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ABSTRACT

In this paper, we consider the problem of acoustic source localization
by acoustic sensor networks (ASNs) using a promising, learning-
based technique that adapts to the acoustic environment. In particu-
lar, we look at the scenario when a node in the ASN is displaced from
its position during training. As the mismatch between the ASN used
for learning the localization model and the one after a node displace-
ment leads to erroneous position estimates, a displacement has to be
detected and the displaced nodes need to be identified. We propose
a method that considers the disparity in position estimates made by
leave-one-node-out (LONO) sub-networks and uses a Markov ran-
dom field (MRF) framework to infer the probability of each LONO
position estimate being aligned, misaligned or unreliable while ac-
counting for the noise inherent to the estimator. This probabilistic
approach is advantageous over naı̈ve detection methods, as it out-
puts a normalized value that encapsulates conditional information
provided by each LONO sub-network on whether the reading is in
misalignment with the overall network. Experimental results con-
firm that the performance of the proposed method is consistent in
identifying compromised nodes in various acoustic conditions.

Index Terms— Acoustic manifold learning, failure detection,
Gaussian process, Markov random fields, sound source localization.

1. INTRODUCTION

Sound source localization is a topic that has been covered in great
detail and remains a burgeoning field of study [1–10], see [11] for an
overview of the state of the art. Especially, smart-home technology
drove the need for robust and efficient localization methods in acous-
tic sensor networks (ASNs) [12,13]. While in the past, traditional lo-
calization methods typically relied on physics-based models [2–4],
there has been a growing interest in localizing acoustic sources us-
ing learning-based methods whereby position estimates are obtained
directly from previously learned knowledge about a given acoustic
environment. These methods have been shown to be effective, par-
ticularly in adverse acoustic conditions [1, 5–7, 10, 14] as long as
the parameters used for training remain static. For example, when
localizing sources in a smart-home environment, many of the under-
lying characteristics of the room remain essentially unchanged (e.g.,
the room dimensions and reverberation time). This means the vari-
ability regarding the acoustic transfer functions, which are typically
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represented in a high-dimensional feature space, can be mostly at-
tributed to the source position. This lends credibility to the use of
learning-based methods where these static qualities can be captured
during a training phase.

Due to the difficulty in acquiring labelled data, a semi-supervised
method based on a small labelled and a large unlabelled data set is
generally employed. Unlabelled data, which are easy to obtain,
are used together with a few labelled ‘anchors’ to train models
for acoustic source localization [9]. In [15], a semi-supervised ap-
proach was employed for source localization using a relative transfer
function (RTF)-based feature vector, which measures the relation
between the acoustic paths from a sound source to two different
microphones. Thus, by leveraging unlabelled data, a more robust lo-
calizer is achieved. In this study the scenario considered was limited
to a single microphone system in a static environment with white
Gaussian noise input. Subsequently, in [10], the semi-supervised
inference approach, based on Gaussian process (SSGP) on multiple
manifolds, was further developed and adapted to localize a speech
source using a multi-microphone system, again based on a dense
grid of RTFs [10, 16, 17].

However, if the array constellation, e.g., the position of one or
more nodes, changes relative to the training stage, the usefulness
of the learned model becomes uncertain. Such a displacement of
a node may be caused by the user changing the position of, e.g., a
smart speaker in a smart home environment. In our work, we adopt
the SSGP method and consider the scenario where any given micro-
phone node can be moved and the sources are assumed to be static
for at least a short period of time. The detrimental effect of an ar-
ray movement on the localization error can be observed in Fig. 1,
where the error almost doubles with only a small shift of a random
node in the network. We are thus posed with the problem of deter-
mining if a node is moving, and specifically determining which of
the nodes is moving. In order to address both issues, we consider a
technique recently introduced in the field of robotics for recognizing
sensor misalignment [18]. The authors in [18] utilize Markov ran-
dom fields (MRFs) with fully connected latent variables (FCLVs) to
measure the probability of misalignment of a sensor network based
on individual sensor readings and a ground truth mapping of a given
room [19, 20]. Recognition of misalignment is needed in [18] to
determine whether differences in measurements sampled over time
should be attributed to actual changes or due to inherent noise.

Rather than taking each sensor signal independently, we look at
the so-called leave-one-node-out (LONO) sub-network position esti-
mates (with each sub-network containing all but one node) obtained
via the SSGP method. We then use the differences between the posi-
tion estimates of the LONO sub-networks as input to the MRF model
(note, for our considerations in this paper the sound source is as-

766978-1-7281-7605-5/21/$31.00 ©2021 IEEE ICASSP 2021

IC
A

SS
P 

20
21

 - 
20

21
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 A
co

us
tic

s, 
Sp

ee
ch

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g 
(I

C
A

SS
P)

 | 
97

8-
1-

72
81

-7
60

5-
5/

20
/$

31
.0

0 
©

20
21

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
A

SS
P3

97
28

.2
02

1.
94

13
76

5

Authorized licensed use limited to: Bar Ilan University. Downloaded on January 14,2022 at 16:30:45 UTC from IEEE Xplore.  Restrictions apply. 



0 0.5 1 1.5 2 2.5 3
0.1

0.2

0.3

0.4

0.5

Shift Size (m)

E
st

im
at

io
n

E
rr

or
(m

)A
ft

er
Sh

if
t

Static (T60 = 0.2 s) Dynamic (T60 = 0.2 s)
Static (T60 = 0.4 s) Dynamic (T60 = 0.4 s)
Static (T60 = 0.6 s) Dynamic (T60 = 0.6 s)

Fig. 1. Mean error of the SSGP localizer for the scenario of Fig. 2
with different reverberation times T60, comparing scenarios without
node movement (dotted lines) to scenarios when one node in the
network moved (random node shifted from its learned position) as
can be seen in solid lines.

sumed to be short-time static). Eventually our model outputs pos-
terior probabilities per LONO sub-network for belonging to one of
the following latent states: aligned, misaligned or unreliable. These
posteriors are used to indicate both the probability of movement in
the network, and also allows for inference of which node moved.

2. REVIEW OF THE SSGP SOURCE LOCALIZATION
TECHNIQUE

We now briefly review the SSGP source localization method
(see [10] for details) and consider a speech signal in the Short-
Time Fourier Transform (STFT) domain, S (τ, k), at frame index
τ , frequency index k, received at a given node m, and emitted from
position q. We then model the signal received at node m as

Y m
i (τ, k) = Am

i (τ, k,q)S (τ, k) + Um
i (τ, k) , (1)

with i specifying the ith microphone in the mth node. Addition-
ally, Am

i (τ, k,q) is the acoustic transfer function (ATF) relating the
sound source originating at position q to the ith microphone, and
Um

i (τ, k) is the STFT-domain representation of an additive noise
signal which corrupts the measurement. The spatial information re-
quired for localizing a source at position q is embedded in the ATF,
and is independent of the source signal. Rather than extracting the
ATF we use the aforementioned RTF feature vector, hm (defined as
the ratio of two ATFs [21]) as it is easier to acquire in practice and is
equally informative for the proposed localization method.

In order to determine the position of an unknown source, we first
define qt = [qt,x, qt,y, qt,z]> as the unknown ’test’ position to be
inferred from an estimated RTF sample (e.g., by least squares), hm

t ,
which relates the unknown source position qt to node m, assum-
ing that each of the M network nodes has only two microphones.
For training the SSGP estimator, a set of nD sound sources is used
where nD is the number of training points, from which nU are mea-
sured RTFs and nL are measured RTFs with associated source po-
sitions serving as labels (nL + nU = nD). Each Cartesian coordi-
nate pd,a, a ∈ {x, y, z} of a training position, pd ∈ R3 is related
to an RTF sample hm

d measured at node m via an unknown func-
tional relationship. Moreover, we assume that the coordinates of all
nD labelled and unlabelled training positions captured by vectors

pD,a =
[
p1,a . . . , pnD,a

]>, are all jointly Gaussian, and their rela-
tion to the source positions can be determined by the posterior mean
function of corresponding Gaussian distributions. We will now dis-
cuss how we utilize the labelled and unlabelled RTF training sam-
ples {hm

d }
nD
d=1

(
∀m ∈ {1, . . . ,M}

)
in order to identify an unknown

source position from its corresponding measured RTF hm
t . We will

omit the dependency on the coordinate a ∈ {x, y, z} in the follow-
ing for conciseness.

In order to localize a sound source, RTFs obtained at each node
are related to those obtained at every other node in the ASN, which is
summarized via the kernel-based covariance matrix, ΣΣΣL, with each
element representing a pairwise affinity between two RTF samples.
In particular, we express an element of the covariance matrix which
relates two labelled source positions, indexed by i and j as

(ΣΣΣL)i,j =
1

M2

nD∑
d=1

M∑
q=1

M∑
w=1

kq
(
hq
i ,h

q
d

)
kw
(
hw
j ,h

w
d

)
. (2)

Here, hm
i , hm

j are RTF samples from the set of labelled RTFs
HL = {h1

i , . . . ,h
M
i }nL

i=1, and km(hm
i , hm

j ) is a conventional
pairwise Gaussian kernel function, km : Mm ×Mm → R+ with:

km
(
hm
i ,h

m
j

)
= exp

−
∥∥hm

i − hm
j

∥∥2
2

εm

 , (3)

where Mm denotes a manifold corresponding to node m, and εm is
a parameter defining the width of the kernel [22]. Similarly, we can
define an element in the test covariance vector, ΣΣΣLt ∈ RnL , used for
inferring the position of an unknown source element

(ΣΣΣLt)i =
1

M2

nD∑
d=1

M∑
q=1

M∑
w=1

kq
(
hq
i ,h

q
d

)
kw
(
hw
t ,h

w
d

)
. (4)

The unknown position, qt, can thus be estimated coordinate-wise
via the conditional mean E

{
qt|pL,HL, {hm

t }Mm=1

}
, where pL ∈

RnL is the vector containing one of the coordinates of the labelled
training positions. The distribution of all source positions (known
and unknown) is defined over the concatenation of all coordinates
of the labelled training positions pL and the coordinate to be esti-
mated qt[

pL

qt

] ∣∣∣∣HL v N

0nL+1 ,

[
ΣΣΣL + σ2InL ΣΣΣLt

ΣΣΣ>Lt Σt

] , (5)

where Σt is the variance of qt, σ2 is the variance associated with
the accuracy of the labels, InL is the nL × nL identity matrix and
0nL+1 is an all-zero vector of length nL + 1. Thus, we estimate the
position of an unknown source by the conditional mean associated
with (5):

q̂t = E
{
qt|pL,HL, {hm

t }Mm=1

}
= ΣΣΣ>Lt

(
ΣΣΣL + σ2InL

)−1

pL.

(6)
An example of the localization scenario is shown in Fig. 2 (detailed
room specifications can be found in Sec. 4.).

3. MISALIGNMENT DETECTION

In our scenario, MRFs are used to determine if a node in an ASN
is displaced, and also determine which node moved. MRFs pro-
vide a convenient and consistent way of modeling context depen-
dent entities and can be implemented in a local and massively par-
allel manner [19, 23]. MRFs are especially useful for inference if
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Fig. 2. Misaligned scenario with example of proposed detection
method. Green arrow indicates how the prediction of an acoustic
source changes based on the translation of a random node (blue
arrow). Values in brackets next to nodes indicate probability of a
LONO sub-network being aligned, misaligned, or unreliable where
the referenced node is the one left out. Higher probabilities of align-
ment indicate the node left out is likely compromised.

a priori probability functions are given for the latent variables gov-
erning the observations. The observed quantities we use as input to
the MRF model are the SSGP localization estimates of M LONO
sub-networks. These estimates are compared to the localization es-
timates recorded before movement for the mth LONO sub-network
via the Euclidean distance

em = ‖qm − q̂m‖2. (7)

Note that, here, qm refers to position estimates recorded by a given
LONO sub-network before movement occurs, and q̂m refers to the
estimate after movement. While in dynamic scenarios with mov-
ing sources these distinctions will not be so clear, in the (short-time)
static scenario assumed here, they are useful for the desired analysis.
The latent variables are given by the errors made by a LONO in a
given acoustic environment, which is dependent on the room itself
and, consequently, on the variability of the SSGP localizer. There-
fore, in practice, the considered MRF model (as detailed in Sections
3.1, 3.2) compares the difference obtained from each LONO sub-
network using a message passing scheme and incorporates prior in-
formation regarding the expected deviation between the LONO es-
timates by a general localization error distribution. This distribu-
tion is acquired by simulating localization estimates of LONO sub-
networks after a random array in the ASN is displaced in a random
direction (including displacements by 0, 0.65, 0.85 and 1.5 m) and
comparing it with the ground truth position of the source (ground
truth choices include 0.1, 0.75 and 1.45 m). The output of the model
is a probability indicating if the network is in alignment. We as-
sume the latent variables to be FCLVs to ensure the difference in
estimation measured by each LONO sub-network is compared with
the difference measured by every other LONO sub-network. Addi-

tionally, we assume that only one node in the network is moving at
a time, therefore, the sub-network with the smallest probability of
movement as determined by the MRF model would be the one that
did not contain the moved node, thus allowing us to infer which par-
ticular node was moving. For this inference, we consider the poste-
rior probability output by the MRF that a given LONO sub-network
m, is of one of the following latent classes: aligned, misaligned or
unreliable.

3.1. Likelihood distributions of estimation errors

For describing the estimation method, we first introduce the latent
posterior probabilities,P

(
zm | e

)
, where zm = [zm,1, zm,2, zm,3]>

is an indicator vector of binary variables with each variable indicat-
ing whether a given LONO sub-network belongs to a given latent
class, and where e = [e1, . . . , eM ]> is the vector containing the
errors em (see (7)) from all LONO sub-networks.

We also define the prior error distributions of each latent class,
which were found empirically from observed errors (by simulating
a localization scenario for various noise levels and T60 values). For
the aligned case, zm = [1, 0, 0], we found the error distribution to
be similar to a half-normal distribution with variance σ2

align [18,24],

P

(
em | zm = [1, 0, 0] , σ2

align

)
= 2N

(
em; 0, σ2

align

)
, em ≥ 0.

(8)
For the misaligned case, an exponential distribution with parameter
λ was chosen, zm = [0, 1, 0],

P
(
em | zm = [0, 1, 0] , λ

)
=

λ exp{−λ em}
1− exp{−λ emax}

, (9)

and a uniform distribution for unreliable observations, zm =
[0, 0, 1],

P
(
em | zm = [0, 0, 1]

)
= unif (0, emax) , (10)

where, emax references the maximum localization error. A uniform
distribution is assigned to the unreliable class (analogous to the as-
sumption made in [18]) to reflect the uninformative character of this
class, as we assume that the movement of the nodes in the network
cannot be predicted. The hyper-parameters corresponding to the
aligned (normal) and misaligned (exponential) were estimated via
a random grid search [25].

3.2. Latent class estimation and failure detection

As noted, we make the FCLV assumption which allows us to con-
sider the viewpoint of every LONO sub-network in calculating the
set of latent posterior probabilities for a specific LONO sub-network.
In particular, every set of latent variables associated with a LONO
sub-network receives messages from all other nodes and their corre-
sponding set of variables to initialize the marginal posterior proba-
bilities, which is calculated as

P
(
zm | e

)
=

1

Z
lm �

M∏
m′=1
m′ 6=m

µµµm′→m (zm) . (11)

Here, Z is a normalizing factor, � is the Hadamard product and lm
is a likelihood vector

lm =
[
P
(
em | zm,1

)
,P
(
em | zm,2

)
,P
(
em | zm,3

)]>
. (12)
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The message from m′th to the mth LONO sub-network is denoted
as

µµµm′→m (zm) = ψm′,m (zm′ , zm) lm′ . (13)

In this case, ψm′,m (zm′ , zm) is the transition probability from state
m′ to m and is an element of the transition matrix ψψψ ∈ R3×3

+ . The
matrix is optimized using an iterative proportional fitting procedure,
again based on empirical localization errors [19, 26].

Finally, after each node receives initial messages from all other
nodes, messages are continually passed around until convergence to
the maximum likelihood posterior.

With the posteriors for each LONO sub-network, we obtain the
probability of misalignment in the overall network based on the av-
erage posterior probabilities of misalignment for all sub-networks:

pfailure =
1

M

M∑
m=1

P
(
zm,2 | e

)
. (14)

Then, the criterion pfailure ≥ pthresh with the user-defined threshold
pthresh is used for detecting node movement. A misaligned scenario
is illustrated in Fig. 2 where a node is displaced by one meter. Val-
ues in brackets next to each node indicate the probability of a LONO
sub-network being aligned, misaligned, or unreliable where the ref-
erenced node is the one left out. Higher probabilities of alignment
indicate that the node left out is more probable to have moved.

4. EVALUATION

We present a simulation study showing the efficacy of the proposed
method. After describing the experimental setup we discuss the re-
sults obtained from Monte-Carlo simulations.

We consider a room of size 6 m×6 m×3 m with four nodes uni-
formly spaced in a square (see Fig. 2), each comprising two micro-
phones spaced 5 cm apart. The Region of Interest (RoI) was chosen
to be in the center of the node network and within a 2 m radius from
the center of the room. In total, we simulated five labelled sources
and 300 unlabelled sources to generate RTFs, whereby each unla-
belled point was randomly chosen from a uniform 2D distribution
within the RoI. White noise convolved with simulated room impulse
responses (RIRs) [27] has been used for training.

The SSGP parameters were optimized via an ML estimation
(see [10] for details) for varying noise levels and T60. This was
done by drawing at random speech signals from a database of En-
glish speakers [28], again convolving them with simulated RIRs,
randomizing the position of the source and comparing the positional
estimates to the ground truth position. The parameters of the MRF
model, σ2

align, λ, and emax were chosen via a random grid search
whereby a room environment was simulated and arrays were ran-
domly shifted. The optimal parameters were then chosen based on
the detector’s ability to recognize movement for a range of proba-
bility thresholds. Care was taken in choosing these thresholds, as
extremely small thresholds result in a high number of false positives
as even a movement occurring with only a small probability will be
declared movement by the MRF model, and without loss of general-
ity, large thresholds result in a large number of false negatives. Thus
the threshold was incremented (from 0 to 1 by increments of 0.05 m)
to balance the range of possible outcomes.

For the results in Fig. 3, the movement detection scenario was
simulated over 100 trials per shift of a randomly chosen node, shifted
in a random direction, and for a range of reverberation levels. The
movement detection probability increases with the size of the dis-
placement, and is largely independent of the T60 level. We attribute
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Fig. 3. Output from the MRF-based detector for incremental shifts
of a random node and varying T60 with 100 trials per shift and T60.

the fact that the curves are not monotonic to the variance inherent to
the SSGP technique.

In order to test the robustness of the proposed algorithm, we
compare it to a naı̈ve detector that uses the LONO positional es-
timates directly as a way of indicating movement. Thus the naı̈ve
detector will indicate movement occurred if the deviation for a
given LONO sub-network is greater than the average of the other
three LONO estimates and this difference exceeds some threshold.
Thereby the thresholds were chosen based on the average difference
between a LONO sub-network excluding the shifted node and the
mean estimates of the other three. We found (as indicated in Ta-
ble 1) that the MRF-based detector performs better for most T60

levels with respect to the area under the receiver operating curve
(AUC) [29]. Note that the basis of the decision of the naı̈ve detector
is essentially the input to the MRF-based detector(i.e., e). Thus, for
the most part we observe improvement achieved by incorporating
the prior information regarding the error distributions rather than the
mean of the errors.

T60 [s] 0.2 0.4 0.6

Naı̈ve 0.71 0.62 0.78
MRF 0.84 0.82 0.78

Table 1. AUCs reported for the LONO sub-network estimation com-
parison and the MRF-based detector at varying T60.

5. CONCLUSION

In this paper, we proposed a method for consistently identifying sit-
uations where moving sensor network nodes render source localiza-
tion estimates questionable or useless. Specifically we considered
the problem of detecting the movement of a microphone node in a
network. The proposed probabilistic MRF-based algorithm deter-
mines whether a network of nodes is aligned with the previously
learned configuration by leveraging prior information on the error
distribution of an SSGP localization technique. The benefit of the
MRF model was demonstrated by comparison to an estimate that
relied directly on the relative difference in positional estimates by
different sub-networks of nodes. In particular, we showed that the
MRF-based detector outputs a movement indicator that scales com-
mensurate with the size of disruption in the network, and one that is
consistent across varying T60. As of now the algorithm assumes a
static source, and its application to a moving sound source is planned
as future work.
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