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ABSTRACT

The problem of multi-microphone blind audio source separation
in noisy environment is addressed. The estimation of the acous-
tic signals and the associated parameters is carried out using the
expectation-maximization algorithm. Two separation algorithms
are developed using either deterministic representation or stochas-
tic Gaussian distribution for modelling the speech signals. Under
the deterministic model, the speech sources are estimated in the
M-step by applying in parallel multiple minimum variance distor-
tionless response (MVDR) beamformers, while under the stochastic
model, the speech signals are estimated in the E-step by applying in
parallel multiple multichannel Wiener filters (MCWF). In the sim-
ulation study, we generated a large dataset of microphone signals,
by convolving speech signals, with overlapping activity patterns, by
measured acoustic impulse responses. It is shown that the proposed
methods outperform a baseline method in terms of speech quality
and intelligibility.

Index Terms— Blind audio source separation, Expectation-
maximization algorithm, MVDR and multichannel Wiener filter
beamforming

1. INTRODUCTION

Separation of a desired speaker from multi-microphone mixtures of
multiple simultaneous speakers is required in many modern applica-
tions and devices, such as virtual assistants, hearing aids and smart-
phones. A comprehensive survey of state-of-the-art multichannel
audio separation methods can be found in [1].

The W-disjoint orthogonality (WDO) property of the speech sig-
nal in the time-frequency (TF) domain is widely-used in the context
of speech processing and it forms the basis for the degenerate un-
mixing estimation technique (DUET) algorithm [2]. This property
is also used in [3, 4] for joint direction of arrival (DOA) estimation
and source separation. This property is also widely used in deep
learning methods for separation [5–7].

Many blind audio source separation (BASS) methods are uti-
lizing the expectation-maximization (EM) algorithm [8], since it en-
ables to separately estimate signals and associated parameters. In [9]
an EM algorithm using the nonnegative matrix factorization (NMF)
approach for BASS was proposed. This algorithm requires a good
initialization of the mixing filters. In [10], the problem of high re-
verberation was addressed by using the convolutive transfer func-
tion (CTF) representation of the acoustic filter, which parameters

This project has received funding from the European Union’s Horizon
2020 Research and Innovation Programme, Grant Agreement No. 871245.

are estimated by the EM algorithm. In [11] under the sparsity as-
sumption, an EM algorithm was proposed, to classify various fea-
tures derived from the binaural input. Under the WDO assumption,
two statistical models for the BASS problem were presented in [12].
From these models, and using the EM algorithm, two enhancement
schemes were derived, based on either minimum variance distor-
tionless response (MVDR) or multichannel Wiener filter (MCWF)
beamformers. Note that due to the WDO property of the speech sig-
nals, the cancellation of the interfering source is only obtained by
the noise suppression capabilities of the baeamformers and the ap-
plication of TF masking.

In [13, 14], two statistical models are presented. The complete
data of both EM-based algorithms are the separated source signals,
as received by the microphones, together with an arbitrary portion
of the additive noise. The algorithms differ in the signal modelling.
In the first, the desired signals are assumed to be known, and in the
second, the desired signals are assumed to be a stochastic Gaussian.
These models are then used to devise an EM algorithm for estimating
the DOA of multiple concurrent sources. An extension to the case of
deterministic unknown signals can be found in [15].

In the current contribution, we adopt the EM framework of [13,
14]. The WDO property is only utilized in initializing the EM al-
gorithm, to obtain a rough separation between the speech sources.
Unlike these papers, which focus on the DOA estimation task, our
goal in this paper is to separate and enhance the speech sources. We
therefore do not make any restrictive assumptions on the acoustic
transfer functions (ATFs) relating the sources and the microphones.
Estimating the ATFs under the deterministic model, boils down to
least squares (LS) fit between the estimated sources and the com-
plete data, while under the stochastic model to the calculation of the
dominant eigenvector of a weighted correlation matrix. In the former
model, the speech is estimated by applying an MVDR beamformer,
and in the latter by applying an MCWF.

2. PROBLEM FORMULATION AND STATISTICAL
MODELS

2.1. signal model

We assume that D concurrent speakers are captured by J micro-
phones in a reveberant and noisy environment. The BASS problem
is formulated in the short-time Fourier transform (STFT) domain,
where k ∈ {0, . . . ,K − 1} and t ∈ {0, . . . , T − 1} represent the
frequency index and time-frame index, respectively and T and K
are the total number of time frames and frequency bands, respec-
tively. Let sd(t, k) denote the clean, anechoic speech signal of the
d-th speaker. By assuming that the ATFs are time-invariant, the ob-
served signal, as received at the microphones array, can be modelled
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as

y(t, k) =

D∑
d=1

hd(k) · sd(t, k) + n(t, k) , (1)

where hd(k) is a J × 1 vector of the ATFs relating the d-th source
and the microphones array, and n(t, k) is the J × 1 vector of addi-
tive noise as received by the microphone array, modelled as a sta-
tistically independent, zero-mean, complex-Gaussian random vector
with time-invariant covariance matrix Q(k).

Following [13, 14], we rewrite the observed signal as a sum of
arbitrarily-chosen D noisy components. Under this reformulation,
the observed signal can be written in the following matrix form:

y(t, k) =

D∑
d=1

xd(t, k) = [I, I, . . . , I]


x1(t, k)
x2(t, k)

...
xD(t, k)

 = Hx(t, k)

(2)

where I is a J × J identity matrix, H is a non-invertible matrix
comprised of D row-concatenated identity matrices, and x(t, k) is
the complete data constructed by:

xd(t, k) = hd(k) · sd(t, k) + nd(t, k); d = 1, . . . , D , (3)

where nd(t, k) is the, arbitrarily-defined, d-th component of the
noise n(t, k) such that

D∑
d=1

nd(t, k) = n(t, k) . (4)

The arbitrary decomposition of the noise is chosen such that nd(t, k)
are mutually uncorrelated, zero-mean, complex-Gaussian random
variables

nd(t, k) ∼ Nc
(
nd(t, k); 0,Qd(k)

)
. (5)

The D covariance matrices share the same structure of the full noise
covariance matrix, and their portions in the total noise level is deter-
mined by a set of scalar weights

Qd(k) = βd ·Q(k) . (6)

such that
∑
d βd = 1.

In the next two sections, we develop two statistical models for
the speech signals sd(t, k).

2.2. Deterministic Model

Under the deterministic model sd(t, k), d = 1, . . . , D are referred
to as a deterministic unknown parameters. As a result, the set of
unknown parameters are

θ̄ = {sd(t, k),hd(k),Qd(k)}Dd=1 . (7)

Denoting md(t, k) = sd(t, k) · hd(k), the probability density func-
tion (p.d.f.) of the observation data, given the vector of parameters θ̄
is complex-Gaussian,

f
(
y(t, k)|θ̄

)
= Nc

(
y(t, k);

D∑
d=1

md(t, k), P̄(k)

)
(8)

where the measurement covariance matrix is given by:

P̄(k) =

D∑
d=1

Qd(k) = Q(k) . (9)

2.3. Stochastic Model

As an alternative approach the speech signals are modelled as zero-
mean complex-Gaussian random variables, such that

sd(t, k) ∼ Nc(sd(t, k); 0, φd(t, k)) (10)

where φd(t, k) is the power spectral density (PSD) of the d-th
speaker. Under this model, the set of unknown parameters is (com-
pare to (7)):

θ̃ = {φd(t, k),hd(k)}Dd=1 . (11)

Note, that under this model, the noise covariance matrix is assumed
to be a priori known. The p.d.f. of the observations is given by

f(y(t, k)|θ̃) = Nc
(
y(t, k),0, P̃(t, k)

)
. (12)

where

P̃(t, k) =

D∑
d=1

φd(t, k)hd(k)hHd (k) + Qd(k) (13)

such that P̃(t, k) =
∑D
d=1 Λd(t, k), with

Λd(t, k) = φd(t, k)hd(k)hHd (k) + Qd(k) , (14)

the covariance matrix of the d-th component of the complete data.

3. THE PROPOSED EM-BASED BASS ALGORITHMS

Two EM-based BASS algorithms will be derived now from both the
deterministic and stochastic models, as presented in Sec. 2.

First we write the general formulation of the EM algorithm, and
since it is identical for the two algorithms proposed, we define θ ∈
{θ̄, θ̃} to be either the deterministic or stochastic model parameters,
respectively.

Define the auxiliary function as the expectation, calculated at the
current parameter set θ(`−1):

U
(
θ;θ(`−1)) = E

{
log f(x(t, k);θ)

∣∣y(t, k);θ(`−1)} . (15)

The EM iterates between calculating the auxiliary function (E-step),
and maximizing it with respect to (w.r.t.) the parameter set θ (M-
step). As all frequency bins are assumed independent, the derivation
is carried out per-frequency bin. Hence, for conciseness, the fre-
quency index k will be omitted for the rest of the derivation.

3.1. Deterministic EM Algorithm

By (3) it follows that xd(t, k) is a complex-Gaussian random vector,

xd(t) ∼ Nc
{
xd(t); md(t),Qd

}
, (16)

and the auxiliary function is hence given by:

U(θ̄; θ̄
(`−1)

) = −
T−1∑
t=0

D∑
d=1

(
log |Qd|+ tr

(
Q−1
d xd(t)x

H
d (t)
∧)

− x̂Hd (t)Q−1
d md(t)−mH

d (t)Q−1
d x̂d(t)+mH

d (t)Q−1
d md(t)

)
.

(17)

Next, we derive the EM formula for the maximum likelihood
(ML) estimation of the parameters.



3.1.1. E-Step

In the E-step the first- and second-order statistics of xd(t) are esti-
mated, using the latest value of the parameter set θ̄(`−1):

x̂d(t) = md(t) + Qd · P̄−1
(
y(t)−

D∑
d=1

md(t)
)

(18a)

xd(t)x
H
d (t)
∧

= Qd −QdP̄
−1Qd + x̂d(t)x̂

H
d (t) . (18b)

A detailed derivation of (18a)-(18b) can be found in [14]. These
estimates are used in the M-step, as follows.

3.1.2. M-Step

In the M-Step, the parameters are updated by maximizing (17),

ˆ̄θ = arg max
θ̄

U(θ̄; θ̄
(`−1)

) . (19)

The maximization is carried out by calculating the derivatives w.r.t.
all parameters,1

∂

∂s∗d(t)
U(θ̄; θ̄

(`−1)
) =

∂

∂s∗d

(
−mH

d (t)Q−1
d x̂d(t) + mH

d (t)Q−1
d md(t)

)
=

− hHd Q−1
d x̂d(t) + sd(t)h

H
d Q−1

d hd . (20)

Equating (20) to zero results in:

ŝd(t) =
ĥHd Q−1

d

ĥHd Q−1
d ĥd

x̂d(t) . (21)

Interestingly, the resulting estimator is the MVDR beamformer di-
rected towards the source sd(t) and minimizing the noise with co-
variance Qd. Note, that due to the EM procedure, each of the sources
is treated separately, without considering the other sources, and only
part of the noise Qd, the part that is associated with the signal sd(t),
is minimized. A similar result was obtained in [15] for a spatially-
white noise and simplified acoustic system, comprising only the di-
rect path of the sound propagation.

The steering vector of the MVDR ĥd will be estimated in the
sequel, by maximizing (15) w.r.t. hHd :

∂

∂hHd
U(θ̄; θ̄

(`−1)
) =

∂

∂hHd

T−1∑
t=0

(
−mH

d (t)Q−1
d x̂d(t) + mH

d (t)Q−1
d md(t)

)
=

T−1∑
t=0

(
−s∗d(t)Q−1

d x̂d(t) + s∗d(t)Q
−1
d sd(t)hd

)
. (22)

By equating (22) to zero, an estimator for hd is obtained:

ĥd =

∑T−1
t=0 ŝ∗d(t)x̂d(t)∑

t |ŝd(t)|2
, (23)

which is the LS fit between the d-th speaker estimate ŝd(t) and the
d-th component of the complete data x̂d(t).

1Derivatives are calculated using the Matrix Cookbook
www.math.uwaterloo.ca/hwolkowi/matrixcookbook.pdf

Algorithm 1: The EM algorithm: Deterministic model.

Initialize
for ` = 1 to L do

E-step
First-order statistics: x̂d(t, k) (18a)

Second-order statistics: xd(t, k)xHd (t, k)
∧

(18b)
M-step

Estimate ŝd(t, k) using MVDR beamformer (21)
Estimate ĥd(k) using LS fit (23)
Estimate Q̂d(k) by residual error averaging (24)

end

Finally, by maximizing (15) w.r.t. Qd(k) and equating to zero
we obtain:

Q̂d =
1

T

T−1∑
t=0

(
xd(t)x

H
d (t)
∧

−md(t)x̂
H
d (t)− x̂d(t)m

H
d (t)

+md(t)m
H
d (t)

)
, (24)

which can be easily recognized as the averaged residual error be-
tween md(t) and x̂d(t). The EM algorithm for the deterministic
model is summarized in Algorithm 1.

3.2. Stochastic EM Algorithm

Under the stochastic model, using (3), (10) and (14), it follows that
xd(t, k) is a complex-Gaussian random vector,

xd(t) ∼ Nc
{
xd(t); 0,Λd(t)

}
, (25)

with the following log-p.d.f. :

log f(x(t); θ̃) =

−
T−1∑
t=0

D∑
d=1

(
log |Λd(t)|+ xHd (t)Λ−1

d (t)xd(t)
)

=

−
T−1∑
t=0

D∑
d=1

(
log |Λd(t)|+ Tr

(
Λ−1
d (t)xd(t)x

H
d (t)

))
. (26)

To alleviate the computational complexity involved in the calcula-
tion of the auxiliary function, we make two simplifying assumptions.
First, the noise is assumed to be spatially-white. Based on (6), the
component-wise covariance matrices are give by:

Qd = βd · σ2
d · I . (27)

Furthermore, we assume the availability of speech-free segments
from which the noise level σ2

d can be estimated, thus circumvent-
ing its estimation by the EM algorithm.2

The second assumption states that the ATFs are normalized,
namely

‖hd‖2 = 1 . (28)

While this may seem a restrictive assumption, it is actually manda-
tory to normalize the ATFs due to the inherent gain ambiguity prob-
lem of the model.

2If the noise in spatially non-white, we can still whiten the measurements,
provided that the noise covariance matrix can be estimated in advance. This
topic is left for future study.



Under these assumptions, it can be shown that

log |Λd(t)| = J log(σ2
d) + log

(
φd(t)

σ2
d

+ 1

)
(29a)

Λ−1
d (t) =

1

σ2
d

I−
hdh

H
d
φd(t)

σ2
d

φd(t)

σ2
d

+ 1

 . (29b)

The auxiliary function for the stochastic model can now be
stated :

U(θ̃; θ̃
(`−1)

) = −
T−1∑
t=0

D∑
d=1

(
J log(σ2

d) + log

(
φd(t)

σ2
d

+ 1

)
+

1

σ2
d

Tr(xd(t)xHd (t)
∧

)− 1

σ2
d

hHd xd(t)x
H
d (t)
∧

hd φd(t)

σ2
d

φd(t)

σ2
d

+ 1

 (30)

3.2.1. E-Step

In the E-step the first- and second-order statistics of the components
of the complete-data are estimated, using the current value of the
parameter set θ̃

(`−1)
:

x̂d(t) = Λd(t)P̃
−1(t)y(t) (31a)

xd(t)x
H
d (t)
∧

= Λd(t)−Λd(t)P̃
−1Λd(t) + x̂d(t)x̂

H
d (t) . (31b)

The resulting estimator (and its associated variance) is the MCWF
for estimating the d-th component of the complete data x̂d(t) given
the measurements y(t), which is expected due to the (complex)
Gaussian p.d.f. of both signals.

3.2.2. M-Step

In the M-step, the auxiliary function should be maximized. How-
ever, as the norm of the ATFs are constrained, we should apply a
constrained maximization. Define the Lagrangian:

L(θ̃, λ) = U(θ̃; θ̃
(`−1)

) + λ(‖hd‖2 − 1) (32)

with λ the Lagrange multiplier. Calculating the derivative of (32)
w.r.t. hHd , equating to zero and rearranging terms yield:

1

T
·
T−1∑
t=0

φd(t)

φd(t) + σ2
d

xd(t)x
H
d (t)
∧

· hd = λ · hd . (33)

It can be deduced that the estimate of the ATF ĥd is parallel to the
eigenvector corresponding to the largest eigenvalue of

1

T
·
T−1∑
t=0

φd(t)

φd(t) + σ2
d

xd(t)x
H
d (t)
∧

. (34)

Calculating the derivative of (32) w.r.t. φd(t) yields and estimate
of the PSD of the d-th speech source:

φ̂d(t) = hHd xd(t)x
H
d (t)
∧

hd − σ2
d (35)

To circumvent numerical issues, we further limit the minimum value
of the PSD:

φ̂d(t) ≥ ξmin. (36)

The estimator in the stochastic case is summarized in Algorithm 2.

Algorithm 2: The EM algorithm: Stochastic model.

Initialize
Estimate the noise PSD from speech-absent frames

for ` = 1 to L do
E-step

First-order statistics: x̂d(t, k) (31a)

Second-order statistics: xd(t, k)xHd (t, k)
∧

(31b)
M-step

Estimate ĥd(k) from the “largest” eigenvector of
(34)
Estimate φ̂d(t, k) from (35),(36)

Post-filter
Estimate the clean speech signal ŝd(t, k)

end

4. PRACTICAL CONSIDERATIONS

4.1. Initialization of the EM parameters

The EM algorithm is notorious for its convergence problems. In
this section we will present initialization procedures for the two pre-
sented methods that may circumvent the tendency of the EM algo-
rithm to be trapped in local maximum.

4.1.1. Initialization of the Deterministic Algorithm

We propose to initialize the desired speech signal sd(t) using the
DUET method [2] that takes advantage of the WDO property of the
speech signal in the STFT domain. Although the performance of the
DUET algorithm in noisy and reverberant environments is limited, it
can still provide a good initial separation of the speech sources.

In the proposed method the ATFs hd(k) are estimated by a LS
fit between sd(t, k) and xd(t, k). As both are unavailable prior to
the application of the iterative procedure, we propose to substitute
these signals with the estimated separated signals from the DUET
initialization and the measured signals y(t, k). The noise covariance
is simply initialized as an identity matrix, Q(k) = I.

4.1.2. Initialization of the Stochastic Algorithm

For the stochastic algorithm we should initialize the parameters
hd(k) and φd(t, k). The procedure for initializing the ATFs is sim-
ilar to the initialization of the deterministic algorithm, namely first
the separated speech signal sd(t, k) are initialized by applying the
DUET algorithm [2] and then the ATFs are estimated by LS fitting
of these signals and the microphone signals. The PSDs of all sources
are simply initialized by φd(t, k) = 1.

4.2. Post-processing Stage for the Stochastic Algorithm

The stochastic algorithm, as opposed to the deterministic algo-
rithm, is not providing an estimate of the separated speech sources
sd(t, k), d = 1, . . . , D. Instead, the outcome of this algorithm are
the vectors xd(t, k), each of which comprised of the contribution of
the d-th source to all microphones and a part of the original noise
signal. Hence, this algorithm only separates the sources but does not
reduce the noise. To obtain the required separated and denoised sig-
nals we propose to apply the following matched-filter beamformer,



utilizing the two simplifying assumptions above:

ˆ̃sd(t, k) = ĥHd (k)xd(t, k) . (37)

While no claims of optimally of this heuristic post-filtering hold,
it can still serve as a plausible procedure for spatially-white noise
reduction and distortion correction. Note that since

hd(k)sd(t, k) =
hd(k)

‖hd(k)‖ · (‖hd(k)‖sd(t, k)) (38)

the outcome of stochastic algorithm will be s̃d(t, k) =
‖hd(k)‖sd(t, k) rather than its an-echoic counterpart.

5. SIMULATION RESULTS

The proposed algorithm variants were evaluated and compared to
the baseline DUET algorithm [2] using the following simulation
setup. The microphones signals were generated by convolving two
(partially) overlapping sources (D = 2) with real room impulse
responses (RIRs) drawn from a publicly-available database [16]
recorded in our lab, with dimensions 6 × 6 × 2.4 m. The rever-
beration level can be controlled by flipping dedicated panels cover-
ing the room facets. We have used two of the reverberation levels
in the database, namely T60 = {0.36, 0.61} s. Two equi-power
speech signals were acquired by an eight-microphone linear array
with inter-distances of [3-3-3-8-3-3-3] cm. The distance between
the sound sources and the microphone array was 1 m for all exper-
iments. We simulated two angular distances between the sources,
120◦ and 60◦, respectively. A pseudo-diffused noise signal (gener-
ated by four loudspeakers facing the room corners) was added to the
microphone signals with signal-to-noise ratio (SNR) levels of 10 or
20 dB. The anechoic speech signals, 30 sec long, were drawn from
the Wall Street Journal (WSJ) corpus [17] with gender balance. The
total number of experiments was 600, where in each experiment each
source was randomly drawn from the database, summing up to 3
hours of acoustic recordings. The sampling frequency of the speech
signals was 16 kHz. The STFT frame size was 64 ms with 50%
overlap. The parameters βd and ξmin were set as 0.5 and 0.5 · σ2

d,
respectively.

Separation results and distortion levels were evaluated using the
BSS eval toolbox [18]. The intelligibility of the speech signal was
evaluated with the short-time objective intelligibility (STOI) mea-
sure [19]. All measures are reported as a function of three param-
eters: the input SNR, reverberation level and speakers overlap per-
centage.

The performance measures for the two reverberation levels are
depicted in Table 1, for the two SNR levels in Table 2 and as a func-
tion of the overlap percentage (either 50%, 80% or 100%) in Ta-
ble 3. It is evident that the DUET algorithm (that serves also as
the initialization stage for the proposed methods) outperforms both
proposed variants in terms of signal-to-interference ratio (SIR) mea-
sures. The stochastic algorithms is slightly better than the determin-
istic algorithm in this measure. However, for the distortion measures
(signal-to-distortion ratio (SDR) and signal-to-artifact ratio (SAR)),
the proposed algorithms clearly outperform the DUET algorithm,
with the deterministic algorithm slightly better than the stochastic
algorithm. In terms of STOI, the deterministic algorithm achieves
the best results with significant improvement w.r.t. the input signal
and the DUET output, indicating low distortion. The STOI scores of
the DUET algorithm is significantly worse than STOI scores of the
mixed and noisy input signal. The quality of the proposed algorithm
variants is also demonstrated by assessing the sonograms in Fig. 1.

Table 1. Performance measures for different reverberation level.
Other parameters averaged.

T60 (s) Input DUET Deter. Stoch.

SIR [dB] 0.36 0.4 13.4 10.9 12.2
0.61 0.3 13 10.1 11.1

SDR [dB] 0.36 -2.4 -1.8 5.4 4.5
0.61 -2.9 -2.1 4 3.5

SAR [dB] 0.36 4.7 -1.4 7.5 5.8
0.61 3.4 -2 5.8 5

STOI [%] 0.36 68.9 47.6 92 89
0.61 64.1 38.9 87.2 83.4

Table 2. Performance measures for different SNR levels. Other
parameters averaged.

Input SNR Input DUET Deter. Stoch.

SIR [dB] 10 0.3 13 10.3 11.6
20 0.3 12.1 10.7 11.9

SDR [dB] 10 -3 -2.5 4.1 3.5
20 -2.2 -1.8 5.6 4.6

SAR [dB] 10 3 -2.2 5.7 4.8
20 5.4 -1.4 7.7 6

STOI [%] 10 61.2 38.6 86.9 83
20 72 49 92.3 88.6

6. CONCLUSIONS

Two multi-microphone EM-based algorithms for BASS, derived
from a deterministic and a stochastic models of the speech signals,
were presented. In both algorithms, the E-step consists of the calcu-
lation of the first- and second-order statistics of the complete-data,
and in the M-step, the acoustic parameters of the signals are esti-
mated. In the algorithm derived from the deterministic model, the
output signal is the outcome of the E-step, while in the algorithm
derived from the stochastic model, an additional step is required to
reduce the additive noise. We have heuristically chosen a matched-
filter beamformer for this purpose. The algorithms were derived
and implemented in the STFT domain, independently for each fre-
quency bin. Different cases were tested, covering various levels of
input SNR, overlap between competing speakers, and reverberation
level. In all the tested cases, the two proposed algorithm variants
performed similarly. Comparing these algorithms to the DUET algo-
rithm, a significant improvement of the signal quality was achieved,
in terms of SDR and STOI measures, while only mildly sacrificing
competing speaker suppression, as recorded by the SIR measure.
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