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Introduction and motivation

Ad hoc microphone arrays

Ad hoc microphone arrays

No tedious calibration
Improved spatial resolution and sound field sampling.
High probability to find microphones close to a relevant sound source.

Possibility to put (arrays of) microphones at strategic places
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Introduction and motivation

Wireless acoustic sensor networks (WASNs)

@ Wired ad hoc arrays:
o Tedious deployment
o Unaesthetic
o Not flexible (e.g., adding/removing/repositioning microphones)
o Not suitable for wearable or mobile applications (e.g., hearing aids)
@ Aim for wireless ad hoc microphone arrays.
e A.k.a. wireless acoustic sensor network (WASN)
(due to similarities with wireless sensor networks)
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Introduction and motivation
Wireless acoustic sensor networks (WASNSs)

Possible applications:
e Cooperative hearing devices (e.g., binaural hearing aids)

@ Hearing devices supported by external microphones or other audio
devices

Domotics, smart homes and ambient intelligence

Surveillance
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Introduction and motivation

Wireless acoustic sensor networks (WASNs)

Challenges

o Wireless link delay (e.g., in case of real-time constraints)
o Different sampling clocks (see also Part III)

@ The ‘data deluge’ (see next slide)
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Introduction and motivation

WASNs and the data deluge

The ‘data deluge’ [Baraniuk, 2011]

@ WASNSs generate a massive amount of data:
e Requires a large communication bandwidth
e Sensor nodes consume a large amount of transmission energy
e Requires high computing power at the receiver end (fusion center)
@ =big problem, in particular when battery-powered
(even in small-scale WASNSs such as binaural hearing aids)
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Introduction and motivation

Distributed signal processing in WASNs

@ Tackle the data deluge by physically shifting the signal processing to
the microphone nodes themselves
o Goals:
e Minimize data exchange
e Distribute computational burden over all nodes
o Let nodes cooperate in signal processing task(s)
@ Algorithm design=challenging (e.g., no access to full correlation
matrix)
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Introduction and motivation

Distributed signal processing

The field of distributed signal processing:

@ Mainly driven by the concept of wireless sensor networks

@ Theory and methods often build upon results from other fields, e.g.,
o Parallel and distributed computing for multi-core processors
e Modelling and control of multi-agent systems
o Game theory
e Graph theory

@ Two fundamentally different approaches:

@ Distributed parameter estimation techniques (DPE)

(e.g., diffusion [Sayed et al., 2013], consensus [Olfati-Saber et al., 2007], gOSSip [Shah, 2009], ...)
@ Distributed signal estimation techniques (DSE)

(e.g., DANSE-family, distributed/cooperative beamforming, distributed/remote

source coding, ...)
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Introduction and motivation

Distributed parameter estimation (DPE)

General script:

@ Extract initial parameter vector estimate from sensor observations
@ Repeat until convergence (or other stop criterion):

e Share intermediate estimate with neighbors
o Refine intermediate estimate using estimates from neighbors

Note: target parameter vector is fixed over iterations, or varies only slowly

from other node wy

to other node

refine estimate

from other node
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Introduction and motivation

DPE for speech enhancement in WASNSs

Collect L microphone signal samples at each node and iterate on
L-dimensional vector until the estimate converges. Then collect L new
samples, etc.
o © DPE techniques usually have no network topology constraints
o © Large communication cost: re-estimate and re-transmit same L
samples many times (freeze time index until convergence)

e ® Communication cost depends on convergence speed (and hence
also on network size)

@ © Not time-recursive: full reset between blocks

i
from other node wy

to other node
(L1 TT]

7
from other node W,

refine estimate

See, €.g., [Zeng and Hendriks, 2012, Heusdens et al., 2012]
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Introduction and motivation

Distributed signal estimation (DSE)

@ Avoid iterations over the signal sample estimates themselves
= In-network data flow and iterative process are uncoupled

@ Instead: time-recursive iterative refinement of in-network fusion rules

@ Assumption: spatial coherence of sensor signals is fixed over iterations
(or varies slowly)

v Ay

from other nodel

to other node
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Introduction and motivation

DSE for speech enhancement in WASNSs?

@ No iterative refinement of sample estimates:
© Each block of samples is transmitted only once
© Fixed per-node communication cost, independent of convergence

speed/network size

o O Price to pay: specific order in data flow generally requires topology
constraints (star, tree, fully-connected,...)

from other HWFW
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from other nodel
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See, e.g., [Doclo et al., 2009, Bertrand and Moonen, 2009, Markovich-Golan et al., 2010, Markovich-Golan et al., 2013,

Lawin-Ore and Doclo, 2011, Himawan et al., 2011, Hioka and Kleijn, 2011, Szurley et al., 2013]

S. Gannot (BIU) and A. Bertrand (KUL) Distributed speech enhancement EUSIPCO 2013 13 / 83



The DANSE algorithm in fully-connected WASNs

© The DANSE algorithm in fully-connected WASNSs
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The DANSE algorithm in fully-connected WASNs Preliminary case study: binaural hearing aids

Multi-channel Wiener filtering oco and Moonen, 2002

@ Goal: estimate speech component at reference microphone

@ Optimal filter-and-sum operation based on input statistics

(@)
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\“ w1
( w2 Denoised speech
W3 —
W4

min,, E{|d, ., —w"y|’} R, ()=o)

Voice activity detection (VAD)

W(a)) = R}’y (w)_l Rdd (a)) eref R, (a’): RJ?'(W)_R”” (a))
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The DANSE algorithm in fully-connected WASNs Preliminary case study: binaural hearing aids

Preliminary case study: binaural hearing aids

@ Two hearing aids (HAs) with wireless link (=2-node WASN)
e Goal: compute MWF including extra signal(s) from other HA

@ Each HA uses a local microphone as reference to preserve binaural
cues of target speaker
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The DANSE algorithm in fully-connected WASNs Preliminary case study: binaural hearing aids

Preliminary case study: binaural hearing aids

Problem Statement [Doclo et al., 2009, Srinivasan and Den Brinker, 2009]
@ Wireless link only allows exchange of 1 signal (in duplex)
@ Which signal should be transmitted?
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The DANSE algorithm in fully-connected WASNs Preliminary case study: binaural hearing aids

Preliminary case study: binaural hearing aids

Result from [Doclo et al., 2009]

@ Copy part of the local MWF coefficients and use it as fusion rule to
generate transmit signal (=optimal for single target speaker)

@ lterative computation (details omitted, see later)

@ Will extend this result to more general WASN scenarios in this tutorial

PS: S|m||ar result EXIStS for binaural MVDR BF [Markovich-Golan et al., 2010]
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The DANSE algorithm in fully-connected WASNs DANSE;

DANSE in fully-connected WASNSs

Assumptions:
@ Multiple mics per node (array or hierarchical architecture)
@ Network is fully connected (=easiest case, will be extended to
multi-hop topologies later)
@ Each node is a data sink, and requires a node-specific estimate of the
target source(s) to preserve spatial cues
= Distributed adaptive node-specific signal estimation (DANSE)

i
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The DANSE algorithm in fully-connected WASNs DANSE;

Notation

WASN with N nodes {1,...,N} =7

Node k € J collects an My-channel microphone signal y,(w, t)
(represented in short-time Fourier transform (STFT) domain)

Will often omit (w, t) in the sequel for conciseness, keep in mind that
all operations are performed in STFT domain.

Additive noise:

Yk = di + ng
ny is noise and d is the desired speech signal.
Stacked vector y = [y{ ... y,C T defines M-channel signal with
M =3 cqs M.

Similar for d and n, i.e., y =d + n.

Ykm denotes the m-th microphone of node k, and
exn=10...010...0]7 is a selection vector such that yj, = ez—my.
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The DANSE algorithm in fully-connected WASNs DANSE;

Centralized per-node MWFs

@ At each node: choose 1st mic as reference microphone (w.l.0.g.)
@ Assume all nodes have access to all signals: node k € J computes

di1 = Wiy
with H denoting conjugate transpose and wy is node k's MWF
e = arg min £{|dia — wiy[’} = R})/ Rasera
where R, = E{yy""} and Ryy = E{dd"} = R,, — R,,, (VAD)

PS: will only focus on MWF, but can easily be extended to SDW-MWF.
Tooo $000 $000
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The DANSE algorithm in fully-connected WASNs DANSE;

DANSE signal exchange

Tooo $00 $000
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The DANSE algorithm in fully-connected WASNs DANSE;

DANSE signal exchange

@ Node k broadcasts the fused signal z, to the other nodes:

. -
z = fiyk

where f,’; is an Mj-dimensional fusion vector and i is an iteration
index.

@ Data compression: My-channel signal y, — single-channel signal z,’;
@ Between iteration i and i + 1, node k collects samples of

Sio_ | Yk i i
Yi = [Zi ] dj +ny
—k
with 2/, = [z} zi 1z} zi 7
—k =12 Z—1 k41 - AN
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The DANSE algorithm in fully-connected WASNs DANSE;

DANSE signal exchange

Tooo $00 $000
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The DANSE algorithm in fully-connected WASNs DANSE;

DANSE per-node MWFs

@ Node k will compute local MWF V;'( that minimizes

min E{|dk1 — V{'y} [’} .
Vi

@ This yields
V;( = (R;7k)7k> lelkakel
where e; = [10 ... 0], R, ;, = E{y}¥;""}, ngak = E{didi"}.
e With VAD: Ri“/kak =Ry, ;, — R} ; (PS: nodes can share VAD info)
@ Between iterations i and i/ + 1, estimated speech signal at node k:

i ~iHGi
di1 = Vi Yk
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The DANSE algorithm in fully-connected WASNs DANSE;

Equivalent network-wide filter?

= how does equivalent network-wide filter w! look like?

Sl SiHSi i H i
i = Vi Y =Wy = w7
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The DANSE algorithm in fully-connected WASNs DANSE;

Equivalent network-wide filter?

Local MWF < network-wide filter

i i g i g

[ wn - | eafi | &afi

I 1 1 I 1 I I !

W = glzfg y W = | Wy [, W3= 83,3
1 1 I 1 1

8isf3 833f3 W33

g,iq is the coefficient that node k applies to the zc"7 signal from node q.

M/ ] [ o fi ]
Wiy 8iaf1
1 1 1
Wi2 8iof2
wi= | il=| ¢
- I - 1
Wik Wik
i i £
L Win L &infi
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The DANSE algorithm in fully-connected WASNs DANSE;

DANSE parametrization

Choice of f]'s
DANSE sets ,’( = w};k, ie., w;'(k serves both as compressor and estimator
i
8k1W11
w) = 5 (g1 = 1, by definition)
BinW NN

PS: chicken-and-egg problem: need samples of z, signals to compute local
MWFs, but need MWFs to compute samples of z's
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The DANSE algorithm in fully-connected WASNs DANSE;

DANSE parametrization

Example of DANSE parametrization (3-node case)

P
823W33 W33

[ lelele)]

i

PS: similar to 2’ ,, introduce notation

i — [ i i i 1T
8k—k = g1 --- 8kk—1 8kk+1 - -+ ginl" -
S. Gannot (BIU) and A. Bertrand (KUL) Distributed speech enhancement EUSIPCO 2013 29 /83




The DANSE algorithm in fully-connected WASNs DANSE;

Algorithm description (for fixed frequency index w)

DANSEl algorithm [Bertrand and Moonen, 2010a]

@ Initialize: 1+ 0, u+1
Initialize wgk and g2 _ with random vectors, V k € J

@ Each node k € J performs the following operation cycle:

e Collect B new sensor observations yx(w,iB+n), n=0...B — 1.
o Compress these M-dimensional observations to

zi(w,iB + n) = wifly,(w,iB+n), n=0...B—1.

Broadcast B samples of z,’; to other nodes.

Collect B samples of z' , from other nodes.

Compute new estimator parameters wi;' and g’“k (see next slide).
Compute B samples of speech estimate (forn=0...B-1)

dyq(w, B+ n) = wif Py, (w, iB + n) + g 'z (w,iB +n) .

@ Seti«+i+1 u<+ (v mod N)+ 1, and return to step 2
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The DANSE algorithm in fully-connected WASNs DANSE;

Algorithm description (continued)

i+1 i+1

DANSE; algorithm: computation of wy;~ and g,

@ Node u re-estimates R%yu and Rg X based on the collected samples

uHu

inz' ,(w,iB+n)andy,(w,iB+n), n=0...B-1.
e VkeJ, update:

N _
W;jk_l (R;.;k}?k) ) ngfkakel If k =u
i+1 = ’
8k, —k [ v;'k" } if k#u
8i,—k

Note:
@ Sequential round-robin updating
@ B should be large (filters are typically frozen for 1-3 sec)

@ Several DANSE algorithms in parallel (one for each frequency bin w)
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The DANSE algorithm in fully-connected WASNs Convergence and optimality of DANSE

Convergence and optimality of DANSE?

Convergence

Does DANSE converge to an equilibrium?
= Does lim;_,o, w) exist, Vk € J7

v

Optimality

If DANSE converges to an equilibrium setting, does it have the same
estimation performance as the centralized MWF?
= Islimjoow) =Wy, Vke J?

N
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The DANSE algorithm in fully-connected WASNs Convergence and optimality of DANSE

1st result

First question: are wy, V k € 7, in the solution space of DANSE?

In case of a single desired speech source, and if all nodes in J can 'hear’
this source, then the solution space defined by the parametrization of
DANSE contains the optimal (centralized) MWFs wy, ¥ k € J.

Proof outline:

@ Single desired speech source:
VkeJ: de(w,t) =ak(w)s(w,t)

where s(w, t) contains desired speech source and steering vector
ax(w) contains M transfer functions from source to My microphones.

o Leta=[a; ...aJ]", then d(w,t) = a(w)s(w, t).
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The DANSE algorithm in fully-connected WASNs Convergence and optimality of DANSE

Proof (continued)

@ Centralized MWF at node k:
Wi = R, Ryge
= R;ylaE{\s\z}aHekl
=R, 'a-aj; E{|s’}
o It follows that V k,q € J:

Wi = QgqWq

. ay
with g = aii.
q

@ In DANSE: set g,’;q = Qyq and ka =W, Vk,ge T
g;ilwil QW11
VkeT: w,= : = : =

W NN QWY

E>
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The DANSE algorithm in fully-connected WASNs Convergence and optimality of DANSE

2nd result

Theorem (Convergence and optimality of DANSE (gertrand and Moonen, 2010a])

In case of a single desired speech source, and if ag1 # 0,V k € J, then
lim; e W;( =wy, VkeJ.

In other words: each node obtains the speech estimate of its corresponding
centralized MWF, as if it had access to all the microphone signals.
(proof omitted)
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The DANSE algorithm in fully-connected WASNs Convergence and optimality of DANSE

DANSE vs. Centralized MWF

Advantages of DANSE

@ Reduced communication bandwidth and reduced transmission energy

@ All nodes contribute/cooperate in the processing
= Small per-node processing power
@ Inherent dimensionality reduction
= Many small problems vs. single large problem
= Often smaller overall processing power (due to O(M?) or O(M?3)
complexity)

v

Disadvantages of DANSE

@ Reduced tracking performance due to iterative nature (per-node
tracking can be improved [szurey et al. 2013))

@ Ripple of errors to other nodes (will be addressed later)

v
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The DANSE algorithm in fully-connected WASNs DANSEq

Multiple target speakers

What if desired signal dk; is a mixture of @ desired speech sources?

= W, = a,qWq does not hold anymore (see next slide)
= Wy not in solution space of DANSE ©
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The DANSE algorithm in fully-connected WASNs DANSEq

Multiple target speakers

o Centralized MWF at node k (for Q = 2):

PO |
Wi = R} 'Radex

_R-1 E{lsl?t 0 ayf
=R} [a1 )] 0 E{l»P}]||a} €x1

= R;yl [a1 a2] - by

o It follows that Vk € J:
w, =W - b,

with W = Ry_y1 [a1 ... a@] an unknown M x Q matrix.

All MWF's wy,V k € J, span a @Q-dimensional subspace!
= Need to capture this subspace with DANSE
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The DANSE algorithm in fully-connected WASNs DANSEq

Generalization: DANSE g

Choose  — 1 auxiliary reference microphones at each node
Q-channel desired signal, e.g., dy ref = [dk1 - .. dig]” (w.lo.g.)
Compute Q different MWF's (M x Q matrix):

Wk = R;ledd [ekl e ekQ]

From previous slide: Vk,qg € J, 3Axq € COXQ . W, = Wquq.

If diref = Ak ref =S, With Ay ref € C?*Q containing the Q-speakers to

Q ref.-mic acoustic transfer functions, then Ayq = A AkHref

Tooo X
[

O I

S. Gannot (BIU) and A. Bertrand (KUL) Distributed speech enhancement EUSIPCO 2013 39 /83




The DANSE algorithm in fully-connected WASNs DANSEq

Generalization: DANSE g

Q-channel signal broadcasts

Replace single-channel z; = w}d’jyk with a @-channel signal z} = Wjdf’yk.
= Communication cost increases linearly with # target speakers
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The DANSE algorithm in fully-connected WASNs DANSEq

DANSE parametrization

Example of DANSE parametrization (3-node case)

i el i i
_ Ml , Wi,Gy, _ 11931
I 1 1 I 1 [ 1 )
1= | WGl [, Wy = Wy |, W= [ WG
1 1 1 1 1
W33Gl3 W33G)3 W33

_______AT__ﬂ

r
1
1
L

S. Gannot (BIU) and A. Bertrand (KUL) Distributed speech enhancement EUSIPCO 2013 41 /83



The DANSE algorithm in fully-connected WASNs DANSEq

DANSE parametrization

ilGII.d
Wi = : where G}, € C9*C G}, =g
Wiun Gl
Since Vk,q € J, IAyy € COQ . W, = \quAkq, the optimal MWF's are
in the DANSE solution space (set W}, = Wy and G}, = A).
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The DANSE algorithm in fully-connected WASNs DANSEq

Algorithm description

DANSE algorithm: computation of W' and Gf[lk

Let G;'( L= G’ki’— Gf(-’,;fl G;<7l;+1 G;'(,-\’,—]T. Update at node k:

N _
(Riy,) RLgler ... eqlifk=u

Wi .
i1 | = i
Gy [ V,vkk ] if k #u
k,—k

where i and di, are defined as earlier (but with Q-channel z/, signals).
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The DANSE algorithm in fully-connected WASNs DANSEq

Convergence and optimality of DANSEg

Theorem (Convergence and optimality of DANSE)

In case of Q desired speech sources, and if Ay ref is full rank, ¥V k € J,
then lim;_yoo WL =W,, VkeJ.

(proof omitted)
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The DANSE algorithm in fully-connected WASNs DANSEq

Other scenarios

What if the centralized solution is not in DANSE solution space, e.g.,
e DANSE with Q@ < number of desired speakers?
o DANSE where nodes have ‘different interests’

Theorem (Existence of equilibrium  (gertrand and Moonen, 201267

Under some technical conditions (details omitted), the DANSEq algorithm
always has an equilibrium point, i.e., a choice of the local parameters W),
and G;(q, V k,q € J, such that none of the nodes wants to change them.

@ Convergence to equilibrium is not proven, but is generally observed in
simulations.

@ Equilibrium = suboptimal due to selfish updates.

@ Game-theoretic framework (selfish nodes) — Nash equilibria
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The DANSE algorithm in fully-connected WASNs DANSE with simultaneous node-updating

Simultaneous node-updating

In DANSE, the nodes update in a sequential round-robin fashion
= Slow overall convergence, and slow per-node adaptation

(]

Can we also let all nodes update simultaneously?
Sometimes convergence...

. but often no convergence @ (limit cycle behavior)

Reason: ‘optimal’ local update immediately becomes suboptimal due
to simultaneous changes in the filters at other nodes

Solution: Relaxation (details Omitted, S€E€ [Bertrand and Moonen, 2010b])
W/+1 ( )W + Wunre/axed update
kk

with 0 < a < 1.
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The DANSE algorithm in fully-connected WASNs DANSE with simultaneous node-updating

Relaxed simultaneous DANSE (rS-DANSE)

rS-DANSE algorithm: computation of W' and G’Jrl

Update at all nodes k € J simultaneously:

new
kk i 14
|:Gi+_1 :| = (R_kak) Rakak [e]_ .. eQ]

Wit = (1 — a)Wj, + aWp"

optimal cost

s S-DANSE,
1S-DANSE, with o/=0.7

36 1S-DANSE, with =03

1S-DANSE, with =1/

LS cost [0B)

o 5 10 s 20 25 a0 o 40 45 &0
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The DANSE algorithm in fully-connected WASNs Robustified DANSE

Robustified DANSE (R-DANSE)

@ Sometimes ill-conditioned nodes:

ak1 ~ 0 or Ay ref ~rank deficient

E.g.: low-SNR node k can be useful as noise reference, but a,; ~ 0.

DANSE suffers from error ripple: erroneous update at one node has
an impact on the performance at all other nodes.

At ill-conditioned node k: choose z/ as reference signal, where node gq

q
is a high-SNR node.

@ Note: ‘desired’ signal at node k changes with iteration index /!
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The DANSE algorithm in fully-connected WASNs Robustified DANSE

Convergence and optimality of R-DANSE

ot Dependency graph:
@ Each column wf(k(m) of W;;k, VkeJ,
Vme{l,...,Q} is a vertex.
o Note: each wi,(m) corresponds to a
particular reference mic

node 1 node 3
@ @ o Draw edge wi,(m) — wgq(n) if update
of wj,(m) is based on the reference
@ signal z/(n) instead of a local
microphone.

node 4 II

If dependency graph contains no loops: convergence and optimality of
R— DANSE [Bertrand and Moonen, 2009].
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DANSE in WASNs with a tree topology (T-DANSE)

© DANSE in WASNSs with a tree topology (T-DANSE)
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DANSE in WASNs with a tree topology (T-DANSE)

Multi-hop WASNSs

o Fully-connected WASNs may require significant transmit power

@ Low-power nodes may not be able to reach all other nodes
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DANSE in WASNs with a tree topology (T-DANSE)

Passing on information

The relay case
Q A @ Make network virtually fully
R A connected

S VA N
Q ,,,,,,,,,,, @ Complex routing problem
B

@ Per-node communication
cost grows with network size

v

Filter-and-sum combination of inputs
Q\ A @ No routing problems

:Q MA+ 2B @ Per-node communication
cost independent of network
size
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DANSE in WASNs with a tree topology (T-DANSE)

First attempt

Fully-connected DANSE:

W
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DANSE in WASNs with a tree topology (T-DANSE)

First attempt

Disconnect red and green node...

@ )
@000 Tlf(f?
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DANSE in WASNs with a tree topology (T-DANSE)

First attempt

. and add new neighbors instead:

.

|
|
|
|
!
12

W

S. Gannot (BIU) and A. Bertrand (KUL) Distributed speech enhancement EUSIPCO 2013 55 /83



DANSE in WASNs with a tree topology (T-DANSE)

First attempt

Blue node’s data is blocked and does not travel beyond red node:

.

|
|
|
|
!
12
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DANSE in WASNs with a tree topology (T-DANSE)

First attempt

Change definition of transmitted signal zi (‘wild guess'):

.

|
|
|
|
!
12
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DANSE in WASNs with a tree topology (T-DANSE)

First attempt

Data from blue node travels beyond single-hop region:

» U -

[ JeJele) [ Jelele) [ Jele]e)

P

1
i
1
1
i
i
i
I
1
i
i
}

v
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DANSE in WASNs with a tree topology (T-DANSE)

First attempt

Apply similar idea in all nodes:

.

|
|
|
|
!
12

W
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DANSE in WASNs with a tree topology (T-DANSE)

First attempt

S. Gannot (BIU) and A. Bertrand (KUL)

Distributed speech enhancement

Will this ‘wild guess’ work???
e N, = neighbours of k (k excl.)
° Implicit deﬁnition of zf('

_ H,
z) = Wik'yk + Xqen;, Gig 24

Problem 1: acausality in data flow

Deadlock: nodes wait for each
other's z-signals
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DANSE in WASNs with a tree topology (T-DANSE)

First attempt

Problem 2: feedback

@ Feedback path considerably changes algorithm dynamics

o Centralized MWF's are not in solution space (provable)

How to get rid of this feedback and causality problem?
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DANSE in WASNs with a tree topology (T-DANSE)

2 types of feedback

Direct feedback Indirect feedback
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DANSE in WASNs with a tree topology (T-DANSE)

Eliminating direct feedback

Direct feedback:

@ Transmitter feedback cancellation
(TFC): send different signal to each
neighbour

Zio = Wiy + Y Gif'zj,
leN\{q}

@ Better alternative: Receiver feedback
cancellation (RFC), i.e., single
4 5 6 . i
N broadcast signal to all neighbors
(details omitted [Bertrand and Moonen, 2011])

@ RFC vs. TFC: no influence on
algorithm!
(will assume TFC in sequel w.l.o.g.)
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DANSE in WASNs with a tree topology (T-DANSE)

Eliminating indirect feedback

S. Gannot (BIU) and A. Bertrand (KUL)

Indirect feedback:
@ Prune to tree topology

@ In combination with TFC: all feedback
eliminated

@ Definition of zf(q's can be resolved:

o Start at leaf nodes (|[Ny| = 1)

o Leaf node k: z}(q = WL[’yk, i.e., no
dependency on other z-signals

o Rest follows in natural order as dictated by
the tree

@ Similarly, also causality problem in data
flow (deadlock) is resolved:

@ Fusion flow from leaf nodes to root...
@ ... followed by diffusion flow from root to
leafs
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DANSE in WASNs with a tree topology (T-DANSE)

Data-driven signal exchange

@ Data-driven paradigm: each block ‘fires’ if all of its inputs are
available = no global coordination needed to organize data flow
e Fusion and diffusion flow emerge automatically
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DANSE in WASNs with a tree topology (T-DANSE)

Parametrization: example

- I -
11
*
i i
W33G13 .
i i i
Wi _ W44G34G13
1=
*
*
*
i i i i
—W88 48G34G13-
r i i i
11~31%43
*
i i
Wi3;Gls
i
yu i _ W44
W, =
*
s
*
*
i i
—W88 48 .
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DANSE in WASNs with a tree topology (T-DANSE)

General parametrization of Tree-DANSE (T-DANSE)

General parametrization of T-DANSE

) WilG;«—l
wi=|
W;VNG;«—N
oG, =G, G  ..G,,Gl  with order defined by
unique path Pp,p, = (pt, Pt—1,- - -, p2, p1) from p; to py.
e By definition: G}, , = lg

Compare with fully-connected DANSE:

_ Wi:Gly
wi=|
WinGhn
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DANSE in WASNs with a tree topology (T-DANSE)

Parametrization: example

Complete parametrization of network-wide

filter Wi:
WGP Wi i G
c e 11641 Wi, G3,Gys
1 1 1 1 1
e W1,G} W,G}, Gl
1 1 1 1
e Wi33Gl 3 W3;3Gy3

1 I
e e W, = P = P i
553445 55965 346
e e We6Ga. 6 WesGls
7704 7 W77G7Gis
| WG, g | WesGlg
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DANSE in WASNs with a tree topology (T-DANSE)

Centralized MWEF in T-DANSE solution space?

In case of Q) desired speech sources, and if Ay rer is full rank, V k € 7,
then the solution space defined by the parametrization of T-DANSE
contains the optimal MWFs W, ¥V k € J.

Proof:
@ Reminder: Vk,ge J: Wk - W qAkg, Where
—H
A Aq ref Allj,ref
@ Therefore: Vk,q,n e J : A,,qu,, = Aqg
o Set G = Am,,, then

keq APt—lq ) APt—ZPt—l R Ap2p3 ’ Akpz

where Pk<—q : (Q>P£71>Pt72>-_~-’P37P2ak) _ R
@ Hence, set W}, = W,y and G;,, = A,,, then W) = W,, Q.E.D.
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DANSE in WASNs with a tree topology (T-DANSE)

T-DANSE updating procedure

i T iTT
o Letz' , =[z], o Zny |

@ Node k sets internal fusion rules

nNk

Wi, and G _, — [G;f G"T}T

with nj € Nk and Ny = ’-N’k’
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DANSE in WASNs with a tree topology (T-DANSE)

T-DANSE updating procedure

T-DANSE algorithm: computation of Wi ! and G’,'(Jf_lk

o If k # u, then Wil = Wi, and G}, = G _,
o If k =u:

Wi+1 2
| = argmin E ‘dk—[WZ{ G/ ] [ ),-,k ]H
Gk,—k Wik, Gk, —k ’ Z 5k

i \lpi
= (Rf/k}?k) Rakak[E]_ eQ]

where yi = [y] z' ], and similarly for a}(

o Identical to fully-connected DANSE updates (but less input signals
per node)

o Note: sequential updates (only one node updates in each iteration)
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DANSE in WASNs with a tree topology (T-DANSE)

Convergence and optimality of T-DANSE

Theorem (Convergence and optimality of T-DANSE (gertrand and Moonen, 2011)

In case of Q desired speech sources, if Ay ref is full rank, ¥V k € J, and if
the node-per-node updating order of T-DANSE is defined by a path

through the network that visits all nodes, then lim;_ . Wk = Wk,
VkeJ.

@ Note: updating order must follow a path through the network
@ Random order updating also works in general, but no proof

@ However: path-based updating converges faster (experimental
observation)
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LCMV-based DANSE (LC-DANSE)

@ LCMV-based DANSE (LC-DANSE)
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LCMV-based DANSE (LC-DANSE)
LCMV beamforming revisited

Centralized node-specific LCMV BF at node k:

Wy = argmin (wijyywk, s.t. AHwk = fk)
Wy
— RIA (AHR‘IA)il f
vy vy
o A M x @ steering matrix from @ ‘relevant’ sources to M microphones
o f, node-specific response for each of the @ sources
@ Relevant sources may also contain interferers!

TOOO 9000

y

PS: Will assume in sequel that A is known. For unknown A, refer to [Markovich et al., 2009] or

[Bertrand and Moonen, 2012a]
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LCMV-based DANSE (LC-DANSE)

Linearly-constrained DANSE (LC-DANSE)

e DANSE « (SDW-)MWF
o LC-DANSE < LCMV
@ Similar idea, similar block scheme

_______AV__-'

r
1
1
L

Note: Q is # constraints
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LCMV-based DANSE (LC-DANSE)

Linearly-constrained DANSE (LC-DANSE)

o Wi = R !A (AFRIA) 1,
= joint Q-dim subspace: w;,, =W -f,, Vk € J.
o Add Q — 1 auxiliary LCMV-problems:
W, = arg min (Tr (w’;’Ryywk> st APw, = Fk)
Wi
-1
_p-1 Hp-1
—R,'A (AR, A)
with F, a Q x @ matrix of full rank, with f in first column.
o VkgeJ: Wy =W,A with

Ay =F 'Fy

Conclusion: Centralized LCMV solutions are in (LC-)DANSE solution
space! (set W}, = Wy and G, = Ay)
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LCMV-based DANSE (LC-DANSE)
Linearly-constrained DANSE (LC-DANSE)

Match constraints with compressed signals:

y1 A;
y=|:i |oA=|:
yn Ay
~i Yk ~i Ay
Yie= [Zi—k] o A= [Ci—k}
[ z) ] [ ¢
2 _ i
z' K= k=1 < CLk = k=1
ZIk-;—l Clk+1
K. | Ci |
2 = Wiflye o Cf = Wiia,
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LCMV-based DANSE (LC-DANSE)

LC-DANSE Algorithm description

LC-DANSE algorithm: computation of Wit and G},

Update at node k:
N Yx (e Ve e
Gi+1 = ;
k,—k [ Yk ] k£
k,—k

Note: computation of A;( requires exchange of W;'(k’s. However, filter
coefficients are typically frozen for some time (2-3s), hence negligible
compared to data rate of z 's.
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LCMV-based DANSE (LC-DANSE)

LC-DANSE: final remarks

Provable convergence and optimality
Further I’eadingi [Bertrand and Moonen, 2012a]

Q constraints = @-channel broadcast signals

If node-specific aspect is removed (same fi in all nodes):
Single—channe| Z;(,S are sufficient! [Bertrand and Moonen, 2013]

Related GSC implementation: [Markovich-Golan et al., 2013] (covered in part IlI)
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