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Background

Motivation

Conventional methods for DOA estimation and beamforming involve
multiple microphones and entail spacing requirements.

Compact superdirective devices have been utilized for these tasks.

Vector sensors are inherently superdirective devices.

We describe new algorithms and analysis using a single acoustic
vector sensors (AVS).

We also discuss a smart-glasses application using two AVS’s.
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Background Vector-sensor specification

Pressure and particle velocity

Pressure is determined by the density of air particles.

Particle velocity describes the motion of air particles.

A conventional sensor does not measure velocity. ⌢̈
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Background Vector-sensor specification

What is a vector-sensor?

A vector sensor measures both pressure and particle velocity.

Conventional microphone:

Channels: 1

Directivity: monopole (typically)

Schematic:

Vector-sensor:

Channels: 4

Directivity: monopole (×1)
dipole (×3)

Schematic:

VS
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Background Vector-sensor specification

Construction of vector-sensor

Dipole elements may be obtained from:

1 Particle velocity sensors

2 Differential-microphone arrays
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Background Vector-sensor specification

Notation for measurements

The measurements of the vector-sensor are denoted:

y[n] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p[n]
vx[n]
vy [n]
vz[n]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= [
p[n]
v[n]

]

A linear combination of the sensor signals produces a limaçon (to be

explained later).
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DOA Estimation by SRP Optimization Problem formulation

DOA Estimation using a single AVS [Levin et al., 2011]

Problem formulation

Goal

Estimate the direction of arrival (DOA) of a single acoustic source.

The source is located in the far-field.

The signal produced is denoted s[n].

The DOA is described by a unit vector u.

Noise components are assumed to be uncorrelated which applies to
sensor-noise and isotropic fields.

s[n]

u
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DOA Estimation by SRP Optimization Problem formulation

Signal and noise notation

The measurements consist of signal and noise components:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p[n]
vx[n]
vy [n]
vz[n]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= [
1
u
] s[n] +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ep[n]
evx [n]
evy [n]
evz [n]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

or more briefly:

[
p[n]
v[n]

] = [
1
u
] s[n] + [

ep[n]
ev [n]

]

Note: The particle-velocity has been scaled to produce normalized dipoles.
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DOA Estimation by SRP Optimization Statistical model

Noise models

Sensor noise:

Noise of all sensors are uncorrelated.

Monopoles and dipoles may have different
variances.

Diffuse noise:

Noise of all sensors are uncorrelated, since all
sensors are colocated

σ2
ev =

1
3σ

2
ep .
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DOA Estimation by SRP Optimization Statistical model

Statistical characterization

The signal and noise are statistically independent.

The signal is a white zero-mean WSS process with variance σ2
s .

E{s[n]s[m]} = σ2
s δ[n −m]

The noise is a zero-mean WSS process with variances σ2
ep and σ2

ev .

E

⎧⎪⎪
⎨
⎪⎪⎩

[
ep[n]
ev [n]

] [
ep[m]

ev [m]
]

T⎫⎪⎪
⎬
⎪⎪⎭

= [
σ2
ep 01×3

03×1 σ2
ev ⋅ I3×3

] δ[n −m]
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DOA Estimation by SRP Optimization Proposed method

Steering

The orientation of the dipole sensors are fixed.

A linear combination of these sensors allows for
steering in any direction q.

DOA estimation can be obtained by steering the AVS
to all possible directions.

vq[n] = qT v[n]

vx vy vq =
√

3
2 vx + 0.5vy

q =
[√

3/2 1/2
]T
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DOA Estimation by SRP Optimization Proposed method

Beam shaping

A weighted combination of monopole and steered dipole produces a
limaçon pattern.

The combination

yq[n] = αp[n] + (1 − α)vq[n] .

ensures unity boresight response.

α = ... 1 0.75 0.5 0.25 0
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DOA Estimation by SRP Optimization Proposed method

Steered response power (SRP)

1 We choose a beampattern paramater α.

2 We steer the beam in the direction q.

3 We measure the response power over N samples. q

The SRP is defined as the average power:

SRP(α,q) =
1

N

N−1

∑
n=0

(αp[n] + (1 − α)qT v[n])
2
.
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DOA Estimation by SRP Optimization Proposed method

DOA estimation

For a given α we search for the direction q corresponding to maximum
SRP.

û = argmax
q

{SRP(α,q)}

subject to qTq = 1 .
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DOA Estimation by SRP Optimization Proposed method

Simplified form

û = argmax
q

{αqT r̂pv +
1 − α

2
qT R̂vvq}

subject to qTq = 1 ,

where:

R̂vv =
1

N

N−1

∑
n=0

v[n]vT [n]

r̂pv =
1

N

N−1

∑
n=0

v[n]p[n] .

r̂pv is also known as average intensity vector.

Let’s inspect two extreme cases . . .

S. Gannot (BIU) Acoustic Vector Sensors CCF, 6.1.2021 18 / 83



DOA Estimation by SRP Optimization Proposed method

Case I: Near-monopole

For a near-monopole beampattern (α → 1−), the problem becomes:

û = argmax
q

qT r̂pv

s.t. qTq = 1 .

The solution is:

û =
r̂pv

∥̂rpv∥
.

Note: This estimator was proposed by [Davies, 1987] and later by [Nehorai and Paldi, 1994] under the
name Intensity-based algorithm.
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DOA Estimation by SRP Optimization Proposed method

Case II: Dipole

For a dipole beampattern (α = 0), the problem becomes:

û = argmax
q

qT R̂vvq

s.t. qTq = 1 .

The solution is:

û = eigenvector corresponding to largest eigenvaue of R̂vv .

Note: This estimator was proposed by [Nehorai and Paldi, 1994] under the name
Velocity-Covariance-based algorithm.

S. Gannot (BIU) Acoustic Vector Sensors CCF, 6.1.2021 20 / 83



DOA Estimation by SRP Optimization Proposed method

General case: Limaçon beampattern

In the general case (0 ≤ α < 1), the problem involves both linear and
quadratic terms:

û = argmax
q

{αqT r̂pv +
1 − α

2
qT R̂vvq}

subject to qTq = 1 ,

We propose an iterative gradient based solution. The gradient of the
target function is:

∇qT (q) = α r̂pv + (1 − α)R̂vvq ,
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DOA Estimation by SRP Optimization Proposed method

Algorithm

Constrained gradient ascent algorithm for SRP maximization

Input: R̂vv , r̂pv , α
q0 := û = r̂pv /∥̂rpv∥
k := 0
K := maximum number of iterations
ε := tolerance parameter
µ := step size parameter
repeat

qk+1 := qk + µ(α r̂pv + (1 − α)R̂vvqk)

qk+1 := qk+1/∥qk+1∥

k := k + 1

until (k = K ) or alternatively (∥qk − qk−1∥
2 < ε2)

Output: û := qk
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DOA Estimation by SRP Optimization Evaluation

Mean square angular error

The angular error is the angle δ by which û deviates from u, defined
formally as:

AE ≡ 2 sin−1
(
∥û − u∥

2
)

  u

 û

δ

  u

 û

δ

The mean square angular error (MSAE) describes convergence rate of
û towards the true DOA:

MSAE ≡ lim
N→∞

(N ⋅ E{AE2
}) .
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DOA Estimation by SRP Optimization Evaluation

Monte Carlo simulation test

Steps for single Monte Carlo trial

1 A DOA u is selected randomly.

2 The signals and noise components are generated (N = 8000 time
instants), and are used to produce sensor measurements p[n], v[n].

3 The estimators û are calculated for values of α ranging from 0 to 1;
the corresponding angular errors are recorded.

A total of MC = 100,000 independently conducted trials creates records
from which the sample MSAEs are obtained.
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DOA Estimation by SRP Optimization Evaluation

Monte Carlo results

Signal and noise power: σ2
s = 0.5, σ2

ep = 1.1, σ2
ev = 0.9:

0 0.2 0.4 0.6 0.8 1
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9
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α parameter
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new method
u

mon

u
dip

CRLB

Note: the estimator û approaches the Cramér-Rao lower bound.
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DOA Estimation by SRP Optimization Relation to other criteria

Maximum likelihood [Levin et al., 2012] I

Consider N sensor measurements:

y[n] = [
p[n]
v[n]

] ; 0 ≤ n ≤ N − 1

The corresponding covariance matrix is:

C = Cov{y[n]} =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ2
ep

σ2
ev

σ2
ev

σ2
ev

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ σ2
s [

1
u
] [

1
u
]

T

,
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DOA Estimation by SRP Optimization Relation to other criteria

Maximum likelihood [Levin et al., 2012] II

y[n] and y[m] are statistically independent for n ≠ m:

fy[0],...,y[N−1](y[0], . . . , y[N − 1]) =

1

(2π)N/2 ∣C∣
1
2

N−1

∏
n=0

exp{−
1

2
yT[n]C−1y[n]}

Maximum likelihood DOA estimation:

ûML = argmax
u

fy[0],...,y[N−1](y[0], . . . , y[N − 1])

subject to uTu = 1 .
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DOA Estimation by SRP Optimization Relation to other criteria

Maximum likelihood [Levin et al., 2012] III

The likelihood can be recast as:

ûML = argmax
u

{α0 uT r̂pv + (1 − α0)
1

2
uT R̂vvu} s.t. uTu = 1 ,

with α0 =
σ2
ev

σ2
ep+σ2

ev
.

The ML estimator identifies with the SRP maximizer for α =
σ2
ev

σ2
ep+σ2

ev
.
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DOA Estimation by SRP Optimization Relation to other criteria

Comparison of the MSAE of presented estimators

MSAEs of various estimators: [Nehorai and Paldi, 1994]

MSAEû
MSRP

(1−) = 2
σ2
ev

σ2
s

⎛

⎝
1 +

σ2
ep

σ2
s

⎞

⎠

MSAEû
MSRP

(0) = 2
σ2
ev

σ2
s

(1 +
σ2
ev

σ2
s

)

MSAECRLB = 2
σ2
ev

σ2
s

⎛
⎜
⎝

1 +
(σ−2

ep + σ
−2
ev )

−1

σ2
s

⎞
⎟
⎠
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When σ2
ev > σ

2
ep , intensity-based estimator outperforms

velocity-covariance-based estimator (and vice-versa).

When σ2
ev ≫ σ2

ep , intensity based estimator approaches the CRLB.
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DOA Estimation by SRP Optimization Relation to other criteria

Minimum power distortionless response (MPDR) I

Goal:

Estimate s[n] as a weighted combination of the available measurements:

ŝ[n] = wT y[n],

Measurements:
y[n] = hs[n] + e[n],

where h = [1 uT ]T is the array-manifold vector corresponding to the
correct DOA , and e[n] = [ep[n] ev [n]

T ]T .

MPDR criterion:

w
MPDR

= argmin
w

{wTCw s.t. wTh = 1}
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DOA Estimation by SRP Optimization Relation to other criteria

Minimum power distortionless response (MPDR) II

Using

C = Cov{y[n]} =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ2
ep

σ2
ev

σ2
ev

σ2
ev

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ σ2
s hhT

Results in:

w
MPDR

= [
α0

(1 − α0)u
] ,with α0 =

σ2
ev

σ2
ep + σ

2
ev

.
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DOA Estimation by SRP Optimization Relation to other criteria

Minimum power distortionless response (MPDR) III

MPDR beamformer

ŝ[n] = α0p[n] + (1 − α0)uT v[n]

The MPDR beamformer conforms to the mold of the SRP maximizer with:

The look direction specified as the true DOA.

The shape parameter specified as α0 (the optimal ML parameter).

S. Gannot (BIU) Acoustic Vector Sensors CCF, 6.1.2021 32 / 83



DOA Estimation by SRP Optimization Conclusions

Conclusions

A single vector-sensor provides direction-sensitive information.

We derive a method for DOA estimation in the presence of noise.

The method generalizes two previously suggested methods.

The proposed method attains lower MSAE than previously suggested
methods.

Optimal choice of α (in the ML sense) depends on σ2
ev /σ

2
ep and

asymptotically achieves CRLB.

The estimator can be recast as an MPDR beamformer.
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The effect of reverberation on DOA accuracy Problem statement

Effects of reverberation on the intensity vector [Levin et al., 2010b]

The Intensity vector was shown to provide a good estimate of the source
direction. Specifically, when σ2

ev ≫ σ2
ep , the intensity based estimator

approaches the CRLB.

Sources of error:

The DOA estimate is prone to errors due to sensor noise, ambient
noise, and reverberation.

A scenario of sensor noise has been analyzed [Nehorai and Paldi, 1994]. The
estimator û was shown to be unbiased and consistent.

The effects of reverberation on estimation accuracy have been
hitherto unanalyzed.

We provide a statistical analysis and an experimental evaluation for
the DOA bias in reverberant environments.
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The effect of reverberation on DOA accuracy Intensity vector

DOA estimation based on the intensity vector I

Definitions:

The intensity vector is the product of pressure and particle velocity:

i[n] = p[n]v[n]

and represents the transport of acoustical energy (the acoustical
equivalent of the Poynting vector).

Utilization of the time-averaged intensity vector ī to estimate DOA
was proposed by [Nehorai and Paldi, 1994]:

ī =
1

N

N

∑
n=1

i[n] =
1

N

N

∑
n=1

p[n]v[n]

The estimated DOA is given by û = ī
∥̄i∥ .
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The effect of reverberation on DOA accuracy Intensity vector

DOA estimation based on the intensity vector II

The accuracy of a DOA estimation can be evaluated by the AE which
is defined as the angle δ by which û deviates from the true DOA u:

AE ≡ 2 sin−1
(
∥û − u∥

2
)

  u

 û

δ

  u

 û

δ
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The effect of reverberation on DOA accuracy Reverberation statistical model

Reverberant Scenario

As sound obeys the wave equation which is an LTI system, p[n] and
v[n] can be expressed as convolutions of a source signal s[n] with
RIRs:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p[n]
vx[n]
vy [n]
vz[n]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(s ∗ hp)[n]
(s ∗ hvx )[n]
(s ∗ hvy )[n]
(s ∗ hvz )[n]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The source signal is assumed to be WSS process described by:

E{s[n]} = 0; E{s[n1]s[n2]} = Rss[n1 − n2].

The expectation of the intensity vector w.r.t. the signal, assumed
here to be white is shown to have the form:

Ψ(h) = E {̄i[n]∣h} =∑
`

Rss[`]∑
m

hp[m]hv [m + `] = σ2
s ∑

m

hp[m]hv [m]

Note, that the RIRs h are fixed here, and assumed to be an instance
from a random vector, as will be explained in the sequel.
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The effect of reverberation on DOA accuracy Reverberation statistical model

The intensity accumulation vector (IAV) I

The instantaneous product of the pressure and velocity RIRs:

hi [n] ≡ hp[n]hv [n] .

The expected intensity vector can be represented as a contribution of
the direct-path (arbitrarily defined at −nd) and the reverberant tail:

Ψ(h) = E {̄i∣h} = σ2
s (hi [−nd] +

∞
∑
n=0

hi [n]) .

The well-known energy-decay curve (EDC) [Schroeder, 1965] is defined as:

EDC[n] =
∞
∑
m=n

h2
p[m].
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The effect of reverberation on DOA accuracy Reverberation statistical model

The intensity accumulation vector (IAV) II

Similarly, we define the intensity accumulation vector (IAV):

IAV[n] =
∞
∑
m=n

hi [m] [there was a typo in the presented version]

Hence, reverberation, as summarized by IAV[0], distracts the intensity
vector from pointing towards the direct-arrival direction:

Ψ(h) = E {̄i∣h} = σ2
s (hi [−nd] + IAV[0]) .
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The effect of reverberation on DOA accuracy Reverberation statistical model

Statistical RIR model I

Although the expected intensity is a function of h, the values of these
RIRs are generally unknown.

General properties of these functions (e.g. decay rate) can be utilized
to provide a statistical model of the RIRs.

A new model has been suggested [Levin et al., 2010] which extends Polack
and Moorer model to incorporate particle velocity.

The RIRs are presented as:

h[n] ≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

hp[n]
hvx [n]
hvy [n]
hvz [n]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Ad [
1
u
] δ[n + nd] + σ0

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w1[n]

1/
√

3 w2[n]

1/
√

3 w3[n]

1/
√

3 w4[n]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

e−αnu[n]

S. Gannot (BIU) Acoustic Vector Sensors CCF, 6.1.2021 41 / 83



The effect of reverberation on DOA accuracy Reverberation statistical model

Statistical RIR model II

Ad – the amplitude of the direct arrival coefficients,
σ0 – reverberation amplitude,
u[n] – discrete-time unit step function,
nd – direct arrival h[−nd],
w[n] = [w1[n] w2[n] w3[n] w4[n] ]

T – i.i.d. Gaussian process:

E{w[n]} = 0

E{w[n1]w
T
[n2]} = I4 ⋅ δ[n1 − n2] .

Ψ(h) = E {̄i[n]∣h} (with h drawn from a random distribution), can be
viewed as a direct arrival, followed by a 3-dimensional random walk
consisting of independent random steps with exponentially decaying
magnitude. In the sequel, we provide a statistical analysis of the
distraction from the direct arrival.

S. Gannot (BIU) Acoustic Vector Sensors CCF, 6.1.2021 42 / 83



The effect of reverberation on DOA accuracy Reverberation statistical model

Statistical RIR model III

The norm of these reflections amounts to a Maxwell variable:

fQ(q) = ε(q)
1

σ3
G

√
2

π
q2e

−q2

2σ2
G .

−2
0

2
4

−6

−4

−2

0

0

2

4

6
This random walk in three
dimensions corresponds to the
summation of 8000 terms from
hp[n]hv [n]. The walk commences at
the origin (*) eventually arriving at
(○). It corresponds to the
reverberant part of hp[n]hv [n] and
does not include the direct arrival.
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The effect of reverberation on DOA accuracy Reverberation statistical model

Statistical RIR model IV

The angular error can be approximated by:

δasym ≈
∥IAV[0]∥ sin(θ)

∥hi [−nd]∥

IAV[-nd] =
h
i
[-nd] + IAV[0]

h
i
[-nd]

IAV║[0]

IAV┴[0]
IAV[0]

δasym

θ

The projection of the Maxwell variable onto a 2-dimensional plane,
produces a Rayleigh variable:

fR(r) = ε(r)
1

σ2
G

re
−r2

2σ2
G .
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The effect of reverberation on DOA accuracy Reverberation statistical model

Statistical RIR model V

The asymptotic bias δasym can thus be approximated, in high direct
to reverberant ratio (DRR), by a scaled version of the Rayleigh
variable, with standard deviation dependent on the DRR and the
decaying factor of the RIRs α.
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The effect of reverberation on DOA accuracy Reverberation statistical model

Evaluation I

We have used simulated RIRs from [Habets, 2006] to evaluate our
statistical model.

Evaluation carried out by comparing theoretical and the simulated
c.d.f. of the angular error and its respective mean.

Since the early reflections are not modelled by our statistical analysis,
we examined removing them for better match.
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The effect of reverberation on DOA accuracy Reverberation statistical model

Evaluation II

Table: Statistical results of AE (in degrees) for original and modified data.

Theoretical Sample Relative
Data set AE mean AE mean estimation error

Unmodified data 2.0995 2.4748 -15.17%

10 msec removed 1.7657 2.0088 -12.10%

20 msec removed 1.2979 1.3112 -1.02%

A very good correspondence between theory and simulated RIRs, provided
early are reflections removed!
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The effect of reverberation on DOA accuracy Conclusions

Conclusions

1 A single vector sensor is capable of DOA estimation.

2 Reverberation causes estimation bias.

3 Bias distribution may be obtained through statistical room acoustics
and is shown to obey Rayleigh distribition.

4 Increased signal coloration tends to increase bias [Levin et al., 2010a].
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Robust Beamforming

Outline
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Robust Beamforming Motivation

Robust beamforming [Levin et al., 2013]

The actual performance of a beamformer can differ greatly from its
ideal performance.

This degradation is due to sensitivity towards deviation from the
assumed scenario.

Diagonal loading is a known cure for robustifying beamformers.

We show that a different loading is more successful for arrays of
nonidentical sensors.

Examples of deviations:

weight values

sensor locations

internal sensor noise

steering vector

S. Gannot (BIU) Acoustic Vector Sensors CCF, 6.1.2021 50 / 83



Robust Beamforming Motivation

Directivity Patterns of sensors

We discuss arrays containing elements with nonidentical directivity
patterns.

Image credits: Shure Inc. and ProSoundWeb (not for commercial use).

Different orientation means nonidentical.
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Robust Beamforming Motivation

Example: robust vs. nonrobust

Simulation of a linear array of 4 vector-sensors
(16 subsensors).

Signal in presence of diffuse noise.

unprocessed robust beamforming “optimal” MVDR

Sound credits: original recording from HarperAudio (not for commercial use).
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Robust Beamforming Motivation

Diagonal loading as modification of MVDR

MVDR beamformer

Objective: minimize noise.

Constraint: unity response in look
direction.

Formulation:

Robust DL beamformer

Objective: minimize noise.

Constraint: 1. unity response in
look direction.

2. constrain ∥w∥2.

Formulation:
minimize: wHΦw

s.t. wHv = 1

minimize: wHΦw

s.t. wHv = 1

∥w∥
2
≤ C

w
MVDR

=
Φ−1v

vHΦ−1v
w

DL
=

(Φ + µI)−1v

vH(Φ + µI)−1v
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Robust Beamforming Motivation

Impact of weight and placement errors

Each realization of errors creates a different
beam-power pattern.

The mean beam-power is used to evaluate
extent of deviation from design.

Sensitivity is proportional to ∥w∥2 ;
diagonal loading increases robustness.
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Robust Beamforming Motivation

Applicability to nonidentical sensors?

Conventional assumption of sensors with identical directivities does
not always hold.

microflown
soundfield microphone

Should the diagonal loading method be applied to an array with
nonidentical beampatterns? Are modifications in place?

We extend the classical work of [Gilbert and Morgan, 1955]
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Robust Beamforming Preliminaries

Notation

N sensors

Direction of arrival (DOA) unit vector: u

Directivity pattern of the sensors (N × 1 vector): b(u, ω)

Wave number: k = ω
c

Position of sensors (N × 3 matrix): P

Array manifold vector

v(u, ω) = b(u)⊙ exp{j k ⋅ PTu}

ω will henceforth be omitted for brevity
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Robust Beamforming Preliminaries

Weights and beampattern / beam-power

Vector of weights for each channel: w = [w1 w2 . . .wn]
T

Σ 

Dw1
* 

Dw2
* 

Dwn
* 

Beampattern

BP(u) = wHv(u)

Beam-power

Ψ(u) = ∣wHv(u)∣2
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Robust Beamforming Excess beam-power

Random perturbation of weights

Weights are modeled as: nominal value + error
w = w0 +we

Errors are random with zero-mean.

Mean beampattern is unaffected by perturbations:

Ew {BP} = E {(w0 +we)
Hv(u)} = wH

0 v(u)

Mean beam-power is affected by perturbations:

E{Ψ} = Ew{∣(w0 +we)
Hv(u)∣2}

= ∣wH
0 v(u)∣2 + Ew{∣wH

e v(u)∣2}

nominal
beam-power

excess
beam-power
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Robust Beamforming Excess beam-power

Excess beam-power due to weight errors

Assuming that weight errors are uncorrelated:

Ψex =
N

∑
n=1

Ew{∣wen ∣
2
} ⋅ ∣bn(u)∣2

Interpretation:
Weight errors cause excess mean beam-power proportional to directivity
power of sensors.

Example:

nominal,
excess,

total

  0.5

  1

  1.5

30

210

60

240

90

270

120

300

150

330

180 0
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Robust Beamforming Excess beam-power

Random perturbation of sensors location

Location is modeled as: nominal value + error
P = P0 + Pe

Errors are random with zero-mean.

Mean beampattern is affected by perturbations:

EP{BP(u)} = wH
(v0(u)⊙ EP{exp{j k ⋅ PT

e u}}

Assuming that errors have identical spherical distributions,

EP{BP(u)} = κ wHv0(u) nominal beampattern

Mean beampattern attenuated via constant coefficient
but retains shape, since distributions are spherical:

κ = EP{exp{j k ⋅ pT
emu}}
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Robust Beamforming Excess beam-power

Excess beam-power due to location errors I

The mean beam-power EP{Ψ} is:

EP {∣wHv(u)∣2} = wHEP {v(u)vH(u)}w .

The term EP {v(u)vH(u)} can be simplified:

EP {v(u)vH(u)} =

v0(u)vH0 (u)⊙ EP{exp{j k ⋅ PT
e u}(exp{j k ⋅ PT

e u})H} .

We assume a scenario with shared packaging, namely that some of
the elements are displaced together; otherwise displacement errors are
independent.

Packaging denoted by matrix Ξ, then

EP{exp{j k ⋅ PT
e u}(exp{j k ⋅ PT

e u})H} = κ2
⋅ 1N×N + (1 − κ2

) ⋅Ξ
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Robust Beamforming Excess beam-power

Excess beam-power due to location errors II

An example of shared packing and the associated matrix Ξ:

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0

1 1

1 1 1 1

1 1 10 0 0 1

 
 
 
 
 
 
 
 
 
 
 
  

Ξ

Mean beam-power is then given by:

EP{Ψ} = κ2
⋅Ψ0(u)

+ (1 − κ2
) ⋅wH

[Ξ⊙ v0(u)vH0 (u)]w

nominal
beam-power

excess
beam-power

If sensors do not share packaging then Ξ becomes the identity matrix,
resulting in:

Ψex = (1 − κ2
)

N

∑
n=1

w2
n ⋅ ∣bn(u)∣2 .
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Robust Beamforming Robust solution

Reducing mean noise power

Goal: Reduce mean noise level.

The designer controls nominal weights (w0).

This implicity affects the weight errors (we)

under the assumption:

Ew{∣wen ∣
2
} = β2

∣w0n ∣
2

Integrating mean beam-power over all relevant directions of noise,

Φ0 =
1

4π ∫
2π

0
∫

π

0
A(u)h(u)hH

(u) sin(θ)dθ dφ

yields:

κ2wH
0 Φ0w0 + β

2wH
0 (Φ0 ⊙ I)w0

+ (1 − κ2
) ⋅wH

0 (Ξ⊙Φ0)w0 .

excess
noise

nominal noise
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Robust Beamforming Robust solution

Sensitivity to errors

Typical MVDR design seeks to minimize the term wH
0 Φ0w0, while

maintaining unity gain towards the desired look-direction.

A robust design will seek to minimize the excess noise terms as well:

Φrob = Φ0 ⊙ [κ2
⋅ 1N×N + β2

⋅ I + (1 − κ2
) ⋅Ξ)

Excess noise can be written as:

∥w0∥
2
L = wH

0 Lw0

Reducing sensitivity to excess noise can be obtained by constraining
∥w0∥

2
L. However, in practice β and κ are unknown.

We propose using L as a (not necessarily) diagonal loading matrix:

L = α ⋅wH
0 (Φ0 ⊙ I)w0 + (1 − α) ⋅wH

0 (Ξ⊙Φ0)w0

If Ξ = I and L is not dependent on α.

S. Gannot (BIU) Acoustic Vector Sensors CCF, 6.1.2021 64 / 83



Robust Beamforming Robust solution

Loading matrix

Robust beamformer

Objective: minimize noise.

Constraint: 1. unity response in
look direction.

2. constrain ∥w∥2
L.

Formulation:
minimize: wHΦw

s.t. wHv = 1

∥w∥
2
L ≤ C

w
robust

=
(Φ + µL)−1v

vH(Φ + µL)−1v

Notes:

1 Loading matrix L formed from
elements of nominal noise
matrix (Φ0).

2 L is not necessarily diagonal
(shared packaging).

3 Main diagonal may be
nonuniform.

4 Conventional case reverts to
traditional DL.
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Robust Beamforming Evaluation/Conclusion

Evaluation – 1

Inverse of sensitivity to errors used as robustness metric.

RM = 1/∥w0∥
2
L

Scenario 1: Collocated monopole and dipole in diffuse
noise field.

Attempting to attain maximum robustness (µ→∞):

Beampattern RM DI Loading matrix 

cardioid 3.0 dB 4.8 dB   I Diagonal loading 

hypercardioid 3.6 dB 6.0 dB 

 
  L =  

1 0
0 ⅓

 Modified loading 
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Robust Beamforming Evaluation/Conclusion

Evaluation – 2

Scenario 2: Two pairs of collocated cardioids in diffuse noise:

dist = 22cm 

 = 70˚ 
f = 400 Hz 

DI-RM tradeoffs for both methods (for position errors, α = 0):

2 2.5 3 3.5 4 4.5
3.5

4

4.5

5

5.5

6

6.5

7

RM [dB]

D
I [

dB
]

 

 

Modified loading
Diagonal loading
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Robust Beamforming Evaluation/Conclusion

Conclusions

Topic: arrays with nonidentical sensors.

/ Weight and location errors increase mean beam-power.

, Robust design with modified loading matrix.

Loading matrix produced from noise covariance matrix.

, Method improves directivity/robustness tradeoff.

Method does not involve extra computational burden.
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Application to smartglasses
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Application to smartglasses Motivation

Smartglasses: own voice enhancement [Levin et al., 2016] I
Motivation

Recent years have witnessed an increased interest in wearable devices,
consisting of miniature computers worn by users which can perform
certain sensing, networking and computing tasks.

One specific type of wearable computer is the smartglasses: a device
which displays computer generated information supplementing the
user’s visual field (augmented reality), e.g., Google Glass and
Microsoft HoloLens.

In addition to their visual-output capabilities, smartglasses may
incorporate acoustic sensors.

These sensors are used for hands-free mobile telephony applications,
and for applications using a voice-control interface to convey
commands and information to the device.
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Application to smartglasses Motivation

Smartglasses: own voice enhancement [Levin et al., 2016] II
Motivation

We propose a system for the acquisition of
the desired near-field speech in a noisy
environment, based on an acoustic array
embedded in eyeglasses frames worn by the
desired speaker.

Glasses frames constitute a spatially
compact platform, with little room to
spread the sensors out.

We choose to use AVS due to their compact
dimensions and inherit super-directivity,
especially in near-field scenarios.
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Application to smartglasses Problem formulation

Problem Formulation I

Microphone signals:

xm[n] = (s∗hm)[n] +
⎛

⎝

P

∑
p=1

(zp∗gm,p)[n]
⎞

⎠
+ εm[n] .

with M = 8 sensors (2 AVS’s), P interference sources, hm RIR relating the
desired source and sensor m, and gm,p RIRs relating the pth source and
sensor m.
Vector form:

x[n] = (s∗h)[n] +
⎛

⎝

P

∑
p=1

(zp∗gp)[n]
⎞

⎠
+ ε[n] .
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Application to smartglasses Problem formulation

Problem Formulation II

Direct-path and interference:

x[n] = (s∗hd)[n] + e[n] ,

with

h[n] = hd[n] + hr[n],

e[n] - undesired sound sources, ambient and sensor noise, and
reverberation.

STFT domain:

x[n]↦x(`, k) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X1(`, k)
X2(`, k)

⋮

XM(`, k)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= hd(k)s(`, k) + e(`, k) .
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Application to smartglasses Problem formulation

Problem Formulation III

Normalized form using relative transfer function (RTF):

x(`, k) = h̃d(k)s̃(`, k) + e(`, k) ,

with

s̃(`, k) = cH(k)hd(k)s(`, k)

and

h̃d(k) =
hd(k)

cH(k)hd(k)
.

where the vector c(k) determines the linear combination/microphone
selection, e.g., c(k) = [1 0⋯0]T .

S. Gannot (BIU) Acoustic Vector Sensors CCF, 6.1.2021 74 / 83



Application to smartglasses Proposed method

Proposed beamforming framework I

Beamforming:

y(`, k) = wH
(`, k)x(`, k) ,

MVDR beamformer:

wMVDR(`, k) =
Φ−1

ee (`, k)h̃d(k)

h̃H
d (k)Φ−1

ee (`, k)h̃d(k)
.

MWF beamformer:

wMWF(`, k) = wMVDR(`, k) ⋅W (`, k) .

with W (`, k), a single-channel Wiener postfilter:

W (`, k) =
1

1 + SNR−1(`, k)
.
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Application to smartglasses Proposed method

Proposed beamforming framework II

Improved robustness:

wreg(`, k) =

⎧⎪⎪
⎨
⎪⎪⎩

wMVDR(`, k), if ∥wMVDR(`, k)∥2 ≤ ρ

ρ
wMVDR(`,k)

∥wMVDR(`,k)∥ , otherwise.

Noise covariance estimation:
Covariance matrix is subject to rapid changes due to moving interfering
sources and/or abrupt head movement:

R̂ee(`, k) = α(`, k)R̂ee(` − 1, k)

+ (1 − α(`, k))x(`, k)xH(`, k)

with

α(`, k) =

⎧⎪⎪
⎨
⎪⎪⎩

1, if desired speech is detected

α0, otherwise.
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Application to smartglasses Proposed method

Proposed beamforming framework III

RTF estimation:
Since the mouth-sensors constellation is fixed, the RTF vector is estimated
during noise-free training stage:

h̃d(k) =
∑

Lb
`=1 x(`, k)xH(`, k)c(`, k)

∑
Lb
`=1 ∣cH(`, k)x(`, k)∣2

.

Near-field speech detection:

T (`, k) =
∣xH(`, k)h̃d(k)∣

2

∣x(`, k)∣2 ∣̃hd(k)∣2
,

Geometrically, T (`, k) corresponds to the square of the cosine of the angle
between the two vectors x and h̃d.
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Application to smartglasses Proposed method

Proposed beamforming framework IV

Post-filtering:
SNR is estimated using a variant of [Ephraim and Malah, 1984] “decision-directed”
approach:

γ(`, k) =
∣wH

reg(`, k)x(`, k)∣2

wH
reg(`, k)R̂ee(`, k)wreg(`, k)

ŜNR(`, k) = β∣Ŵ (` − 1, k)∣2 γ(` − 1, k)

+ (1 − β)max{γ(`, k) − 1, SNRmin}

Ŵ (`, k) = max{
ŜNR(`, k)

1 + ŜNR(`, k)
, Wmin} .

The parameters SNRmin and Wmin are used to eliminate the musical noise
phenomenon.
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Application to smartglasses Proposed method

Block diagram
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Application to smartglasses Evaluation

Sound examples

1

3
5

Figure: #1:HATS; #2–#4: static loudspeakers; #5: moving human speaker.
HATS-loudspeakers distance 1 m. Medium reverb.

Scenario A: HATS + 3 static interferes #2,#3,#4:

Microphone MVDR MVDR+Post1 MVDR+Post2

Scenario B: HATS + moving speaker #5:

Microphone MVDR
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}


audio_recv_n10_a

0000

15.960729


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}


audio_prop_n10_a

0000

15.960729


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton5'){ocgs[i].state=false;}}


audio_post1_n10_a

0000

15.960729


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton6'){ocgs[i].state=false;}}


audio_post2_n10_a

0000

15.960729


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton7'){ocgs[i].state=false;}}


audio_recv_n10_b

0000

15.960729


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton8'){ocgs[i].state=false;}}


audio_prop_n10_b

0000

15.960729



Application to smartglasses Conclusions

Conclusions

We proposed an array which consists of two AVS’s mounted on an
eyeglasses frame.

The specific configuration circumvents the need to re-estimating the
steering vector.

The proposed MVDR algorithm adapts to changes of the noise
characteristics by continuously estimating the noise covariance matrix.

A speech detection scheme is used to identify the presence of
time-frequency bins containing desired speech and preventing them
from corrupting the estimation of the noise-covariance matrix.

Experiments confirm that the proposed system performs well in both
static and changing scenarios.

The proposed system may be used to improve the quality of speech
acquisition in smartglasses.

S. Gannot (BIU) Acoustic Vector Sensors CCF, 6.1.2021 81 / 83



References

References and Further Reading I

Davies, S. (1987).

Bearing accuracies for arctan processing of crossed dipole arrays.
In OCEANS’87, pages 351–356. IEEE.

Ephraim, Y. and Malah, D. (1984).

Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator.
IEEE Transactions on acoustics, speech, and signal processing, 32(6):1109–1121.

Gilbert, E. and Morgan, S. (1955).

Optimum design of directive antenna arrays subject to random variations.
Bell System Technical Journal, 34(3):637–663.

Habets, E. A. (2006).

Room impulse response generator.
Technische Universiteit Eindhoven, Tech. Rep, 2(2.4):1.

Levin, D., Gannot, S., and Habets, E. (2010a).

Impact of source signal coloration on intensity vector based DOA estimation.
In The International Workshop on Acoustic Echo and Noise Control (IWAENC), Tel-Aviv, Israel.

Levin, D., Gannot, S., and Habets, E. (2011).

Direction-of-arrival estimation using acoustic vector sensors in the presence of noise.
In The IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 105–108, Prague,
Czech Republic.

Levin, D., Habets, E., and Gannot, S. (2010b).

On the angular error of intensity vector based direction of arrival estimation in reverberant sound fields.
The Journal of the Acoustical Society of America, 128:1800–1811.

S. Gannot (BIU) Acoustic Vector Sensors CCF, 6.1.2021 82 / 83



References

References and Further Reading II

Levin, D., Habets, E., and Gannot, S. (2012).

Maximum likelihood estimation of direction of arrival using an acoustic vector-sensor.
The Journal of the Acoustical Society of America, 131(2):1240–1248.

Levin, D., Habets, E., and Gannot, S. (2013).

Robust beamforming using sensors with nonidentical directivity patterns.
In The IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada.

Levin, D. Y., Habets, E. A. P., and Gannot, S. (2016).

Near-field signal acquisition for smartglasses using two acoustic vector-sensors.
Speech Communication, 83:42–53.

Nehorai, A. and Paldi, E. (1994).

Acoustic vector-sensor array processing.
IEEE Transactions on signal processing, 42(9):2481–2491.

Schroeder, M. R. (1965).

New method of measuring reverberation time.
The Journal of the Acoustical Society of America, 37(6):1187–1188.

S. Gannot (BIU) Acoustic Vector Sensors CCF, 6.1.2021 83 / 83


	Background
	Vector-sensor specification

	DOA Estimation by SRP Optimization
	Problem formulation
	Statistical model
	Proposed method
	Evaluation
	Relation to other criteria
	Conclusions

	The effect of reverberation on DOA accuracy
	Problem statement
	Intensity vector
	Reverberation statistical model
	Conclusions

	Robust Beamforming
	Motivation
	Preliminaries
	Excess beam-power
	Robust solution
	Evaluation/Conclusion

	Application to smartglasses
	Motivation
	Problem formulation
	Proposed method
	Evaluation
	Conclusions

	References

	fd@rm@8: 
	fd@rm@7: 
	fd@rm@6: 
	fd@rm@5: 
	fd@rm@4: 
	fd@rm@3: 
	fd@rm@2: 
	fd@rm@1: 
	fd@rm@0: 


