus, the generative modeling
in VAE-SSL provides a means of interpreting the learned representations. To the best of our knowledge,
this paper presents the first approach to modeling the physics of acoustic propagation using deep generative
modeling.

INDEX TERMS Source localization, semi-supervised learning, generative modeling, deep learning.

I. INTRODUCTION
Source localization is an important problem in acoustics and
many related fields. The performance of localization algo-
rithms is degraded by reverberation, which induces complex
temporal arrival structure at sensor arrays. Despite recent
advances, e.g. [1]–[3], acoustic localization in reverberant
environments remains a major challenge [4]. There has been
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great interest in machine learning (ML)-based techniques in
acoustics, including source localization and event detection
[5]–[14]. One difficulty forML-basedmethods in acoustics is
the limited amount of labeled data and the complex acoustic
propagation in natural environments, despite large volumes
of recordings [1], [2]. This limitation has motivated recent
approaches for localization based on semi-supervised learn-
ing (SSL) [15]–[17].

We approach source localization from the perspective
of SSL, with the intent of addressing real-world applications
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of ML. It has been shown that it is relatively easy to generate
large amounts of synthetic data resembling real-world sound
measurement configurations. This synthetic data has then
been used to train ML-based localization models (e.g., [9]),
with very good performance. However, in most real scenar-
ios, room geometry includes irregular boundaries, scattering,
and diffracting elements (e.g., furniture and uneven surfaces)
which may not be convenient to model using acoustic propa-
gation software.

In this paper we contend, along the SSL paradigm, that if
there is a microphone system with fixed geometry, recording
in a room environment, that reverberant signals convey phys-
ical characteristics of the room – that given sufficient time
and variety of source locations, the physics of the room may
be well modeled using unsupervised ML [15], [18], [19]. It is
further observed that if few labels are available, obtained for
instance using cell-phone data, such unsupervised represen-
tations can be leveraged to localized sources in the room.

An SSL localization approach based on deep generative
modeling with variational autoencoders (VAEs) [20]–[22]
is proposed. Deep generative models [23], e.g., generative
adversarial networks (GANs) [24], have received much atten-
tion for their ability to learn high-dimensional data distri-
butions, including those of natural images [25]. GANs in
acoustics have had success in generating raw audio [26] and
speech enhancement [27]. VAEs have also had much success
in speech enhancement [28]. VAEs are inspiring examples
of representation learning [29] which use both encoder and
decoder neural networks (NNs) to parameterize probability
distributions. In this way explicit latent codes are obtained
for their generative models.

VAEs are used along with discriminative models to per-
form SSL. Our work is based on seminal work in SSL with
deep generative models [21]. The approach outlined in [21]
has become a well-established method in literature for SSL
with high-dimensional data. We extend the theory from [21],
which focused on image processing, to the fields of acoustics
and array processing. The VAE system is used to model
physical data in real world acoustic environments. To the
best of our knowledge, our paper presents the first approach
to modeling the physics of acoustic propagation using deep
generative modeling.

In our proposed approach, VAEs are used to encode and
generate the phase of the relative transfer function (RTF)
between twomicrophones [18]. The VAE is trained in parallel
with a classifier network to benefit from both labeled and
unlabeled examples. The resulting model estimates DOA
and generates RTF-phase sequences. By learning to generate
RTF-phase, the VAE-SSL system learns the physical model
relating the latent model and DOA label to the RTF-phase.

This approach is a form of manifold learning
[23], [30], [31]. Manifold learning has recently been pro-
posed for semi-supervised source localization in room acous-
tics [15]. In this work, diffusion mapping is used to obtain
a graphical model relating source location to RTF features.
It was shown that a lower-dimensional latent representation

of the RTFs, extracted by diffusion mapping, correlated well
with source positions.

The VAE-SSL method is presented as an alternative to
this manifold learning approach. Recent work has indicated
the capabilities of deep learning in manifold learning [30].
VAE-SSL uses the non-linear modeling capabilities of deep
generative modeling to obtain an SSL localization approach
which is less reliant on preprocessing and hand-engineering
of latent representations. Thus, the approach can be regarded
as nearly end-to-end. The VAE-SSL system is designed to
not rely on significant preprocessing of the RTFs. Through
gradient-based learning it automatically determines the best
latent and discriminative representations for the given task.
Instead of spectral averaging, we input to the system a
sequence of instantaneous RTFs and allow the statistical
model to best utilize the patterns in the data.

The generative modeling approach has in general three
benefits. First, the system learns a latent embedding of the
RTF-phase sequences from the unlabeled data. This repre-
sentation is leveraged by training with labeled data, which
give the latent embedding semantic meaning — in our case,
the relationship between the learned embedding and physical
source locations in a room. Second, the system allows disen-
tangling of the causes of RTF-phase signal (i.e., source DOA)
from other signal factors including source frequency variation
[22], [32]. The disentanglement enables the system to learn
a task-specific representation of the RTF-phase patterns in
input features that are most relevant to DOA estimation task.
Finally, the system can be used to conditionally generate
new RTF-phase sequences, based on sampling over the latent
representation and DOA label. This output can be interpreted
physically, and thereby allows us to verify that the system is
obtaining a physically meaningful representation.

We build upon our previous work in deep generative mod-
eling for source localization [33]. In this work, the VAE-SSL
approach could well learn to localize acoustic sources with
a few labeled RTF-phase sequences and extensive unlabeled
data. The system was trained and tested on noise signals in
simulated environments.

In our current study, the VAE-SSL concepts are extended
tomore realistic acoustic scenarios and the inference and gen-
erative architectures are refined. This includes consideration
for the appropriate conditional distributions for the genera-
tive model. The learning-based approaches are trained and
validated on speech data in two reverberant environments.
As part of our study, we have obtained a new acoustic dataset
at the Technical University of Denmark (DTU), which is
availble online at IEEE Dataport [34]. This acoustic dataset
consists of reverberant acoustic impulse responses (IRs)
recorded in a classroom at DTU from several source loca-
tions. In this dataset, off-grid and off-range measurements are
also obtained to test the generalization of the learning-based
methods. The implicit acoustic model learned by the genera-
tive model is demonstrated and characterized. This is accom-
plished using the trained VAE-SSL system to conditionally
generate RTF-phase sequences.
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Reverberant speech is obtained by convolving dry speech
with estimated IRs from two real-world datasets: the Multi-
channel Impulse Response (MIR) database [35] and the DTU
room acoustics dataset. Speech data was obtained from the
LibriSpeech corpus [36].

The VAE-SSL method is implemented using convolu-
tional neural networks (CNNs). The performance of the
convolutional VAE-SSL in reverberant environments is
assessed against two signal processing-based approaches:
the steered response power with phase transform (SRP-
PHAT) [37] and MUltiple SIgnal Classification (MUSIC)
[38]. We further consider the performance of a fully super-
vised CNN. Comparison of MUSIC and SRP-PHAT in
ML DOA estimation literature, as well as DOA estima-
tion techniques more generally, is typical, e.g., [9]. More-
over, the MUSIC method was selected as the baseline
method in the recent IEEE Signal Processing Society
acoustic source LOCalization And TrAcking (LOCATA)
challenge [39].

It is shown that VAE-SSL can outperform conventional
source localization approaches, as well as fully supervised
approaches for label-limited scenarios. This includes scenar-
ios where the source may be off-range or off-grid from the
design case, as well as variations in reverberation time and
speech signals. Further, the implicit physical model obtained
with VAE-SSL can be used to generate RTF-phase features.
The physical characteristics of the generated RTF-phase is
assessed by analyzing the phase wrap of the generated phase
and the corresponding phase-delay for the generated RTF
time domain representation.

A. SUMMARY OF OUR CONTRIBUTIONS
The main contributions of our paper are summarized below.
• A sound source localization approach is developed
based on semi-supervised learning (SSL) with deep gen-
erative modeling. Variational autoencoders (VAEs) are
used as the deep generative model. The VAE is paired
with a classifier network and the systems are trained in
parallel on labeled and unlabeled data. The approach is
deemed VAE-SSL.

• The phase of the instantaneous relative transfer func-
tion (RTF) between twomicrophones is used as the input
features to VAE-SSL.

• The inputs are only lightly processed. The gradient-
based learning in the VAE-SSL system selects the phys-
ically relevant features in a nearly end-to-end fashion.

• We obtained an impulse-response (IR) dataset at the
Technical University of Denmark (DTU) specifically for
our study. The acoustic data was recorded in a reverber-
ant classroom at DTU and included both on- and off-grid
source locations. The dataset is available online at IEEE
Dataport [34].

• Using IRs from real acoustic environments, the VAE-
SSL approach was evaluated against the benchmark
SRP-PHAT and MUSIC DOA estimation methods,
as well as a fully supervised CNN. In addition to the

DTU dataset, IRs from the multichannel IR (MIR)
database were also used for evaluating the methods.

• The generative modeling capabilities of VAE-SSL are
demonstrated. The output of the generative model is
interpreted physically and is found to correlate well with
the expected acoustic characteristics.

II. THEORY
RTFs [18], specifically the RTF-phase, are used as the acous-
tic feature for our VAE-SSL approach. Since the RTF can
be assumed independent of the source, this feature helps to
focusMLon physically relevant features, and thereby reduces
the sample complexity of the model. A temporal sequence of
instantaneous RTF-phases is encoded as a function of source
azimuth (direction of arrival, DOA). We choose the instanta-
neous RTF-phase, calculated using a single STFT frame (i.e.,
no averaging applied), to minimize the intervention of feature
preprocessing. This allows the VAE-SSL method to extract
end-to-end the important features for source localization and
RTF-phase generation.

A. RELATIVE TRANSFER FUNCTION (RTF)
Consider short-time Fourier transform (STFT) domain acous-
tic recordings of the form

di(k) = ai(k)s(k)+ ui(k), (1)

with s the source signal ai the acoustic transfer function
relating the source and each of the microphones (i = {1, 2}
the microphone index and k the frequency index), and ui
sensor noise (spatially white). Then, the relative transfer func-
tion (RTF) is defined as [15], [18]

h(k) =
a2(k)
a1(k)

, (2)

with k the frequency index.With d1 as reference, the instanta-
neous RTF ĥ(k) is calculated using a single STFT frame (also
referred to as a snapshot),

ĥ(k) =
d2(k)
d1(k)

. (3)

This estimator is biased since we neglect the noise spectra
[Ref. [15], Eq. (5)]. While an unbiased estimator can be
obtained, see [40], [41], we observe that the biased estimate
ĥ(k) works well for our purposes. For each STFT frame,
a vector of RTFs is obtained ĥ = [̂h(1) . . . ĥ(K )]T ∈ CK with
K the number of frequency bins used.

The input to the VAE-SSL and the supervised CNN is a
temporally ordered RTF-phase sequence. The nth RTF-phase
sequence is

xn = vec(phase(Ĥn)) ∈ RKP, (4)

with Ĥn = [̂hn . . . ĥn+P−1] ∈ CK×P,K = NSTFT/2−1, andP
the number of RTF-phase frames in the sequence. We use the
wrapped RTF-phase, which is in the interval [−π, π] radians.
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B. SEMI-SUPERVISED DOA ESTIMATION
In acoustics we are often faced with scenarios where there
are large volumes of acoustic recordings from arrays but
potentially only few labels. The recordings themselves con-
tain physical information, but the paucity of labels limit the
task-specific value of this physical information. This issue is
addressed by formulating an SSL-based approach to source
localization. A VAE model is used to obtain latent distri-
butions of the RTF-phase physics for a particular room and
corresponding DOAs from labeled and unlabeled examples.

In our SSL formulation to DOA estimation, only a subset
of the full dataset containing N RTF sequences have corre-
sponding DOA labels. Here the DOA labels are represented
by y ∈ {0, 1}T , a one-hot encoding, with T the number
of DOA classes. We thus have labeled and unlabeled sets,
defined by {xj, yj} ∈ Dl and {xu} ∈ Du. Labels for the
unlabeled sequences yu are reserved to test the performance
of the system only after training and validation. The sizes of
the sets are |Dl | = J and |Du| = N − J . Thus, there are J
labeled RTF sequences and N − J unlabeled sequences.
The N − J unlabeled RTFs contain physical information,

which is extracted by unsupervised learning. The J labeled
RTFs have both physical information and corresponding
DOA labels, which help give the model task-specific value
for DOA estimation by training the classifier. The generative
model, which is trained on all samples helps guide the classi-
fier training when labels are not available. Our goal is thus to
well-infer the labels corresponding to labeled and unlabeled
RTFs based on the trained VAE-SSL model.

C. SEMI-SUPERVISED LEARNING WITH VAEs
VAEs [22] combine the rich, high-dimensional modeling
capacity of NNs with the tools of variational inference
(VI) [42] to learn generative models of high-dimensional
distributions. In VAEs, the distributions are parameterized
by NNs, and the NN parameters are updated to best fit the
assumed distributions to the data.

We formulate a principled SSL framework based on
VAEs [21]. A classifier NN and VAE are trained jointly, using
both labeled and unlabeled data. The approach treats the label
y as either latent and observed, depending onwhether the data
is labeled ({xj, yj} ∼ Dl) or unlabeled ({xu} ∼ Du). This
corresponds to the ‘M2’ model in [21]. To simplify notation,
subscripts are disregarded for the theory derivation.

We assume each RTF-phase sequence x is generated by a
random process involving the latent random variable z ∈ RM ,
withM the dimension of the latent space, and source location
label y. Thus, the true data distribution p∗(x) is approximated
with the conditional distribution pθ (x|y, z), where θ are the
parameters of the NN used to define the distribution. As will
be discussed in Sec. II-D, we use pθ (x|y, z) = N (·|·),
the truncated normal distribution with mean and variance
defined by a NN with parameters (weights and biases) θ .
In the optimization stage, the parameters θ are adjusted to
fit pθ (x|y, z) to the data. y and z are assumed independent,

FIGURE 1. Graphical models for VAE-SSL (a) generative and (b) inference
models. The generative model conditional distribution is parameterized
by a decoder, see Fig. 2(c), and the inference model conditional
distributions are parameterized by encoders, see Fig. 2(a,b).

with their marginal densities p(y) and p(z) the categorical
and normal distributions (see Sec. II-D). Thus, the generative
model is p(x, y, z) = pθ (x|y, z)p(y)p(z), giving the graphical
model Fig. 1(a).

Now we are presented with the challenge of inferring y
(when it is not specified) and the latent variable z. For labeled
data {xj, yj} ∼ Dl , the posterior of the latent variable z is

p(z|x, y) =
p(x, y|z)p(z)
p(x, y)

(5)

and for unlabeled data {xu} ∼ Du, the joint posterior of the
latent z and the label y is

p(y, z|x) =
pθ (x|y, z)p(y, z)

p(x)
. (6)

Direct estimation of the posterior, e.g., from (5), p(z|x, y)
is intractable due to p(x, y) =

∫
p(x, y, z)dz. Thus, the pos-

teriors are approximated using VI. We define a variational
distribution qφ1 (z|x, y) which approximates the intractable
posterior p(z|x, y). qφ1 (z|x, y) is a family of distributions
parameterized by the latent inference encoder, with param-
eters φ1 (see Fig. 2(b)). For qφ1 (z|x, y), a normal distribution
is used. The graphical model for the corresponding inference
model is shown in Fig. 1(b). The inferencemodel for theDOA
label qφ2 (y|x), parameterized by label inference encoder with
parameters φ2 (see Fig. 2(a)) is obtained starting in (10).
For qφ2 (y|x), the categorical distribution is used. Like the
generative model the inference model NN parameters 8 =
{φ1, φ2} are adjusted so the assumed distributions best model
the data. The distributions are defined in Sec. II-D.

Starting with the model for the labeled data, see (5), per
VI we seek qφ(z|x, y) which minimizes the KL-divergence

{φ1, θ} = argmin
φ1,θ

KL(qφ1 (z|x, y)||p(z|x, y)). (7)

Considering first the labeled data Dl , assessing the
KL-divergence, from (7)

KL(qφ1 (z|x, y)||p(z|x, y))

= E
[
log qφ1 (z|x, y)

]
− E

[
log p(x, y|z)p(z)

]
+ log p(x, y)

= −ELBO+ log p(x, y) ≥ 0, (8)
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FIGURE 2. Neural network configurations. Encoders for (a) label inference (classifier) and (b) latent model.
(c) Decoder for generative model.

with the expectation E relative to qφ1 (z|x, y). This reveals
the dependence of the KL divergence on evidence p(x, y),
which is intractable. The other two terms in (8) form the evi-
dence lower bound (ELBO). Since the KL divergence is non-
negative, the ELBO ‘lower bounds’ the evidence: ELBO ≤
log p(x, y). We thus minimize −ELBO.
Considering the ELBO terms from (8), the objective for

labeled data is formulated, with y and z independent (in the
generative model, see Fig. 1(a))

−C(θ, φ1; x, y) = E
[
log p(x, y|z)p(z)− log qφ1 (z|x, y)

]
= E

[
log pθ (x|y, z)+ log p(y)+ log p(z)

− log qφ1 (z|x, y)
]
. (9)

This follows [Ref. [21], Eq.(6)].
Next, an objective for unlabeled data Du is derived.

The intractable posterior from (6) is approximated by
q8(y, z|x) ≈ p(y, z|x). From the KL-divergence, we find the
objective (negative ELBO), using terms from (6), as

−D(θ,8; x) = Eqφ2 (y|x)
[
Eqφ1 (z|x,y)

[
log pθ (x|y, z)

+ log p(y)+ log p(z)− log qφ1 (z|x, y)

− log qφ2 (y|x)
]]

=

∑
y

qφ2 (y|x)
[
− C(θ, φ; x, y)−log qφ2 (y|x)

]
(10)

This follows [Ref. [21], Eq.(7)].More details of the derivation
are given in Appendix A.
Assessing the terms in the supervised learning objective

C(θ, φ1; x, y) (9), it does not condition the label y on the
sequence x, since for the supervised case the label is assumed
known per (5). The term log qφ2 (y|x) is only present in the
unsupervised learning objective (10). In this configuration,
the classifier network learns only from the unsupervised
sequence. It is important for the classifier to learn from the
labeled sequences, and we enforce this by adding an auxiliary

term − log qφ2 (y|x) to the supervised objective. This is a
typical procedure [21].

An overall objective for training the VAE and classifier
models using labeled and unlabeled data is derived by com-
bining (9) and (10) with the auxiliary term

L =
∑

{xj,yj}∼Dl

C(θ, φ1; xj, yj)− α log qφ2 (yj|xj)

+

∑
{xu}∼Du

D(θ,8; xu), (11)

with α a scaling term, selected by hyperparameter opti-
mization. This follows [Ref. [21], Eqs.(8,9)].

D. DISTRIBUTIONS AND NEURAL NETWORK (NN)
PARAMETERS
The VAE-SSL model consists of 3 CNNs which, for train-
ing and conditional generation, parameterize the probabil-
ity distributions in (9) and (10). The networks correspond
to the inference model, with parameters 8, and the gen-
erative model, with parameters θ . See Fig. 2 and Table. 1
for NN configurations, and Sec. III-D for further details on
implementation.

For the inference model, we specify the following distribu-
tions, parameterized by NNs:
• qφ1 (z|y, x) = N (z|µφ1 (x, y), diag(σ

2
φ1
(x, y))), with

N (·|·) the normal distribution parameterized by the out-
puts of the latent inference network µφ1 (x, y) ∈ RM and
σ 2
φ1
(x, y) ∈ RM (see Fig. 2(b)).

• qφ2 (y|x) = Cat(y|πφ2 (x)), with Cat(·|·) the categori-
cal multinomial) distribution parameterized by the out-
put of the classifier networkπφ2 (x) ∈ RT (see Fig. 2(a)).

For the generative model, we specify the distribution as
• pθ (x|y, z) = N (x|µθ (y, z), diag(σ 2

θ (y, z))), with N (·|·)
the truncated normal distribution parameterized by the
outputs of the decoder µθ (y, z) ∈ RKP and σ 2

θ (y, z) ∈
RKP (see Fig. 2(c)).
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The truncated normal distribution is used for the gener-
ative conditional distribution pθ (x|y, z) since the wrapped
RTF-phase is on the interval [−π, π].
The marginal densities are defined as p(y) = Cat(y|π),

with π ∈ RT the probabilities of the classes, which are
assumed equal with πt = 1/T ; and p(z) = N (0, I).
Since the decoder parameterizes a truncated normal den-

sity, hyperbolic tangent activation is applied to the outputs of
the decoder to constrain the mean, and a scaled sigmoid acti-
vation is applied to the decoder variance: µθ (y, z) ∈ [−1, 1]
and variance σ 2

θ (y, z) ∈ [0, 10]. The input to VAE-SSL is
normalized by π , thus [−1, 1] corresponds to the interval
[−π, π]. The variance is limited to improve the training
speed, since the truncated normal is implemented using rejec-
tion sampling.

The optimization of the VAE-SSL parameters {θ,8} from
the objective (11) is performed using stochastic variational
inference (SVI) [20]. The neural networks are implemented
using Pytorch [43] and SVI is here implemented with the
probabilistic programming package Pyro [44], which evalu-
ates the ELBO gradients with Monte Carlo sampling from
the ELBO terms directly (instead of reparameterization,
e.g., [21]).

During each training epoch, minibatches of RTF-phase
sequences are drawn from the labeled {xj, yj} ∼ Dl or
unlabeled {xu} ∼ Du sets. In the case of Dl , the terms
corresponding to Dl in (11) are evaluated. Similarly, for Du,
only the unlabeled terms are evaluated. Labeled minibatches
were used approximately once per N/J unlabeled batches.
For each data sample in the minibatch, the ELBO terms are
sampled once. This has been found to be sufficient, provided
theminibatch size is large enough [21] (we useminibatch size
of 256, see Sec. III-D).

E. LABEL ESTIMATION AND CONDITIONAL RTF
GENERATION
From the trained inference model, the DOA is estimated by
the indicator function

yρn = 1ρ=̂t , (12)

with

t̂ = argmax
t

(πt,φ2 (xn)), (13)

and ρ and t the discrete DOA indices, and πt,φ2 (xn)) the
t-th output of πφ2 (xn)). The DOA angle represented by
the one-hot encoding yn with active index t is Dtn and its
estimate D̂tn.

RTF-phase sequences can be conditionally generated from
the trained generative model for a given label yn using the
prior p(z) and density pθ (x|y, z)

zs ∼ p(z)

xs ∼ pθ (x|yn, zs), (14)

with subscript s denoting the sampled latent variable and
RTF-phase sequence.

RTF-phase sequences can also be reconstructed (approxi-
mated) using the trained inference and generative models. For
a given RTF-phase sequence xn and label yn, z is sampled
from the inference model

zs ∼ qφ1 (z|xn, yn), (15)

and the reconstruction x̂n is obtained by sampling from the
generative model by

x̂n ∼ pθ (x|yn, zs). (16)

III. EXPERIMENTS
We assess the DOA estimation performance of the VAE-SSL
approach in moderately reverberant environments against
three alternative techniques: SRP-PHAT [45], MUSIC [38],
and a supervised CNN baseline. The VAE-SSL and fully
supervised CNN are trained and validated using speech to
obtain real-world application performance.

The performance of the methods, summarized in Table 2
and 3, is quantified in terms of mean absolute error (MAE)
and sequence-level accuracy (Acc.). Further, the generative
modeling capabilities of the trained VAE-SSL system are
assessed, as shown in Fig. 4–11.

The MAE is defined as

MAE =
1

N − J

∑
Du

|Dtu − D̂tu|, (17)

with | · | denoting the absolute value. The sequence level
accuracy (Acc.) is defined by

Acc. =
100
N − J

∑
Du

1Dtu=D̂tu . (18)

A. MEASURED IMPULSE RESPONSES
We use measured IRs from two different real-world datasets:
a dataset recently recorded at DTU [34], and the MIR
database [35]. We here briefly describe the experimental
configuration for the DTU dataset. The data were recorded
in a classroom at DTU in June 2020 (Fig. 3). The classroom
was approximately rectangular, of dimensions 9 × 6 × 3 m
and fully furnished. One of the sidewalls is irregular, with a
100 × 40 cm extrusion (for heating and ventilation) across
the entire wall, in addition to support columns. All walls
have scattering elements mounted on them (whiteboards,
blackboards, diffusers, and windowpanes), and the sound
reflections are not specular. The nominal source-array range
was 1.5 m. IRs were obtained from 19 DOAs (10◦ resolution
over the interval [−90◦, 90◦]). The reverberation time in the
classroom was estimated to be RT60 = 500 ms. There were
two microphones, with 8.5 cm spacing. The sampling rate
was 48 kHz. The IRs were truncated to 1 s and downsampled
to 16 kHz for this study.

In addition to the nominal source grid for the DTU dataset,
several off-range IRs (3 cases) and off-grid IRs (6 cases) were
obtained to test the generalization of learning-based localiza-
tion methods. The off-grid source DOAs were [25◦, 28◦, 45◦]
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TABLE 1. Network parameters corresponding to configuration in Fig. 2. Since the kernel size is 3 and stride is 2 in the convolution layers, the output
dimension, given input dimension m, is w(m) = (m− 1)/2, with m odd.

with 1.5 m range. The off-range source DOAs (ranges) were
0◦ (1 m), 10◦ (2 m), 40◦ (2 m), −30◦ (2.5 m), −40◦ (2.5 m),
and −30◦ (3.0 m). More details are available online [34].

The MIR database was recorded in a 6× 6 × 2.4 m room
with reverberation time controlled by acoustic panels [35].
The dataset consists of source DOAs on a 15◦ resolution
over [−90◦, 90◦], giving 13 DOAs. Each of the DOAs was
obtained at two ranges (1 and 2 m) with three reverberation
times (RT60 is 160, 360, and 610 ms). The IRs were obtained
for 8 microphones located in the center of the room. There
were several configurations, with different microphone spac-
ing. We used data with 3 and 8 cm spacing, specifically the
two center microphones, with 8 cm spacing. The sampling
rate for theMIR database was also 48 kHz. Further, fromMIR
only the 2 m source range is used, with reverberation times
RT60 = 360 and 610 ms. The MIR IRs were processed in the
same manner as the DTU IRs. For more details of the MIR
database, see [35].

B. RTF CALCULATIONS
The signal at the microphones is given in (1). RTFs are
obtained from the data by (3). The RTFs are estimated using
single STFT frames with Hamming windowing with 50%
overlap and segment length NFFT = 256. The VAE and the
supervised CNN inputs xn use P = 31 RTF vectors, giving
an input size K × P = 127× 31 (neglecting the highest fre-
quencies from full RTF with length NFFT/2+1, including all
frequencies between 0 (DC) up to NFFT/2, to support strided
transpose convolution without padding). For fair comparison,
SRP-PHAT and MUSIC used the P = 31 STFT frames to
estimate the RTFs, with K = NFFT/2+1. Thus, the temporal
length of the sequences for all methods was 0.26 s.

C. SPEECH DATA PROCESSING
We used speech data from the LibriSpeech corpus [36] devel-
opment set, which contains 5.4 hours of recorded speech with

a 16 kHz sampling rate from public domain audiobooks. The
dataset contains equal numbers of male and female speakers
(20 each).

The speech segments from LibriSpeech were con-
volved with the recorded room IRs to obtain reverberant
speech. Voice activity detection (VAD) was performed on the
dry speech before convolution with the IRs. The WebRTC
project VAD system [46] was used. WebRTC is a popular
open source VAD system based on pretrained Gaussian mix-
ture models. The VAD settings used were 3 (most aggressive)
with a 10 ms analysis window.

VAD was applied to the entire LibriSpeech development
corpus, and a total of 40 speech segments 2-3 s in duration
were randomly selected for training and validation, 20 seg-
ments each. This yielded ∼110, 000 RTF sequence for the
nominal DTU IRs and ∼76, 000 sequences for the MIR IRs
(∼5800 sequences per DOA for both datasets). This fur-
ther yielded ∼17, 500 and ∼35, 000 sequences for the DTU
off-grid and off-range measurements using the validation
speech. Given one active speaker recording segment of time
length t , with 50% STFT overlap, the number of RTF-phase
sequences in the segment Nseg is

Nseg ≈
2Tfst
NFFT

− P. (19)

For training and validation, J labeled sequences were
drawn uniformly from the concatenated reverberant speech
sequences (for each DOA). The remaining sequences from
the training set were used for unsupervised learning. Sensor
noise with 20 dB SNR was added to the microphone signals
(see (1)). A range of values for J were considered, for evalu-
ating the effect of the number of labeled sequences on the per-
formance of the learning-based approaches. SRP-PHAT and
MUSIC were evaluated using the full dataset of N sequences,
for each scenario.
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TABLE 2. Localization performance of VAE-SSL, fully supervised CNN, SRP-PHAT, and MUSIC on (a, b) DTU dataset and (c, d) MIR database. Training and
validation DOA estimation performance given for unlabeled data Du. Performance quantified in terms of mean absolute error (MAE) and sequence level
accuracy (Acc.).

FIGURE 3. Classroom and measurement configuration at Technical
University of Denmark (DTU) where room IRs were collected [33].

D. LEARNING-BASED MODEL PARAMETERS
The VAE-SSL model (classifier, inference, and generative
networks) were implemented using strided CNNs, with stride
of 2 pixels. The network architectures are given in Fig. 2,
and the corresponding parameters are given in Table 1. Each
NN used two convolutional layers without pooling, and two
fully connected layers. The convolutional layers help pro-
cess the high-dimensional RTF-sequence data by enabling

parameter-sharing between neighboring pixels [23]. Since the
one-hot DOA y is relatively low-dimensional, it does not
necessitate processing by convolutional layers. Thus, it is
input directly to the first fully connected layer in the encoder
model (Fig. 2(b)) after the convolutional processing of x.
Before processing by the CNNs, Fig. 2(a,b), the generated

RTF-phase sequence vectors x̂n ∈ RKP are reshaped to a
matrix with dimensions P × K , so the convolutional filters
account for correlations between time and frequency bins.
The output of the CNNs (Fig. 2(c)) is reshaped to a vector
with length KP.

Several subnetworks reuse the same architecture; hence
the names are reused. However, weights for each implemen-
tation are trained independently – i.e., no weight sharing is
applied. The latent variable z dimension for all experiments
was M = 50, assuming that the hidden representation must
account for temporal variation of the RTF-phase sequences,
and residual variation of the RTF from speech. Dropout with
probability of 0.5 is applied to the large fully connected layers
FC1x and FC5 (Fig. 2, Table 1).

For the fully supervised CNN approach, we used the clas-
sifier CNN architecture from the VAE-SSL model. The fully
supervised CNN was trained using only the labeled data Dl ,
without integration with the generative model. Like VAE-
SSL, the CNN was implemented using Pytorch.
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TABLE 3. Localization error (MAE) of VAE-SSL, fully supervised CNN,
SRP-PHAT, and MUSIC for off-grid and off-range measurements from DTU
dataset.

All NNs were optimized using Adam [47]. For all cases,
the learning rate was 5e-5 and the minibatch size was
256. The default momentum and decay values (0.9,0.999)
were used from the Pytorch implementation of Adam. The
VAE-SSL has the tuning parameter, the auxiliary multiplier
α, which weights the supervised objective (11). It was found
in the experiments that the performance of VAE-SSL was not
very sensitive to α, though the best value per validation accu-
racy was found by grid search over the interval [500,10000].

E. NON-LEARNING: SRP-PHAT AND MUSIC
CONFIGURATION
The same STFT frames used to calculate the RTF-phase
sequences for VAE-SSL and CNN were used by the con-
ventional SRP-PHAT [45], [48] and MUSIC [38], [39]
approaches. There were P STFT frames in the VAE-SSL
and CNN method input sequences x. Thus, the conventional
approaches used 13 candidate DOAs over [−90◦, 90◦] for the
MIR IRs and 19 for the DTU IRs. We used the SRP-PHAT
andMUSIC implementations from the Pyroomacoustics tool-
box [49]. For MUSIC, the number of sources was set to one.

F. TRAINING AND LOCALIZATION PERFORMANCE
For VAE-SSL and supervised CNN training, J labeled
sequences were drawn from the training set and J labeled
sequences were drawn from the validation set. The model
was chosen based on the validation accuracy for labeled
sequences. For VAE-SSL, the additional N − J unlabeled
sequences from the training dataset were used to train
the networks with unsupervised learning. Only the labeled
sequences were used to train the supervised CNN. After train-
ing, the performance of the models was evaluated using the
unlabeled sequences from the validation dataset. Since for the
unlabeled examples, the DOAs are technically unavailable,
for unsupervised learning some RTF-phase sequences {xu} ∈
Du contain frames with different DOA labels. The labeled
sequences, and the unlabeled sequences used for performance
evaluation, have only one DOA each. All the RTF-phase
sequences X = [x1 . . . xN ] were normalized by π for the
VAE-SSL and CNN approaches.

The performance of VAE-SSL and the competing
approaches for the DTU IR dataset are given in Table 2(a,b).
VAE-SSL and fully supervised CNN were trained using
20 speech signals and validated using an additional 20 speech

FIGURE 4. Reconstruction of RTF-phase sequences using VAE-SSL (trained
using J = 988 labels). 10 sequences are reconstructed for each DOA using
the DTU IR data convolved with speech. (a) Input RTF-phase sequences
xn. (b) Reconstructed RTF-phase sequences x̂n (16). (c) RTF-phase
sequence mean µθ (yn, zs). (d) Free space RTF (22). (e) RTF-phase
sequence standard deviation σ θ (yn, zs). Phase-wrap function plotted with
white dashed lines. All plot scales in radians, with (e) a larger range than
(a–d). Theory, other parameters located in Sec. II D–E, Sec. III D.

signals (see Sec. III-C). We use J = 247, 494, 988, 1995,
3990, 7999 supervised sequences, which are multiples of the
number of candidate DOAs (T = 19) to ensure an equal
number of labeled samples for each DOA. It is observed
that the VAE-SSL approach generalizes to the validation
data, with better performance than SRP-PHAT with as few
as J = 247 labeled sequences (or 13 per DOA). For both
the validation and training data, the performance increases
significantly for additional labels. TheVAE-SSL outperforms
CNN and MUSIC for all the experiments in this paper.
It is apparent that in using the minimally processed RTF
sequences, that our semi-supervised approach can learn to
identify the relevant features from the data.

Similar trends are observed for the MIR database IRs,
given in Table 2(d,e). Here VAE-SSL and fully supervised
CNN were trained and validated using the same 20 speech
signals with two different reverberation times. The training
data IR was the RT60 = 610 ms case, and the validation
RT60 = 360 ms.We use J = 247, 494, 988, 1989, 3991, 7995
supervised sequences, which are multiples of the number of
candidate DOAs (T = 13). It is observed that VAE-SSL
significantly outperforms the fully supervised CNN, SRP-
PHAT, and MUSIC methods for both the training and val-
idation cases when the number of supervised examples is
sufficient. A similar number of labels to the DTU dataset
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FIGURE 5. Conditionally generated RTF-phase sequences for DOA 90◦,
using VAE-SSL generative model. VAE-SSL trained with DTU IR data
convolved with speech with J = 988 labels. (a) Conditionally generated
RTF sequences xs (14). (b) Generated RTF-phase sequence mean
µθ (yn, zs). (c) Free space RTF (22). 100 sequences were generated (with
31 frames per sequence, 100*31=3100 frames).

were required to outperform SRP-PHAT: J = 247 labeled
sequences, or in this case 19 labels per DOA. It is shown
that the VAE-SSL generalizes well to different reverberation
times.

Here it is noted that, in the case of the DTU IR dataset,
the CNN performswell in terms of accuracy (which overtakes
SRP-PHAT), though the MAE remains large. For the MIR
dataset, both CNN and MAE converge to that of SRP-PHAT.
The acoustic environment for the DTU dataset, with class-
room furniture and irregular wall geometry, is more complex
than the MIR database. This can be seen in the reduction
of the accuracy for all approaches, despite the reduction in
the number of DOAs (13 for DTU vs 19 for MIR). The
CNN system cannot generalize well to the unseen data, since
not enough labeled frames are available. While the accuracy
is good, the mistakes by the CNN are large. As accuracy
alone can be misleading, both metrics are considered. For
VAE-SSLwefind that the system generalizeswell to theDTU
environment using only few labels, since it extracts physically
meaningful features as will be shown in Sec. III-G and III-H.

G. OFF-GRID AND OFF-RANGE GENERALIZATION
We have quantified the performance of the localization meth-
ods for different speakers and reverberation times. We now
assess the off-grid and off-range localization performance
of the methods in a real-room environment with the DTU
dataset. This important test examines whether the represen-
tations learned by the ML approaches, VAE-SSL and fully
supervised CNN, can generalize to source locations that
were not present in the training data. In real applications,
it can be expected that the source locations will not precisely

FIGURE 6. Conditionally generated RTF-phase sequences for DOA=−30◦
(trained using J = 988 labels). Same configuration as Fig 5.

correspond to the training locations. The off-grid DOAs are
2 to 5◦ away from the training DOAs, and the off-range are
±0.5, and + 1 to 2 m away, see Sec. IIIA.
For the learning-based approaches, results are given for

systems trained with J = 988 labels. For additional compar-
ison, a basic one-nearest-neighbors approach is considered,
which uses spectrally averaged RTF features. This manual
preprocessing should reduce the noise in the RTF features and
give a reasonable baseline for a hand-crafted, but still data-
driven, approach.

For the nearest-neighbors approach, here deemed RTF-
1NN, spectral averaging is performed over the full RTFs [15]
using the STFT frames used to estimate the instantaneous
RTF sequence (Sec.II-A). The spectrally averaged RTFs for
each DOA are given by

h̃(k) =

∑
s∈S d2sd

∗

1s∑
s∈S d1sd

∗

1s
, (20)

with ·∗ the complex conjugate and S the set of STFT frames
used. The RTF from the labeled data corresponding to each
DOA is h̃t (k), with |S| = PJ/T . The RTF from each sequence
in the unlabeled data, which is to be classified, is h̃u(k) with
|S| = P. The DOA for h̃u(k) is estimated by

argmin
t
‖̃ht − h̃u‖2, (21)

with ‖ · ‖2 the `2 norm.
The results of the different methods are shown in Table 3.

We find that the VAE-SSL approach generalizes well to
off-grid and off-range sources. It is shown that the trained
VAE-SSL outperforms the other approaches. Again, this
performance is achieved using minimal preprocessing of
the input features. Particularly, for the off-range scenario,
the CNN and RTF-1NN generalize quite poorly.

VOLUME 9, 2021 84965



M. J. Bianco et al.: Semi-Supervised Source Localization in Reverberant Environments

FIGURE 7. Inverse fast Fourier transforms (IFFTs) of RTF (from
RTF-phase), see Sec. III-H1. (a) Simulated anechoic time delay based on
DTU dataset source-receiver parameters. (b) Time delays from
reconstructed RTF-phase mean from reverberant DTU dataset (see
Fig. 4(b) for RTF-phase), calculated from one RTF realization per DOA.
Hypothesized time delays, corresponding to the 19 DOAs in the dataset,
are shown as black dashed line.

H. RTF GENERATION WITH VAE-SSL
The trained generative model from VAE-SSL can be used
to generate new RTF sequences (see Sec. II-E). RTF-phase
generation is demonstrated using the VAE-SSLmodel trained
on the DTU IRs for J = 988 labeled sequences. The
physical interpretation of the generated phase is discussed.
Generated RTF-phase sequences are shown in Fig.4–6.
For display, the generated RTF-phase sequence vectors
x̂n ∈ RKP are reshaped to P × K . We use the phase-wrap
of the RTF (±π rad.) (as a function of sensor separation and
DOA θn, f = c/(2r| sin θn|)) to help qualify the physics
learned by VAE-SSL, with r the microphone spacing. This
is plotted along with the RTF-phase frames from the design
case room configuration. Further, the generated RTF-phases
are compared with the corresponding free-space RTF, which
is calculated by

phase(H (fk , θ)) =
2π fkr
c

sin θ. (22)

In Fig. 4, 10 RTF sequences for each DOA (T = 19
DOA, giving 190 sequences) are reconstructed per (16). It is
observed that the RTF-phase is well-reconstructed, and that
the reconstruction (Fig. 4(b)) and phase mean (Fig. 4(c))
conform to the phase-wrap function. Further, the free-space
RTF-phase (22) is shown in Fig. 4(d). The generated mean
RTF-phase correlates well with the free-space phase. It is
also observed that the standard deviation of the reconstructed
RTF-phase is, in general, peaked in the region of the expected
phase-wrap. This is expected since the phase in these regions
is ambiguous.

Using the trained generative model from VAE-SSL with
DTU IRs and speech, we conditionally sample xs for fixed
label yn per (14). In Fig. 5, y corresponding to DOA 90◦ is
used, and 100 RTF-phase sequences are sampled. Similarly,
in Fig. 6, y corresponding to DOA−30◦ is used. It is observed
that the generated phase and its corresponding mean in each
case is well-correlated with the predicted RTF-phase wrap

FIGURE 8. IFFTs of VAE-SSL conditionally generated RTFs (time delay), see
Sec. III-H1. Time delays from conditionally generated RTF-phase means
from reverberant DTU dataset for (a) DOA = 90◦ (see Fig. 5(b) for
RTF-phase) and (b) DOA = −30◦ (see Fig. 6(b) for RTF-phase). Calculated
for 10 RTF realizations. Hypothesized time delay shown as black dashed
line.

function. In the case of the conditionally generated RTFs, they
also correlate well with their corresponding free-space RTFs.
The output sampled from the generative model (see (14))
is multiplied by π , since normalization was applied during
training.

1) RTF TIME DELAY
The generated RTF-phases obtained by VAE-SSL are further
evaluated by considering their corresponding time delays.

The free-space phase delay for a given sensor is

ai(fk , θ) = ej
2π fk ri
c sin θ (23)

with ri the sensor spacing.Withmicrophone 1 is used as refer-
ence (r1 = 0) and microphone 2 located at r2, the free-space
RTF is

h(fk , θ) =
a2(fk , θ)
a1(fk , θ)

= ej
2π fk r2

c sin θ , (24)

and τ = (r2/c) sin θ is the time delay.
Given the derivation for RTF time delay in free-space,

synthetic free-space RTFs are generated per (24) for the
same source-microphone geometry as the DTU dataset
(Sec. III-A). The inverse fast Fourier transform (IFFT) of the
RTFs is obtained, Fig. 7(a). These time delays are compared
to those from the IFFT of the VAE-generated RTF mean
values from the reverberant DTU dataset (Sec. III-A). In the
previous section, the DTU RTF-phase was reconstructed
based on input the VAE. The results are shown in Fig. 4.
One generated RTF from each of the 19 DOAs from the
dataset (corresponding to phases in Fig. 4) were used to obtain
time delays, and these delays are plotted in Fig. 7(b). The
maximum value of the IFFT is indicated in each plot.

Overall, the peak of the IFFT of the generated reverber-
ant RTF means correspond to the free-space RTF delay.
In Fig. 7(b) the peak correlates well with the hypothesized
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FIGURE 9. Reconstruction of RTF-phase sequences using VAE-SSL (trained
using J = 988 labels) with normal conditional distribution. Same
arrangement as Fig. 4.

FIGURE 10. Histograms of RTF-phase at DOA = 20◦ for 100 RTF frames
from (a) input, (b) generated with normal conditional distribution
pθ (x|y, z), and (c) generated with truncated normal conditional
distribution (Sec. II D–E, Sec. III D). The truncated normal distribution
(c) better approximates the input RTF-phase statistics (a). Histograms are
normalized.

DOA location based on τ = (r2/c) sin θ , shown as a dashed
black line in both subfigures.

We also consider the time delays corresponding to the
conditionally generated RTF-phase (see Fig. 5 and 6) from
VAE-SSL trained on DTU dataset. The IFFT of the RTFs cor-
responding to the conditionally generated phases are shown

FIGURE 11. Comparison of IFFTs (time delays) of the generated RTFs
using (a,b) the normal and (c,d) truncated normal conditional distribution
pθ (x|y, z), from the VAE-SSL generative model trained on the DTU dataset.
In (e) the time delays of RTFs corresponding to the input are shown. See
Fig. 4 for input and generated RTF-phase using the truncated normal
conditional distribution, and Fig. 9 for those generated with the normal
distribution. The time delays obtained using the normal distribution are
biased, but with the truncated normal they are not. These results were
calculated for one RTF realization per DOA (T = 19 DOAs). The
hypothesized time delay shown as black dashed line.

in Fig. 8. Again, the peak correlates well with the hypothe-
sized time delay.

As a final comparison, similar analyses are performed
using VAE-SSL trained using the conventional normal dis-
tribution for the generative model conditional distribu-
tion pθ (x|y, z). Results are given for J = 988 labels
in Fig. 9–11. In Fig. 9, we reconstruct the input RTF-phase
sequences, similar to Fig. 4. In Fig. 10 the RTF-phase dis-
tributions generated using the normal and truncated nor-
mal distributions are shown. Fig. 11 depicts the RTF-phase
and mean RTF-phase generated by VAE-SSL using the nor-
mal and truncated normal distributions, similar to Fig. 7.
Since the wrapped RTF-phase is on the interval [−π, π],
the truncated distribution to the same range is more physi-
cally meaningful. Further, the large peak of the full normal
distribution-generated RTF-phase (Fig. 10(b)) is related to the
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bias in the IFFT of the RTF corresponding to the generated
phase (see Fig. 11) since zero RTF-phase implies broadside
sourceDt = 0◦. In all cases, the physical characteristics of the
wrapped RTF-phase are better modeled using the truncated
normal conditional distribution.

IV. ALGORITHM COMPUTATION TIME
We conclude our discussion by comparing the speed of
the localization approaches. The algorithmic complexity of
MUSIC is dictated primarily by the construction and eigen-
decomposition of the cross-spectral matrix. SRP-PHAT and
the learning-based approaches, VAE-SSL, and fully super-
vised CNN, consist primarily of matrix (tensor) multiplica-
tion operations. For localization with the trained VAE-SSL
only the classifier CNN (Fig. 2(a)) is used. The fully super-
vised CNN and VAE-SSL have the same complexity for the
localization task. We note that the number of multiplica-
tion operations for CNNs can be quite large, though effi-
cient implementations in deep learning toolboxes help with
wall-time.

Average CPU wall time of the approaches for one STFT or
RTF-phase sequence (31 frames) were obtained using an Intel
Xeon server with 16 threads. The times for VAE-SSL and
fully supervised CNN were 0.6 ms, for SRP-PHAT 3.1 ms,
and forMUSIC 95.1ms. Thus, the learning-based approaches
can be quite fast relative to conventional localization.

V. CONCLUSION
We have proposed a semi-supervised approach to acoustic
source localization in reverberant environments based on
deep generative modeling with VAEs, deemed VAE-SSL. To
the best of our knowledge, this study presents the first appli-
cation of deep generative modeling in source localization and
acoustic propagation modeling. It is found that VAE-SSL
can outperform both conventional signal processing-based
approaches SRP-PHAT and MUSIC, as well as fully super-
vised CNNs in label-limited scenarios. Further, VAE-SSL
generalizes well to source locations that were not in the
training data. This performance is demonstrated using real
IRs, obtained from two different environments, and speech
signals from the LibriSpeech corpus.

By learning to generate RTF-phase from minimally
pre-processed input data, VAE-SSL models, end-to-end,
the reverberant acoustic environment. The approach exploits
structure in the unlabeled data to improve localization per-
formance relative to using only the labeled sequences.
The VAE-SSL system separates the physical causes of the
RTF-phase (i.e., source location) from signal characteristics
such as noise and speech activity which are not salient to the
task. Further, the trained VAE-SSL system can generate new
RTF-phase samples. We interpreted the generated RTF-phase
and verified the VAE-SSL approach well-learns the physics
of the acoustic environment. The generative modeling used
in VAE-SSL provides interpretable features.

It is observed that deep generative modeling can improve
ML model interpretability in the context of acoustics. Such

models are robust to light preprocessing of input features
and can automatically obtain the appropriate task-specific
representation in an end-to-end fashion. The processing of
only short time windows may facilitate the localization of
moving sources, namely speaker tracking problems. In our
future work, we will extend this approach to multi-source
and moving-source scenarios. Moreover, the effect of acous-
tic feature processing on the VAE-SSL generalization and
sample complexity will be considered further.

APPENDIX A
DERIVATION OF UNSUPERVISED OBJECTIVE
We here give additional details of the derivation of the
objective for unlabeled data (10). The steps also clarify the
derivation of the supervised objective, which follows a very
similar development. Starting with Bayes’ rule we have for
unlabeled data

p(y, z|x) =
pθ (x|y, z)p(y, z)

p(x)
. (25)

Per VI we seek an approximate density q8(y, z|x) ≈
p(y, z|x) which minimizes the KL-divergence

{8, θ} = argmin
8,θ

KL(q8(y, z|x)||p(y, z|x)). (26)

The KL divergence is for two arbitrary distributions is (and
can be factored as)

KL(Q(x)||P(x))

=

∫
∞

−∞

Q(x) log
Q(x)
P(x)

dx

=

∫
∞

−∞

Q(x) logQ(x)dx −
∫
∞

−∞

Q(x) logP(x)dx

= EQ(x)
[
logQ(x)]− EQ(x)[logP(x)

]
, (27)

with EQ(x) the expectation with respect to Q(x).
With the definitions in (25) and (27), the KL-divergence

(26) is assessed

KL(q8(y, z|x)||p(y, z|x))

= E
[
log q8(y, z|x)

]
− E

[
log

pθ (x|y, z)p(y, z)
p(x)

]
= E

[
log q8(y, z|x)

]
− E

[
log pθ (x|y, z)p(y, z)

]
+E

[
log p(x)

]
= −ELBO+ log p(x), (28)

with the expectation E relative to q8(y, z|x).
Considering the ELBO terms from (28), we find the objec-

tive (negative ELBO) for the unlabeled data as

−D(θ, φ; x) = E
[
log pθ (x|y, z)p(y, z)− log q8(y, z|x)

]
= E

[
log pθ (x|y, z)+ log p(y)+ log p(z)

− log qφ1 (z|x, y)− log qφ2 (y|x)
]
. (29)

We can factorize the expectation in (29) with y and z inde-
pendent. Since y has discrete states, we have for an arbitrary
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density P(y, z)

Eq8(y,z|x)
[
P(y, z)

]
=

∫ ∫
q8(y, z|x)P(y, z)dydz

=

∫
qφ2 (y|x)

[ ∫
qφ1 (z|x, y)P(y, z)dz

]
dy

=

∑
y

qφ2 (y|x)
[ ∫

qφ1 (z|x, y)P(y, z)dz
]
. (30)

Using (30), we expand (29)

−D(θ,8; x)

= Eqφ2 (y|x)
[
Eqφ1 (z|x,y)

[
log pθ (x|y, z)

+ log p(y)+ log p(z)− log qφ1 (z|x, y)− log qφ2 (y|x)
]]

=

∑
y

qφ2 (y|x)
[
− C(θ, φ; x, y)− log qφ2 (y|x)

]
. (31)

Thus, it follows from the derivation with Bayes’ rule that in
the unlabeled case, we marginalize over the states of y. This
requires sampling the terms in (31) over all states of y for
unlabeled data {xu} ∼ Du.
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