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ABSTRACT

In this paper we propose a fully Bayesian hierarchical model for
multi-speaker direction of arrival (DoA) estimation and separation
in noisy environments, utilizing the W-disjoint orthogonality prop-
erty of the speech sources. Our probabilistic approach employs a
mixture of Gaussians formulation with centroids associated with a
grid of candidate speakers’ DoAs. The hierarchical Bayesian model
is established by attributing priors to the various parameters. We
then derive a variational Expectation-Maximization algorithm that
estimates the DoAs by selecting the most probable candidates, and
separates the speakers using a variant of the multichannel Wiener
filter that takes into account the responsibility of each candidate in
describing the received data. The proposed algorithm is evaluated
using real room impulse responses from a freely-available database,
in terms of both DoA estimates accuracy and separation scores. It is
shown that the proposed method outperforms competing methods.

Index Terms— Audio source separation, DoA estimation, vari-
ational EM, Mixture of Gaussians, W-disjoint orthogonality.

1. INTRODUCTION

Sound source separation and direction of arrival (DoA) estimation of
multiple speakers from a mixture signal are fundamental problems
in the field of audio signal processing. A common challenge arises
in the presence of noise, which may degrade both the accuracy of the
DoA estimates as well as the quality of the separated speakers.

Common DoA estimation methods are multiple signal classi-
fication (MUSIC) [1] and steered-response power phase transform
(SRP-PHAT) [2]. However, these techniques are prone to perfor-
mance degradation when multiple speakers co-exist in the same en-
vironment. A widely-used approach for estimating the DoAs of
concurrent speakers relies on the W-disjoint orthogonality (WDO)
assumption [3], i.e. the sparsity of speech sources in the time-
frequency (TF) domain. Typically, a TF mask is constructed using
the Expectation-Maximization (EM) algorithm, associating each TF
bin to a single candidate angle, and then DoA estimates can be se-
lected as the most probable candidates [4].

In [5], a model-based EM source separation and localization
(MESSL) algorithm is proposed for a stereo mixture. Based on in-
teraural phase difference (IPD) and interaural level difference (ILD)
features, each TF bin is associated with both a candidate speaker
and a candidate DoA. The resulting TF masks are used to sepa-
rate the individual sound sources. Note that additive noise is not
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explicitly modeled with these features, thus motivating to directly
cluster the raw observations [6–11]. In [6–8], the association pro-
cedure consists of two steps. First, each TF bin is associated with
a candidate speaker, and then the speaker is associated with a can-
didate angle. An extension to the case of moving sound sources is
presented in [9]. In [10, 11], the association procedure is simpli-
fied to include only DoA candidates. An explicit modelling of the
noise power spectral density (PSD) is included, where the noise PSD
matrix is either assumed to be known [10], or included in the estima-
tion procedure [11]. As opposed to [6–9] which adopt a variational
Bayesian approach for the inference of the parameters, in [10, 11]
the various model parameters are treated as deterministic unknown
parameters, for which point estimates are computed. Note that the
separation methods in [5–7] apply the TF masks directly to the mul-
tichannel mixture, whereas in [8–10] the TF mask is applied to the
output of a beamformer, which aims at reducing the ambient noise.

In the Bayesian framework, model parameters are viewed as
random variables having a prior probability density function (PDF),
rather than deterministic unknown parameters. This approach al-
lows us to include prior knowledge and to explore uncertainty in
the model. As the inference is carried out based on the entire PDF
rather than point estimates, the obtained estimators are more robust
and less sensitive to local maxima [12]. Hierarchical Bayesian mod-
els are very useful, since they use a multi-level modeling to capture
important dependencies among parameters. However, the posterior
distribution might be intractable in complex Bayesian models, and
thus the EM algorithm cannot be applied. The variational approach
[12–14] circumvents this difficulty by approximating the posterior.
Recently, several works utilized the variational EM (VEM) method
for speech enhancement [15–17], speech dereverberation [18], and
audio source separation [6–9, 19].

In this work, we extend the probabilistic model proposed in
[10,11] towards a fully Bayesian model. We introduce a hierarchical
mixture of Gaussians (MoG) model in a Bayesian setting, by plac-
ing Gaussian priors over the speech signals and Gamma hyperpriors
over the speech precisions. The noise is modelled as a spatially ho-
mogeneous sound field, with a known spatial coherence matrix and
an unknown precision. A Gamma prior is attributed to the noise pre-
cision. A latent activity indicator is introduced for the assignment of
TF bins to candidate DoAs, with its mixture weights having a Dirich-
let distribution. The posterior distributions of the various latent vari-
ables are inferred through a VEM algorithm, leading to a probability
map over the candidate angles, from which we select the most prob-
able candidates as the DoA estimates. The separated speakers are
then obtained as the posterior speech estimates associated with the
dominant candidates.
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2. PROBLEM FORMULATION

2.1. Signal Model

Consider a mixture of J speakers received by N microphones, in
a noisy acoustic environment. We work in the short-time Fourier
transform (STFT) domain, where k ∈ [1,K] denotes the frequency
band, and ` ∈ [1, L] denotes the time frame. The N -channel mea-
surement signal z(`, k) = [z1(`, k), · · · , zN (`, k)]> writes

z(`, k) =

J∑
j=1

sj(`, k)gj(k) + u(`, k), (1)

where sj(`, k) is the jth speech signal as received by the first mi-
crophone (that was arbitrarily chosen as the reference microphone),
gj(k) = [1, gj,2(k), · · · , gj,N (k)]> is the relative direct-path trans-
fer function (RDTF) vector associated with the jth speaker and
u(`, k) = [u1(`, k), · · · , uN (`, k)]> denotes the additive noise.
The nth element of gj is given by gj,n(k) = exp

(
−j 2πk

K
fsτj,n

)
,

where fs denotes the sampling frequency and τj,n is the time dif-
ference of arrival (TDOA) of the jth speaker between microphone n
and the reference microphone, i.e. τj,n =

dn cos(θj)

c
, where θj is the

DoA of the jth speaker, dn is the distance between the nth micro-
phone and the reference microphone and c is the sound velocity.

2.2. Probabilistic Model

We model the observations using a MoG model withM components.
The centroid of each Gaussian is associated with an optional source
DoA from a predefined grid of candidate angles {θ1, · · · , θM}, as
in [10, 11]. By utilizing the disjoint activity of the speakers in the
STFT domain [3], each TF bin can be associated with a single active
source that impinges the array from a particular angle in the grid.

Let gm and sm denote, respectively, the RDTF and the
speech signal associated with a candidate speaker located at the
mth angle (as opposed to gj and sj in (1) which are de-
fined per actual source). The candidate speech signals are
modelled as independent zero-mean Gaussian random variables,
p
(
sm(`, k)|τm(`, k)

)
= Nc

(
sm(`, k); 0, τ−1

m (`, k)
)
, where τm de-

notes the precision of the mth candidate. For brevity, we de-
note s(`, k) = [s1(`, k), · · · , sM (`, k)]>. The noise is mod-
elled as a stationary, zero-mean multivariate Gaussian process with
p
(
u(`, k)|Φu(k)

)
= Nc

(
u(`, k); 0,Φu(k)

)
. The noise is assumed

to be spatially homogeneous, i.e. Φu(k) = β−1(k)Γ(k), where
β(k) is the inverse noise power and Γ(k) is a spatial coherence ma-
trix, assumed to be known.

The mixture distribution is formulated in terms of discrete
latent variables, indicating the assignment of each TF bin to
a specific source angle. To this end, we introduce an M -
dimensional binary random variable for each TF bin x(`, k) =
[x1(`, k), · · · , xM (`, k)]>, in which a particular element xm(`, k)
equals 1 (indicating the active source DoA) while the rest are zeros.
Thus, the conditional data distribution writes

p
(
z(`, k)|s(`, k),x(`, k), β(k)

)
=

M∏
m=1

Nc
(
z(`, k); sm(`, k)gm(k), β−1(k)Γ(k)

)xm(`,k)
. (2)

The PDF of the latent variable x(`, k) is a categorical distribution,

i.e. p (x(`, k)|ψ) =
M∏
m=1

ψ
xm(`,k)
m , where ψ = [ψ1, · · · , ψM ]> is

the vector of mixture coefficients, defined by ψm , p
(
xm(`, k) =

am(`, k)
bm(`, k)

τm(`, k) sm(`, k) z(`, k) β(k)

c0(k)
d0(k)

xm(`, k)ψmα0

Fig. 1: Graphical model.

1
)
, and

M∑
m=1

ψm = 1. It can be shown that by multiplying (2) with

p (x(`, k)|ψ) and then marginalizing over x(`, k), a standard MoG
formulation [14] is obtained:

p
(
z(`, k)|s(`, k), β(k),ψ

)
=

M∑
m=1

ψmNc
(
z(`, k); sm(`, k)gm(k), β−1(k)Γ(k)

)
. (3)

2.3. Conjugate Priors

Our hierarchical model is established by introducing priors over all
model parameters, namely: i) The precisions of the speech candi-
dates; ii) The precision of the noise; and iii) The mixture weights.
The conjugate prior for the precision of a univariate Gaussian is the
Gamma distribution [14]. Hence, the prior for the speech precision
of the mth candidate writes:

p
(
τm(`, k)

)
= Gam

(
τm(`, k); am(`, k), bm(`, k)

)
. (4)

Similarly, we assume a Gamma prior on the noise precision:

p(β(k)) = Gam
(
β(k); c0(k), d0(k)

)
. (5)

For the weights of a categorical distribution, the conjugate prior is
the Dirichlet distribution:

p
(
ψ
)

= Dir
(
ψ;α0

)
. (6)

The proposed hierarchical model is illustrated in Fig. 1. The defini-
tions of the various probability distributions appear in the Appendix.

3. VEM ALGORITHM

In this work, Z = {z(`, k)}L,K`,k=1 denotes the set of
observations, the set of hidden variables consists of
H =

{
sm(`, k), τm(`, k), β(k), xm(`, k), ψm

}L,K,M
`,k,m=1

,
and the parameter set consists of Θ ={
am(`, k), bm(`, k), c0(k), d0(k), α0

}L,K,M
`,k,m=1

. Bayesian in-
ference of latent variables requires the computation of the posterior
distribution p(H|Z; Θ) = p(Z,H;Θ)

p(Z;Θ)
. Based on the probabilistic



assumptions of Section 2, the complete-data distribution writes

p(Z,H; Θ) =

L,K,M∏
`,k,m=1

[
p
(
z(`, k)|sm(`, k),gm(`, k), β(k)

)xm(`,k)

× p
(
sm(`, k)|τm(`, k)

)
p
(
τm(`, k); am(`, k), bm(`, k)

)]
×

L,K∏
`,k=1

[
p
(
x(`, k)|ψ

)]
p
(
ψ;α0

) K∏
k=1

p
(
β(k); c0(k), d0(k)

)
. (7)

Due to the complex form of (7), p(Z; Θ) =
∫
p(Z,H; Θ)dH can-

not be computed analytically and thus exact inference becomes in-
tractable. We therefore propose a variational inference procedure,
which approximates the posterior, q(H) ≈ p(H|Z; Θ). According
to the mean field theory [13, 20], we assume that the speech sig-
nals, speech precisions, noise precision, activity indicators and mix-
ture weights are conditionally independent given the observations.
Therefore, the approximate posterior distribution factorizes as:

q(H) =

L,K,M∏
`,k,m=1

[
q
(
sm(`, k)

)
q
(
τm(`, k)

)]

×
L,K∏
`,k=1

[
q
(
x(`, k)

)]
q
(
ψ
) K∏
k=1

q
(
β(k)

)
. (8)

The VEM procedure consists in iterating the following two steps un-
til convergence. In the E-Step, the approximate posterior distribution
of each subsetHi ⊆ H is computed by [14]:

ln q(Hi) = Eq(H/Hi)[ln p(Z,H; Θ)] + const, (9)

where q(H/Hi) denotes the approximate joint posterior distribu-
tion of all latent variables, excluding Hi. In the subsequent M-step,
L(Θ) = Eq(H)[ln p(Z,H; Θ)] is maximized w.r.t. the parameters
in Θ. For brevity, the frequency index k is henceforth omitted when-
ever possible.

3.1. E-s Step

The approximate posterior PDF of the speech signal emitted from
angle θm is obtained from (7) and (9) by keeping only the terms that
depend on sm(`):

ln q(sm(`)) ∝ Eq(τm(`))q(xm(`))q(β)

[
ln p
(
z(`)|sm(`), xm(`), β

)
+ ln p

(
sm(`)|τm(`)

)]
. (10)

It can be shown that (10) yields a Gaussian distribution q (sm(`)) =
Nc (sm(`); ŝm(`),Σs,m(`)) , with

ŝm(`) =
rm(`)gH

mβ̂Γ−1z(`)

rm(`)gH
mβ̂Γ−1gm + τ̂m(`)

, (11)

Σs,m(`) =
(
rm(`)gH

mβ̂Γ−1gm + τ̂m(`)
)−1

, (12)

where τ̂m(`), rm(`) and β̂ are posterior statistics that will be defined
in the following sections. The speech signal impinging the array
from θm can thus be estimated by the posterior mean (PM), namely
ŝm(`). This speech estimator resembles the form of the multichan-

nel Wiener filter (MCWF) [21]:

ŝMCWF,m(`) =
gH
mβ̂Γ−1z(`)

gH
mβ̂Γ−1gm + τ̂m(`)

, (13)

besides rm(`). It is well known that the MCWF can be decom-
posed into a multichannel minimum variance distortionless response
(MVDR) beamformer followed by a single-channel Wiener postfil-
ter [22]. In a similar way, ŝm(`) can be decomposed as

ŝm(`) =
rm(`)gH

mβ̂Γ−1gm

rm(`)gH
mβ̂Γ−1gm + τ̂m(`)︸ ︷︷ ︸

Hm(`)

× gH
mΓ−1

gH
mΓ−1gm︸ ︷︷ ︸
wH

MVDR,m

z(`). (14)

As will be shown in Sec. 3.3, rm(`) is a soft mask, representing
the responsibility of a speaker from the mth angle for data point
z(`). Due to the unknown activity pattern of a speaker impinging the
array from angle θm, the MVDR steered towards θm might enhance
a speech-absent TF bin. Hm(`) is a postfilter that takes into account
the uncertainty level in the activity of the mth speaker, expressed
by rm(`), and weights accordingly the single channel at the MVDR
output. When rm(`)→ 1, ŝm(`) reduces to ŝMCWF,m(`).

The speech estimator of (14) will be used later for extracting the
individual speakers from the noisy mixture, by selecting the most
probable candidates according to the posterior distribution of the
mixture weights, q(ψ). Note that in [10], the speech signal asso-
ciated with the mth candidate was arbitrarily estimated as

ŝ [10]
m (`) = rm(`)×wH

MVDR,mz(`). (15)

3.2. E-τ Step

The posterior PDF of the speech precision associated with a speaker
located at the mth angle writes:

ln q(τm(`)) ∝ Eq(sm(`))

[
ln p
(
sm(`)|τm(`)

)]
+ ln p

(
τm(`); am(`), bm(`)

)
, (16)

which can be shown to be a Gamma distribution: q(τm(`)) =
Gam(τm(`); ap,m(`), bp,m(`)), with

ap,m(`) = am(`) + 1 , bp,m(`) = bm(`) + ̂|sm(`)|2. (17)

As a result, the PM estimate of τm is given by:

τ̂m(`) =
ap,m(`)

bp,m(`)
=

am(`) + 1

bm(`) + ̂|sm(`)|2
. (18)

3.3. E-x Step

The posterior PDF of x(`) is given by

ln q(x(`)) ∝
M∑
m=1

xm(`)Eq(sm(`))q(β)

[
ln p
(
z(`)|sm(`), xm(`), β

)]
+ Eq(ψ)

[
ln p
(
x(`)|ψ

)]
, (19)



yielding a categorical distribution: q (x(`)) =
M∏
m=1

rm(`)xm(`),

with rm(`) , q
(
xm(`) = 1

)
= ρm(`)

M∑
m=1

ρm(`)

, and

ρm(`) = exp
{
Eq(ψ)

[
lnψm

]}
× exp

{
Eq(sm(`))q(β)

[
lnNc

(
z(`); sm(`)gm, β

−1Γ
)]}

. (20)

The PM estimate of xm is therefore x̂m(`) = rm(`), represent-
ing the responsibility of the mth candidate for data point z(`). The
expression in (20) can be further simplified using (37b) in the Ap-
pendix. Note that the deterministic approach of [10, 11] yields a
different expression:

ρm(`) = ψm ×Nc
(
z(`); 0, τ−1

m (`)gmgH
m + β−1Γ

)
. (21)

3.4. E-ψ Step

The posterior PDF of the mixture weights vector writes:

ln q(ψ) ∝
L,K∑
`,k=1

Eq(x(`,k))

[
ln p
(
x(`, k)|ψ

)]
+ ln p

(
ψ;α0

)
,

(22)

which leads to a Dirichlet distribution: q
(
ψ
)

= Dir
(
ψ;αp

)
, with

αp,m = α0 +
L,K∑
`,k=1

rm(`, k). Using (37a) in the Appendix, the PM

estimate of the mixture weights is given by

ψ̂m =

α0 +
L,K∑
`,k=1

rm(`, k)

Mα0 + LK
, m = 1, . . . ,M. (23)

We obtain a probability map over the candidate DoAs, ψ̂ =

[ψ̂1, · · · , ψ̂M ]>. The locations of the peaks in ψ̂, i.e. the most prob-
able candidate angles, can be selected as the DoA estimates, and
the corresponding posterior speech estimates ŝm can be taken as the
separated speakers. Note that if α0 → 0, i.e. the Dirichlet prior is

broad, then ψ̂m →

L,K∑
`,k=1

rm(`,k)

LK
, thus coinciding with the determin-

istic estimator proposed in [10, 11].

3.5. E-β Step

Similarly, the posterior PDF of the noise precision writes:

ln q(β) ∝
L,M∑
`,m=1

Eq(sm(`))q(xm(`))

[
ln p
(
z(`)|sm(`), xm(`), β

)]
+ ln p

(
β; c0, d0

)
, (24)

leading to a Gamma distribution: q(β) = Gam(β; cp, dp), with

cp = c0 +NL, (25)

dp = d0 +

L,M∑
`,m=1

rm(`)

(
zH(`)Γ−1z(`)

− 2<
{

zH(`)Γ−1gmŝm(`)
}

+ ̂|sm(`)|2gH
mΓ−1gm

)
. (26)
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Fig. 2: Geometric setup.

Hence, the PM estimate for the noise precision is given by:

β̂ =
cp
dp
. (27)

3.6. M Step

The parameters are now estimated by maximizing the expected log-
likelihood of the completed data L(Θ) = Eq(H) [ln p(Z,H; Θ)] .
Using standard properties of Gamma and Dirichlet distributions (see
Appendix), we obtain the following updates:

am(`) = Ψ−1

[
Ψ(ap,m(`)) + ln

bm(`)

bp,m(`)

]
, m = 1, . . . ,M

bm(`) =
am(`)

ap,m(`)
bp,m(`), m = 1, . . . ,M

c0 = Ψ−1

[
Ψ(cp) + ln

d0

dp

]
, d0 =

c0
cp
dp, (28)

where Ψ(·) is the digamma function. Differentiating L(Θ) w.r.t. α0,
yields

∂L(Θ)

∂α0
=

∂

∂α0
Eq(ψ)

[
ln p
(
ψ;α0

)]
= M

(
Ψ(Mα0)−Ψ(α0)

)
+

M∑
m=1

[
Ψ(αp,m)−Ψ

( M∑
n=1

αp,n
)]
.

(29)

Setting (29) to zero, a closed-form solution for α0 is not available.
Instead, we apply Newton’s iterative method [23]:

α
(i+1)
0 = α

(i)
0 −

d
(
α

(i)
0

)
h
(
α

(i)
0

) , (30)

where d(α0) is the first-order derivative of L(Θ) w.r.t. α0, given by
(29), and h(α0) is the second-order derivative w.r.t. α0:

h(α0) = M
(
MΨ′(Mα0)−Ψ′(α0)

)
, (31)

where Ψ′(·) is the trigamma function.

4. PERFORMANCE EVALUATION

4.1. Simulation Setup

Room impulse responses (RIRs) were downloaded from an open-
source database [24]. The database was recorded in a room with



Table 1: DoA Estimation Accuracy

MAE [deg]

Alg.\SNR 0dB 5dB 10dB

SRP-PHAT 17.81 13.64 13.81
EM-based 8.72 6.80 5.02
Proposed 5.46 2.55 2.45

dimensions 6×6×2.4 m. We selected RIRs corresponding to a uni-
form linear array (ULA) ofN = 8 microphones with inter-distances
of 8 cm and reverberation level of T60 = 0.16 s. Our experiments
consist of two concurrent speakers, located at 1 m distance from the
array, at different angles in the set {−75◦,−60◦, . . . , 75◦}, as illus-
trated in Fig. 2. For the clean speech signals, we used utterances of
five male and five female speakers from the TIMIT database [25]. In
each experiment, utterances of 2 speakers (one male and one female)
were randomly selected, and then convolved with the corresponding
RIRs. An artificial diffuse noise with speech-like spectrum was gen-
erated by the method described in [26], with various signal to noise
ratio (SNR) levels. The sampling rate was 16 kHz, and the STFT
frame length was 64 ms with 75% overlap. The number of Gaus-
sian candidates was set to M = 180, corresponding to an angular
range of [−89◦, 90◦] with resolution of 1◦. We used the frequency
band of 300–3400 Hz. For the Newton search, 5 iterations were ap-
plied. In the proposed method, the two candidate angles with the
largest posterior probabilities are selected as the DoA estimates, and
the corresponding posterior speech estimates (see (14)) are taken as
the separated speakers. Note that when the number of sources is
unknown, it can be determined by analyzing ψ. However, an elabo-
rated study of this issue is out of the scope of this paper.

4.2. Performance Measures and Competing Methods

The accuracy of the DoA estimates was assessed using the mean ab-
solute error (MAE). The source separation performance is evaluated
with two common objective measures, namely signal-to-distortion
ratio (SDR) and signal-to-interference ratio (SIR) [27]. The speech
quality and intelligibility is measured in terms of short-time objec-
tive intelligibility (STOI) [28]. The reported results are average mea-
sures over the 55 different possible combinations of two speakers, in
the given set of angles.

The DoA estimation performance of the proposed method is
compared to the following methods: (i) SRP-PHAT method [2]; and
(ii) The EM-based DoA estimation method of [11]. The source sep-
aration performance is compared to the EM-based seperation pro-
cedure of [10], when used in the framework of [11], i.e. assuming
that the noise power is unknown. For both the EM-based and the
proposed methods, the number of iterations was fixed to 40.

4.3. Results

In Table 1, MAE results are presented for several SNR levels. SDR
and SIR scores are summarized in Table 2, and STOI scores are pre-
sented in Table 3. The best results are highlighted in boldface. It is
evident that the proposed method outperforms the competing meth-
ods in almost all cases, by providing more accurate DoA estimates
and improved separation quality.

Table 2: Separation Scores: SDR (Left) and SIR (Right)

SDR [dB] SIR [dB]

Alg.\SNR 0dB 5dB 10dB 0dB 5dB 10dB

Unprocessed -3.09 -1.19 -0.34 0.12 0.12 0.13
EM-based 2.63 5.56 7.88 15.3 16.1 17.1
Proposed 6.12 8.17 9.07 16.0 16.5 16.5

Table 3: STOI Scores

STOI [%]

Alg.\SNR 0dB 5dB 10dB

Unprocessed 31.2 57.1 73.8
EM-based 67.3 83.3 92.6
Proposed 78.2 92.2 95.1

5. CONCLUSIONS

In this paper, we presented a Bayesian hierarchical model for multi-
speaker DoA estimation and separation. The model employs a MoG
formulation for the possible speakers’ DoAs, utilizing the W-disjoint
orthogonality (WDO) property of speech sources. A fully Bayesian
approach is adopted, by placing Gamma priors over the precisions
of the speakers and the noise, and a Dirichlet prior over the mixing
weights of the MoG. The inference of the hidden variables is per-
formed using a VEM algorithm. The discussion is supported by an
experimental study in a room with a reverberation time of 0.16 sec
and various SNR levels, demonstrating the advantage of the pro-
posed method over competing methods.

6. APPENDIX

Standard Probability Distributions

The multivariate complex Gaussian distribution is given by:

Nc(a;µa,Φa) =
1

|πΦa|
exp

[
−
(
a− µa

)H
Φ−1
a

(
a− µa

)]
,

(32)
where µa is the mean vector and Φa the covariance matrix.

A Gamma distribution for a non-negative random variable λ
with shape and rate parameters a, b > 0 is given by [14]:

Gam(λ; a, b) =
1

Γ(a)
baλa−1 exp (−bλ), (33)

where Γ(·) is the gamma function. The Gamma distribution has the
following properties:

E [λ] =
a

b
; E [lnλ] = Ψ(a)− ln(b), (34)

where Ψ(a) ≡ d
da

ln Γ(a) is the digamma function.
A Dirichlet distribution for a random vector µ =



[µ1, · · · , µM ]> with 0 ≤ µm ≤ 1 and
M∑
m=1

µm = 1, writes [14]:

Dir(µ;α) = C(α)

M∏
m=1

µαm−1
m , (35)

where α = [α1, · · · , αM ]>, and

C(α) =

Γ

(
M∑
m=1

αm

)
M∏
m=1

Γ(αm)

. (36)

The Dirichlet distribution has the following properties:

E [µm] =
αm
M∑
m=1

αm

, (37a)

E [lnµm] = Ψ(αm)−Ψ

(
M∑
n=1

αn

)
. (37b)
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