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Dual-Source Transfer-Function Generalized
Sidelobe Canceller

Gal Reuven, Sharon Gannot, Senior Member, IEEE, and Israel Cohen, Senior Member, IEEE

Abstract—Full-duplex hands-free man/machine interface often
suffers from directional nonstationary interference, such as a
competing speaker, as well as stationary interferences which
may comprise both directional and nondirectional signals. The
transfer-function generalized sidelobe canceller (TF-GSC) ex-
ploits the nonstationarity of the speech signal to enhance it when
the undesired interfering signals are stationary. Unfortunately,
the assumptions leading to the derivation of the TF-GSC are
violated when a nonstationary interference is present. In this
paper, we propose an adaptive beamformer, based on the TF-GSC,
that is suitable for cancelling nonstationary interferences in
noisy reverberant environments. We modify two of the TF-GSC
components to enable suppression of the nonstationary undesired
signal. A modified fixed beamformer (FBF) is designed to block
the nonstationary interfering signal while maintaining the desired
speech signal. A modified blocking matrix (BM) is designed to
block both the desired signal and the nonstationary interference.
We introduce a novel method for updating the blocking matrix in
double talk scenarios, which exploits the nonstationarity of both
the desired and interfering speech signals. Experimental results
demonstrate the performance of the proposed algorithm in noisy
and reverberant environments and show its superiority over the
original TF-GSC.

Index Terms—Array signal processing, interference cancella-
tion, nonstationarity, speech enhancement.

I. INTRODUCTION

I N MANY practical environments, as in a conference call
scenario, a desired speech signal, received by a microphone

array, is contaminated by both nonstationary interfering signal
(such as a competing speech), and by stationary noise. Fur-
thermore, the received signals are often subject to distortion
imposed by the room impulse response (RIR) of the acoustic
environment. Beamforming is the most commonly used ap-
proach for extracting a desired source out of spatially distinct
sources. The array beampattern can generally be designed to
have a specified response. This can be done by properly setting
the values of the multichannel filters’ weights. However, the
application of data independent design methods is very limited
in dynamic acoustical environments. Statistically, optimal
beamformers are designed based on the statistical properties
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of the desired and interference signals. In general, they aim at
enhancing the desired signal, while rejecting the interference
signals. Several criteria can be applied in the design of the
beamformer, e.g., maximum signal-to-noise ratio (SNR), min-
imum mean-squared error (MMSE), and linearly constrained
minimum variance (LCMV). A summary of several design
criteria can be found in [1] and [2].

Frost [3] proposed the LCMV beamformer as a method for
minimizing the array output power under a look-direction con-
straint. Several researchers (e.g., Er and Cantoni [4]) have pro-
posed modifications to the LCMV for dealing with multiple
linear constraints. Their work was motivated by the desire to
apply further control to the array/beamformer beampattern, be-
yond that of steer-direction gain constraints. Hence, the LCMV
can be applied for constructing a beampattern satisfying certain
constraints for a set of directions, while minimizing the array
response in all other directions. The LCMV is efficiently imple-
mented in a generalized sidelobe canceller (GSC) [5] structure,
which decouples the constraints and the minimization. Several
contributions proved the equivalence of the LCMV and GSC
structures [6]–[8].

The GSC has found numerous applications in the field of
speech enhancement (e.g., [9]–[12]). In most speech enhance-
ment applications, the beamformer is constrained to produce a
dominant response towards the desired speech source location,
while minimizing the response in all other directions. However,
in reverberant environments a single direction of arrival cannot
be determined since the desired signal and its reflections im-
pinge on the array from several directions. This problem may
be alleviated by using an acoustic transfer function (ATF) rather
than just a simple delay for modeling the propagation of the
speech signal in a reverberant room.

Affes and Grenier [9] proposed a subspace method for esti-
mating and tracking ATFs in a reverberant environment. In [13],
they further proposed a GSC structure, for situations where two
speech signals are active simultaneously (referred to as double
talk situation), encountered in the context of acoustic echo can-
celer (AEC). The GSC includes a distortionless FBF which is
constrained to cancel the echo, and a BM which is constrained
to block both the desired signal and echo signal. However, the
estimation of the various blocks in the proposed structure neces-
sitates the use of the echo signal, which is unavailable in many
applications.

Gannot et al. [14] proposed to use the relative transfer func-
tion (RTF) between microphones in response to a desired source
signal rather than the ATF themselves. A method for estimating
the RTF, based on the background noise stationarity and the
speech nonstationarity, is derived. Compared with the conven-
tional GSC, the resulting TF-GSC is of practical utility when
enhancing a speech signal deteriorated by stationary interfering
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signals in a reverberant enclosure. However, in the presence of
an additional nonstationary interference, the TF-GSC cannot
distinguish between the desired signal and the interfering signal,
which renders the proposed structure useless.

Benesty et al. [15] address beamforming structures for
multiple input signals. In their contribution, derived in the
time-domain, the microphone array is treated as a multiple-
input multiple-output (MIMO) system. Among the beam-
forming structures considered in that paper, the LCMV with
multiple constraints is of special relevance to our work. Per-
formance bounds for the obtained speech distortion and noise
reduction are calculated, and equivalence between several
popular beamforming structures is proved. However, in the
experimental study, it is assumed that the filters relating the
sources and the microphones are a priori known, or alter-
natively, that the sources are not active simultaneously. This
assumption cannot be met in our scenario, in which the noise
signal is always active, and double talk situations can occasion-
ally occur.

In this paper, we present1 an adaptive beamformer, based on
the TF-GSC [14]. The new structure is aimed at maintaining
the desired speech signal while cancelling two interference
signals: a stationary (noise) signal and nonstationary (com-
peting speech) signal. The proposed beamformer is designed
for reverberant environment application. In Section II, we
formulate the dual interference problem for the general ATF
case. In Section III, we derive a closed-form linearly constraint
beamformer specifically designed for suppressing the undesired
interference signals. In Section IV, we derive the equivalent
GSC structure. We show that a modification of two of the
TF-GSC components, namely the FBF and the BM, allows
the beamformer to suppress the nonstationary interference.
The modified fixed beamformer, denoted matched beamformer
(MBF), is designed to block the nonstationary interference
while maintaining the desired speech signal. Beampattern eval-
uation emphasizes the differences between the MBF and the
conventional FBF. The modified BM blocks both the desired
signal and the nonstationary interference. As in the original
TF-GSC, the adaptive noise canceller (ANC) employs the
reference signals generated by the BM to cancel the residual
stationary noise at the MBF output. The resulting structure is
named a dual transfer-function generalized sidelobe canceller
(DTF-GSC). In Section V, we address the problem of RTF
estimation. Specifically, a method for updating the BM in
double talk situations is proposed. This method extends the
RTF estimation method, applied in the conventional TF-GSC,
by exploiting both the desired and interfering speech signals
nonstationarity. In Section VI, we discuss the differences be-
tween the TF-GSC and the DTF-GSC structures. We stress the
benefits gained by applying the novel structure. Experimental
results, presented in Section VII, demonstrate the performance
of the proposed algorithm in noisy and reverberant environ-
ments, with comparison to the TF-GSC structure.

II. PROBLEM FORMULATION

Consider an array of sensors in a noisy and reverberant envi-
ronment. We assume that the received signals include three com-
ponents: a desired speech source, a directional nonstationary

1A preliminary version of this work was presented in [16].

interference signal (e.g., competing speech), and a stationary
noise signal, which can be either directional, diffused, or uncor-
related (spatially white). Our goal is to reconstruct the desired
speech signal from received reverberated signals. Let de-
note the desired speech signal, let denote the nonstationary
interfering signal, and let and represent the acous-
tical impulse responses of the th microphone to the desired
speech source and the nonstationary interference source, respec-
tively. The th microphone signal is given by

(1)

where is the (directional or nondirectional) stationary
noise signal at the th microphone, and denotes convolution.
The analysis frame duration is chosen such that the signal may
be considered stationary over the analysis frame. Typically, the
impulse responses and are slowly changing in time
and can be considered time-invariant over the analysis frame.

In the short time Fourier transform (STFT) domain, (1) can
be approximately rewritten2 as

(2)

where and are the
STFT of the respective signals. and are the
ATFs from the desired source and interference source to the th
microphone, respectively, which are assumed hereinafter time-
invariant over the observation period. A vector formulation of
(2) is

(3)

where

Our problem is to reconstruct the desired speech signal
(or a filtered version thereof) from the noisy obser-

vations .

2The approximation sign in (2) can be replaced with equality when the length
of the frames is much larger compared with the length of the filter [17]. This
assumption cannot be met in our case when considering the ATFs themselves.
Equality is only required for the ATFs estimation method. We stress that the
actual filtering is conducted with the RTFs rather than the ATFs. The former are
regarded as much shorter filters. Finally, the filtering is implemented using the
overlap and save procedure, and therefore only correct samples from the cyclic
convolution results are used.
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Fig. 1. Graphical interpretation of the constrained minimization in (6). The Ellipsoids depict equi-power surfaces. The line depicts the constraint plane andF(e )
is its perpendicular.W(t; e ) is a possible solution at time instant t, whereasW (t; e ) is the optimal solution, namely it is the vectorW(t; e ) fulfilling
the constraint while maintaining minimum output power.

III. OPTIMAL SOLUTION BASED ON

CONSTRAINED OPTIMIZATION

In this section, we derive a linearly constrained beamformer,
specifically designed for suppressing undesired interference
signals. We first obtain a closed-form linearly constrained
minimum variance beamformer and then derive an adaptive
solution. We initially assume that the ATFs are known, and in
Section V we derive their estimates based on the nonstationarity
of the speech signals.

Let be a set of filters

where denotes conjugation and denotes conjugation trans-
pose. A beamformer is realized by filtering each sensor output

by and summing the
outputs

(4)

where represents the desired signal component,
is the directional interference component and

is the stationary noise component. The output power
is given by

where . We want to
minimize the output power subject to the following constraints

(5)

where is an arbitrary filter response. Hence, the fol-
lowing minimization problem is obtained:

subject to

and

(6)

The minimization in (6) is depicted in Fig. 1. The tangent
point of the equi-power contours with the constraint line is
the optimum vector of beamformer filters. Solution to the
constrained minimization problem is obtained by minimizing
the complex Lagrangian

(7)

Setting the derivative with respect to to zero (see for in-
stance [18]) we obtain

(8)
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and since is usually invertible,3 can be
written as

(9)

Imposing the constraints on and solving for the La-
grange multipliers yields (see Appendix A)

(10)

where

(11)

denotes a weighted norm of a vector and equation
(12) shown at the bottom of the page is the cosine of the angle
between the vectors and in a weighted inner
product space.

The closed-form solution to the constrained minimization
problem lacks the ability to track changes in the
environment and is difficult to implement. Hence, we replace
the closed-form solution with an adaptive one. Consider the
following steepest descent recursive algorithm for minimizing
the complex Lagrangian in (8)

(13)

Imposing the constraints on yields (see
Appendix B)

(14)

where

(15)

3As a small amount of uncorrelated sensor noise always exists, the invert-
ibility of � (t; e ) might be guaranteed in practical scenarios.

This forms the constrained recursive structure. Now, defining
as the cosine of the angle between the vectors

and in an inner product space

(16)

we obtain

(17)

The meaning of will be discussed in the next section.

IV. DUAL-SOURCE TF-GSC

Following Gannot et al. [14] footsteps, we now derive an
unconstrained adaptive enhancement algorithm. The uncon-
strained algorithm is usually advantageous due to its superior
computational efficiency and the ability to use the well-behaved
normalized least mean squares (NLMS) scheme.

A. Generalized Sidelobe Canceller Interpretation

Consider the null space of , defined by

Define the constraint hyperplane

which is parallel to . Furthermore, define the column
space of by

for any real

Using the fundamental theorem of linear algebra [19],
. The second line in (17) implies that

(as and can be easily identified) and
therefore is perpendicular to . Furthermore

(12)
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and

Hence, . Now, since and
is parallel to . This implies

that is the perpendicular from the origin to the constraint
hyperplane, . The matrix is the projection matrix
to the null space of . This is easily
shown by the following arguments. Using (17) we have

(18)

The term in the brackets simplifies to

(19)

resulting in . Similarly, it can be shown that
as well.

Now, a vector in a linear space can be uniquely split into a
sum of two vectors in mutually orthogonal subspaces (see for
instance [19]). Hence

(20)

where and . By
the definition of

(21)

where is a full-rank matrix, such that the
columns of span the null space of ,
i.e.,

(22)

The vector is an vector of adjustable
filters.

Using the geometrical interpretation of Frost’s algorithm [3]
(see Fig. 1)

(23)

(recall that is the perpendicular from the origin to the
constraint hyperplane, ). Now, using (4), (20), and (21)
we obtain

(24)

where

(25)

The solution structure is similar to [14], although the constraints
are different. The output of the constrained beamformer is a
difference of two terms, both operating on the input signal

. in our problem, steers the beam towards
the desired direction, while blocking the interference direction.
In [14], is only responsible for steering the beam
towards the desired direction. Furthermore, in the
current contribution blocks both directions while in [14] it only
blocks the desired direction. in both cases has similar
functionality. However, its rank here is lower, allowing less
degrees of freedom.

The first term is dependent on the ATFs; hence,
it can be regarded as a MBF. We now examine the second term,

. The reference noise signals are given by

(26)

where the last transition follows from (22). Both desired and
competing signals’ components are blocked by and
therefore contains only noise. Hence, the noise term
of can be reduced by properly adjusting the filters

, using the minimum output power criterion. This ad-
justment problem is in fact the classical multichannel noise can-
cellation problem, that can be solved by using the Wiener filter.
An adaptive least mean squares (LMS) solution to the problem
was proposed by Widrow [20].

Recall that as defined in (16) is the cosine
of the angle between and . When these
vectors are perpendicular vanishes. In this case,
the resulting is exactly the single source MBF
derived in [14], and the projection matrix reduces to

.
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B. Detailed Structure

The solution comprises three building blocks. The first is an
MBF, which satisfies the required constraints, i.e., the desired
signal is kept undistorted while the nonstationary interfering
signal is blocked. The second is a blocking matrix, that produces
noise-only reference signals by blocking both the desired and in-
terfering signals. The third block is an unconstrained LMS-type
algorithm, that cancels the coherent noise in the MBF output.

1) Blocking Matrix: The blocking matrix should be de-
signed to block both the desired and interfering signals, and
yield noise-only components at its outputs. We propose to
construct as a cascade of two blocking matrices,

. is designed to block sig-
nals arriving from the desired signal direction, while
is designed to block the signals arriving from the interfering
direction, after being rotated by the first matrix. As in [14],

is defined by

. . .

(27)

Regarding , we have

(28)

Thus

. . .

This vector, multiplied by , should yield a vector of
zeros. Consider of the type

. . .

(29)

The following linear equation determines

(30)

Solving (30) we obtain

(31)

Multiplying by and rearranging terms yields

. . .

(32)

where

(33)

We now verify that satisfies both constraints in (22), as
shown by (34) at the bottom of the page. Calculating the th
element of the right-hand side of the equation

...
(34)
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(35)

the required solution is obtained. Similarly, satisfies the
second constraint, . Therefore,
is a valid blocking matrix which is suitable for generating the
reference noise signals. Using (26), we have

(36)

Thus, the knowledge of both and
, or directly and , is

sufficient for generating the noise reference signals.
2) Matched Beamformer: It was shown in Section IV-A that

the MBF , given by (17), satisfies the re-
quired constraints. If in (15), the actual ATFs are replaced by the
RTFs, then we have (37), as shown at the bottom of the page.
When using the RTFs instead of and , we obtain
(38), as shown at the bottom of the page. Namely, the desired
signal is only distorted by the first ATF , which can be
absorbed into . In a similar way, it can be shown that
the nonstationary interference is completely blocked. Thus, the
knowledge of the RTFs is sufficient for implementing the side-
lobe canceller.

It should be noticed that maximum directivity of the MBF can
be obtained at directions other than the desired signal direction.
Consider the following example, as depicted in Fig. 2. Polar
plots of directivity patterns are computed for five and ten micro-
phones arrays for several frequencies for the simple delay-only
case. The desired source signal is arriving from direction 90 ,
while the nonstationary interference impinges on the array from
direction 100 . It is clear that the beamformers satisfy both con-
straints in all plots, namely the gain is 1 in the desired direction

and 0 in the interference direction. However, the array with ten
microphones outperforms the one with . For example,
at 500 Hz the array with five microphones has maximum gain
of 3.3 at direction of 45 , while using ten microphones max-
imum gain of 1.8 is achieved at direction of 75 , i.e., the peak
is closer to the desired direction and to unity gain. Hence, in-
terfering signals may be emphasized when not using enough
microphones, especially in the low frequencies, which may de-
teriorate the ability of the ANC to cancel the stationary noise
signals.

3) Multichannel Noise Canceller: Recall that our goal is
to minimize the output power under constraints on the re-
sponse at the desired signal direction and at the competing
signal direction. By setting according to (37), the
constraints are satisfied. Hence, minimization of the output
power is achieved by adjusting the filters . This is an
unconstrained minimization, exactly as in Widrow’s classical
problem [20]. It can be implemented by using the multichannel
Wiener filter. Recall (24), our goal is to set to
minimize

Let

Then the multichannel Wiener filter is given by [10], [21]

(39)

In order to be able to track changes, the signals are processed
by segments. The following frequency domain LMS algorithm
is used. Let the residual signal be

(37)

(38)
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Fig. 2. MBF directivity patterns for several scenarios: M = 5, (a) f =
500 Hz, (c) f = 1000 Hz, (e) f = 1500 Hz, (g) f = 2000 Hz; M = 10,
(b) f = 500 Hz, (d) f = 1000 Hz, (f) f = 1500Hz, (h) f = 2000 Hz.

Note that the residual signal is also the output of the enhance-
ment algorithm. Using the orthogonality principle (see, e.g.,
[22]), the error is orthogonal to the measurements. Thus

(40)

Fig. 3. GSC solution for the dual-source case. Three blocks: an MBF
WWW (t; e ); a BM H (e ); and a multichannel ANC GGG(t; e ).

Following the standard Widrow procedure, the solution is given
by

Usually, a more stable solution is obtained by using the
NLMS algorithm, in which case each frequency is normalized
separately, yielding

where

(41)

and is a forgetting factor (typically ).4
The filter update is now given by

(42)

for . The operator includes the following
three stages. First, is transformed to the time
domain. Second, the resulting impulse response is truncated,
namely an FIR constraint is imposed. Third, the result is trans-
formed back to the frequency domain. Performing the op-
erator avoids cyclic convolution. A block diagram of the GSC
solution is depicted in Fig. 3, and the proposed algorithm is sum-
marized in Algorithm 1.

4Another possibility is to calculate P using the jU (t; e )j rather than
using jZ (t; e )j . However, in that case an energy detector is required, so
that G(t; e ) is updated only when there is no active signal. If on the other
hand, we calculate P (t; e ) using the input sensor signals, Z (t; e ), as
indicated in (41), then an energy detector may be avoided. This is due to the fact
that the adaptation term becomes relatively small during periods of active input
signal.
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Algorithm 1—Summary of the DTF-GSC Algorithm

1) Matched beamformer:

is defined in (37) and its components are estimated
using (49).

2) Noise reference signals:

is defined in (32) and its components are estimated
using either (49) or (53).

3) Output signal:

4) Filters update, for

where

5) Keep only nonaliased samples.

V. RTF ESTIMATION

The RTFs and
are required for calculating the MBF and the blocking matrix.
Until this point, the RTFs were assumed to be known. However,
in practice, they are estimated from the observed noisy signals.
We assume that the RTFs are slowly changing in time compared
with the time variations of the desired signal and the competing
speech signal. We also assume that the statistics of the noise
signal is slowly changing compared with the statistics of both
the desired signal and the competing speech signal.

A. Matched Beamformer Estimate

Estimation of the MBF is carried out in two steps. First,
the RTFs and are
estimated separately, using the system identification procedure
described in [14]. Second, is estimated using (37),
where the RTFs are used instead of the real ATFs. Since the
system identification algorithm is designed for estimating a
single system at a time, the two ratios cannot be estimated
simultaneously. Therefore, only frames in which both signals
are not simultaneously active are used.

We will now briefly describe the system identification al-
gorithm. The observation period is divided into frames such

that the desired or the competing speech signals may be con-

sidered stationary during each th frame. Define
. Note that when no competing speech

signal is in present, (2) becomes

(43)

It is shown in [14] that the following are proper noise
reference signals

(44)

Rearranging terms in (44) yields

(45)

Consider some analysis interval for which the RTFs are as-
sumed to be time-invariant and the noise signal stationary. We
divide this analysis interval into frames, such that the desired
signal may be considered stationary during each frame. Con-
sider the th frame, using (45) we have

(46)

where is the number of frames used and is the
cross-PSD between and during the th frame.
is the cross-PSD between and . Using (43) and (44)

(47)

(48)

Since are assumed stationary over
the analysis interval and since is independent of

, it follows that is independent of the
frame index .

Let and be estimates
of and , respectively. The
estimates are obtained by replacing expectations with averages.

Hence

where denotes the es-
timation error of the cross-PSD between and in the th
frame. Hence, an unbiased estimate of
can be obtained by applying the least squares criterion to the
following set of over-determined equations

...
...
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...
(49)

where a separate set of equations is used for .
Note that the ratio can be estimated in a
similar manner.

B. Blocking Matrix Estimate

Inspecting (31) and (33), we note that the filters and
can be estimated by first estimating the RTFs and then

substituting these estimates into the BM given in (32). How-
ever, in this section we propose a direct estimation method for

and , which is applicable during double talk
periods only. This facilitates tracking the BM when both the de-
sired and interfering signals are active.

Rearranging terms in (36) yields

(50)

We choose an observation period in which both the desired and
competing speech signals are active simultaneously, and divide
this period into frames such that the desired and directional in-
terference signals may be considered stationary during each th
frame. Using (50) we obtain a system identification procedure

(51)

where is the number of frames in the interval,
is the cross-power spectral density (PSD) between and
during the th frame, and is the cross-PSD between

and (note that is independent of the frame
index [14]). By replacing real PSD values with their estimates,
calculated using time-averages, the following set of equations is
obtained:

(52)

where represents the estimation error in the th frame.
An unbiased estimate of and is obtained by
applying the least squares criterion to the following over-deter-
mined set of equations

...
...

...
(53)

Fig. 4. Room configuration: desired speech signal, interference source (com-
peting speaker), stationary noise source, and the microphone locations.

where a separate set of equations is used for .
We assume that perfect voice activity and double-talk detec-

tors are available. In periods when only the desired signal is
active, an estimate of is updated, while
estimates of are updated when only the
interference is active. These estimates can be combined in
the indirect calculation of the BM elements. The update of
the BM by direct estimation of and can
be performed only during double talk periods, when no other
update is applicable.

VI. DISCUSSION

Two paradigms can be adopted for designing a beamformer
for enhancing a desired signal contaminated by both noise and
interference. These paradigms differ in their treatment of the
nonstationary interference (competing speech). The straightfor-
ward alternative is to apply the single constraint beamformer
(Griffiths and Jim [5] efficient implementation of Frost’s LCMV
[3], or the TF-GSC [14]), in which a beam is steered towards the
desired signal, while all other interference signals are treated
by the ANC. Buckley and Van Veen [1], in their beamforming
survey, explicitly discuss a LCMV, constrained to null out an
interference signal while maintaining the response towards the
desired source. In this implementation, the ANC is only respon-
sible for the stationary noise. In our proposed method, we adopt
this structure and propose a practical implementation for the
multilinear constraint, denoted DTF-GSC. The proposed struc-
ture is capable of steering a beam towards the desired signal
while simultaneously steering a null towards the interferer.

Both the TF-GSC and the DTF-GSC reduce the stationary
interference by applying an LMS-based ANC to the BM out-
puts. However, a major difference between the structures lies in
the adaptation mechanism of the ANC. While in the TF-GSC
the input signal of the ANC is comprised of both nonstationary
competing speech signal and a stationary noise signal, the input
to the corresponding DTF-GSC block is comprised of only the
latter. The need of the ANC to adapt during both the stationary
and nonstationary signals imposes contradicting requirements
on the adaptation rate. On the one hand, the adaptation factor
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Fig. 5. (a) Impulse response and (b) frequency response relating the desired source and the first microphone.

Fig. 6. Test procedure for evaluating the DTF-GSC in comparison with the
TF-GSC.

should be high enough to allow for tracking of a fast-varying
signal, and on the other hand, it should be low enough to enable
sufficient reduction of the stationary noise level. Such a require-
ment on the TF-GSC necessitates the use of an algorithm for
distinguishing between the two nonstationary signals, namely,
the desired and interference signals. On the other hand, differ-
entiating between slowly varying noise signal and the highly
nonstationary speech signal is a considerably easier task [23],
[24].

As shown in the experimental study in Section VII, the
residual noise level of the TF-GSC structure is fluctuating over
time (in accordance with the activity periods of the interference
signal), while the corresponding signal level at the DTF-GSC
output is much more stable. As beamformer algorithms are very
often followed by a postfilter [25], [26], and since postfilters are
sensitive to nonstationary noise signals, it is crucial to maintain
the residual noise level as stable as possible. The application of
a postfilter is beyond the scope of this contribution.

The design of the null in the beampattern towards the com-
peting speech is another difference between the TF-GSC and the
DTF-GSC. While in the former the null is built adaptively, using
only power consideration, in the latter the null is established by

exploiting the speech characteristics. The use of speech non-
stationarity yields a more robust null and thus allowing for an
improved interference cancellation. Furthermore, the estimation
method derived in (53) allows for estimating BM even in double
talk scenarios. Another drawback of the TF-GSC is its depen-
dence on the FBF beampattern. If the interference signal level at
the FBF output is significantly reduced while maintaining high
level at the BM output, the ANC might increase the amount
of interference leakage to the total output. In the DTF-GSC,
where the ANC block is only responsible for the noise signal,
this problem cannot be encountered. A comparison of the com-
putational burden of both algorithms shows an advantage to the
TF-GSC over the DTF-GSC, since two sets of RTFs should be
estimated for the latter. However, this difference is not of crucial
importance.

VII. EXPERIMENTAL STUDY

A. Test Scenario

The proposed algorithm was tested in a simulated room envi-
ronment. The desired and competing speech signals were drawn
from the TIMIT [27] database, while a speech-like noise from
NOISEX-92 [28] database was used as a stationary noise source.
All three signals were filtered by simulated RIRs, resulting in di-
rectional signals, which are received by microphones.
The microphone locations were set to

(54)

The desired source is located at , the inter-
ference source at , and the stationary noise
source at . The test scenario is depicted in
Fig. 4.
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Fig. 7. Sonograms: (a) Desired speech signal at microphone #1. (b) Nonstationary interference signal at microphone #1. (c) Noisy signal at microphone #1.
(d) Enhanced signal.

The RIRs were simulated with a modified version [29] of
Allen and Berkley’s image method [30]. The reverberation time
was set to ms. In Fig. 5, the impulse response relating
the desired source and the first microphone, and its respective
frequency response, are depicted. The lengths of the filters in the
MBF, the BM, and the ANC were set to 250, 250, and 750 taps,
respectively. Segments of 2048 samples were used to implement
the overlap and save procedure. The sampling frequency was
set to 8 kHz. The desired speech to competing speech [denoted
signal-to-interference ratio (SIR)] was set to 5 dB. The desired
speech to the stationary noise (denoted SNR) was set to 5 dB as
well.

For comparison, we applied the TF-GSC [14] to the same
signals. For the TF-GSC, the lengths of the filters in the MBF,
the BM, and ANC were set to 250, 250, and 550 taps, respec-
tively. Recall, that the ANC in the TF-GSC is comprised of

channels, while the dimension of respective block
in the DTF-GSC is only . Hence, the computational
burden imposed by both algorithms is comparable.

For evaluating and comparing the performance of the two
beamformers, we applied the algorithms in two phases. In the
first phase, the beamformers were applied to an input signal,
comprised of the sum of the desired speech, the competing
speech, and the stationary noise (with gains in accordance with
the respective SNR and SIR). In this phase, the beamformers
were allowed to adapt yielding , the actual algorithm

output. In the second phase, the beamformers were not allowed
to adapt. Instead, a copy of the coefficients, obtained in the
first phase, was used. As the beamformers coefficients are time
varying, we used in each time instant the corresponding copy
of the coefficients. This procedure enabled the demonstration
of the algorithm convergence rate. Each beamformer was
applied three times in the second phase, yielding three different
signals. Denote the beamformer response to the desired signal

alone as , the response to the
competing speech alone as , and
the response to the stationary noise signals at the microphones

as . The entire test procedure is depicted in
Fig. 6.

For both algorithms, we assumed the existence of a per-
fect voice activity detector (VAD), allowing for ANC adap-
tation only during nonactive periods of the desired speech.
Applying a simple energy-based VAD might suffice in mod-
erate or high SNR levels. As discussed in Section VI, the
ANC block of the TF-GSC is more sensitive to double talk
situations than its respective DTF-GSC block. Moreover, we
showed in Section V a method for estimating the BM in
double talk scenario. It should be noted, however, that the
MBF can be updated only when one speech signal is ac-
tive. Major errors in the VAD and the double talk detector
(DTD) decisions might deteriorate the performance of both
algorithms.
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Fig. 8. Signal waveforms: (a) Interference signal at microphone #1. (b) Interference signal at the TF-GSC output. (c) Interference signal at the DTF-GSC output.
(d) Noise signal at microphone #1. (e) Noise signal at the TF-GSC output. (f) Noise signal at the DTF-GSC output.

Finally, we draw the attention of the reader to a comprehen-
sive theoretical performance analysis of the DTF-GSC, which
can be found in [31], where we demonstrate the applicability
of the DTF-GSC in some representative reverberant and non-
reverberant environments under various noise field conditions.
Three figures-of-merit are used for evaluating the algorithm per-
formance, namely the PSD deviation imposed on the desired
signal at the beamformer output, the achievable noise reduction,
and the interference reduction.

B. Results

Fig. 7 shows sonograms of the desired signal, the interference
signal, the noisy signal, all at microphone #1, and the DTF-GSC

output. It can be seen that both noise and interference signals
are well suppressed, especially in frequencies above 500 Hz.
Moreover, no self-cancellation or other deviation can be noticed
even during the double talk case.

In Fig. 8, a comparison between the TF-GSC and the
DTF-GSC is presented. According to the outline of Fig. 6,
each signal is analyzed separately. In the left column, the
interference component at the input, at the TF-GSC output,
and at the DTF-GSC output are presented. In the right column,
the noise component at the respective signals are depicted. All
segments depict the signal after the noise canceller converged.
It is clearly seen that the interference signal and noise signal
levels are significantly reduced for both algorithms. However,
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TABLE I
NOISE AND INTERFERENCE REDUCTION FOR THE TF-GSC

(TOP) AND THE TF-GSC (BOTTOM)

while the TF-GSC is adaptively building the null towards the
interference signal, the amount of interference reduction of the
DTF-GSC is kept high for the entire waveform. The noise level
at the output of both algorithms is comparable. However, while
the noise signal at the TF-GSC output is fluctuating according
to the interferer activity, it is kept relatively constant at the
DTF-GSC output.

The SNR and SIR improvement for different stages of the
GSC structure is given in Table I, for both the TF-GSC and
DTF-GSC algorithms. A clear advantage of the DTF-GSC al-
gorithm over the TF-GSC algorithm is evident.

Informal listening tests confirm that the perceptual quality of
the desired speech signal (for the directional noise field case) is
retained in the enhanced signal, while the stationary and non-
stationary interferences are well suppressed (audio sample files
are available online.5) The low PSD deviation imposed on the
speech component at the system’s output confirms the theoret-
ical analysis presented in [31].

VIII. CONCLUSION

The TF-GSC interference reduction severely deteriorates in
the presence of a second directional, nonstationary, interference
signal. Theoretically, the ANC block should have been able to
eliminate the interference speech signal component at the FBF
output. However, the existence of nonstationary signals at its in-
puts significantly impairs its ability to converge. Moreover, the
null towards the competing signal is adaptively built. This adap-
tation causes both a time-varying attenuation of the interference
signal, and fluctuating residual noise level. These drawbacks of
the TF-GSC algorithm limit its use in cases where the desired
signal is contaminated by both stationary and nonstationary in-
terfering signals. The proposed DTF-GSC structure avoids these
difficulties. The nonstationary interference is treated separately
by exploiting the speech characteristics. The FBF and BM are
correspondingly updated to incorporate the extended set of con-
straints on the beampattern.

While the RTF estimation procedure is adopted from the
TF-GSC when only one speech signal is active, a new system
identification procedure for double talk segments was de-

5[Online]. Available: http://www.eng.biu.ac.il/gannot.

rived, which enables direct estimate of the BM components.
Experimental results demonstrate the advantage of the novel
DTF-GSC structure over the conventional TF-GSC structure
in cases where both stationary and nonstationary interference
signals are present at the beamformer inputs.

APPENDIX A
PROOF OF (10)

Imposing the constraints defined in (6) on (9) yields

Solving for the Lagrange multipliers yields

where is defined as

The solution for the linear equations is then given by

where

Therefore, the optimal solution is given in the first equation at
the bottom of the page. Dividing the nominator and denominator
of last term by

yields the second equation at the bottom of the next page. Rear-
ranging terms and using definitions (11) and (12) yields (10).
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APPENDIX B
PROOF OF (14)

Imposing our constraints on (13) yields the following linear
equations:

(55)

Rearranging terms in (55) yields

and

and therefore yields (56), shown at the bottom of the page.
Solving the linear equations yields (57), shown at the bottom

of the page. Define

(58)

then

(59)

(60)

The following expression is utilized in calculating

(61)

(56)

(57)
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Rearranging terms in (61) yields

(62)

Substituting (62) into (13), we obtain (14).
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