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Introduction Motivation

Acoustic Source Localization & Tracking
An Essential component in Speech Processing Applications

Devices equipped with microphones
and their applications

1 Hands-free devices

2 Smart homes and cars

3 Smart speakers, e.g. Amazon Echo,
Google Home and Apple HomePod

4 Personal assistants, e.g. Apple Siri,
Cortana Microsoft and Google
Assistant

5 Camera steering

6 Robot audition

7 Hearing aids and hearables (wireless
earbuds, augmented hearing)
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Introduction Motivation

Prior Art

Families of localization algorithms

Beamformers steered towards all potential locations (directions)

TDOA estimation + geometric intersection

Bayesian

Non-Bayesian

Learning-based methods: unsupervised (e.g. MoG-EM) and
supervised (manifold-learning, deep-learning)

A structured list of algorithms and references can be found in list
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Introduction Proposed Concept & Methodology

Why Localization is so Difficult?
Room Acoustics Essentials

When sound propagates in an enclosure
it undergoes reflections from its surfaces

Mathematical/statistical models of the
acoustic path:

Virtual images beyond room walls
[Allen and Berkley, 1979, Peterson, 1986]

Statistical models for late reflections
[Polack, 1993, Schroeder, 1996, Jot et al., 1997]

Diffuseness of late reflections
(non-directional)
[Dal Degan and Prati, 1988, Habets and Gannot, 2007]

Describing the sound propagation is a cumbersome task
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Introduction Proposed Concept & Methodology

Which is the Best Model for the Problem at Hand?

How to 
model the
acoustic 

path?

TDOA-only

Simple to 
describe and 
to implement

Too simplified

Classical speech 
processing
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Introduction Proposed Concept & Methodology

Our Proposed Localization & Tracking Methodology

Most classical localization methods
are ignoring the richness of the
acoustic propagation path

Acoustic fingerprint=
reflection pattern

Environment-aware & data-driven acoustic source localization scheme

Take advantage of the intricate reflection pattern and define an
acoustic fingerprint characterizing source position
[Gannot et al., 2001];[Markovich et al., 2009]

Data-driven paradigms are harnessed to:

Show that the collection of these acoustic fingerprints pertain to a
low-dimensional acoustic manifold
Extract the geometrical structure of the acoustic manifold and reveal
its intrinsic degrees of freedom (DoFs) associated with the location
Infer state-space models from the manifold structure moving speaker
tracking scenarios
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A Brief Introduction to Manifolds

Data Representation & Manifolds

Measured data often:

Exhibit highly redundant representations

Controlled by a small set of parameters

Lie on a low-dimensional manifold

Dimensionality reduction

Consider n high-dimensional features hi ∈ RD extracted from the data

Construct a low-dimensional representation yi ∈ Rd of hi , d < D that
respects the manifold geometric structure
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A Brief Introduction to Manifolds

Laplacian

Roughly, a manifold is a space that is locally Euclidean

The Laplacian ∆ is an operator defined by the divergence of the
gradient of a function in a Euclidean space: ∆ = ∇ · ∇
The Laplace–Beltrami operator L: Extension to Riemannian manifolds

The Laplacian contains all the information about the manifold
geometry and induces a local coordinate system

The Laplacian describes the time-evolution of a diffusion process
(heat equation)
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A Brief Introduction to Manifolds

Discretization of the Manifold

The Laplacian is an infinite-dimension operator defined on continuous
spaces

We are typically given a finite set of observations in discrete spaces
What is the finite-dimension counterpart of the Laplacian?

The manifold can be empirically represented by a graph

The observations are the graph nodes
Define a finite operator (matrix) – the graph Laplacian (will be
explicitly defined later)
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A Brief Introduction to Manifolds

Manifold Learning Paradigms

The goal of manifold learning

Given high-dimensional points without any prior data modelling, the goal
is to recover the manifold from the data

Classical methods

The foundations of manifold learning were laid in Science, December
2000 issue:

Locally linear embedding (LLE) [Roweis and Saul, 2000]

Isometric feature mapping (ISOMAP) [Tenenbaum et al., 2000]

We will focus on diffusion maps due to the notion of diffusion
distance [Coifman and Lafon, 2006]

S. Gannot Speaker Localization on Manifolds HUJI, 27.4.2020 13 / 89



A Brief Introduction to Manifolds

Diffusion Maps [Coifman and Lafon, 2006]

Samples are the graph nodes

The weights of the edges are defined using a kernel function:

Kij = k(hi ,hj) = exp

{
−
‖hi − hj‖2

ε

}
Define a Markov process on the graph by the transition matrix:

Pij = p(hi ,hj) = Kij/
∑N

r=1 Kir

which is a discretization of a diffusion process on the manifold
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A Brief Introduction to Manifolds

Diffusion Maps [Coifman and Lafon, 2006]

Samples are the graph nodes

The weights of the edges are defined using a kernel function:

Kij = k(hi ,hj) = exp
{
−‖hi−hj‖2

ε

}
Define a Markov process on the graph by the transition matrix:

Pij = p(hi ,hj) = Kij/
∑N

r=1 Kir

which is a discretization of a diffusion process on the manifold

⇒ P = D−1K ∈ Rn×n, D is diagonal with Dii =
∑n

r=1 Kir

P is similar to a symmetric matrix and hence has a real spectrum

The (normalized) graph Laplacian, defined as N = I− P,
asymptotically (ε→ 0 n→∞) converges to the Laplacian L

⇒ The normalized graph Laplacian N (and P) contains the information
about the manifold geometry
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A Brief Introduction to Manifolds

Diffusion Maps [Coifman and Lafon, 2006]

Apply eigenvalue decomposition (EVD) to the matrix P ∈ Rn×n and
obtain n eigenvalues {λj} and n right eigenvectors {ϕj} in Rn

A nonlinear mapping into a new d-dimensional Euclidean space:

Φd : hi 7→ [λ1ϕ1(i), . . . , λdϕd(i)]T

where d < n is typically set by prior knowledge or according to a
“spectral gap”

Q: In what sense the space is Euclidean?
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A Brief Introduction to Manifolds

Diffusion Distance

The distance along the manifold is approximated by the diffusion distance:

D2
Diff(hi ,hj) =

n∑
r=1

(p (hi ,hr )− p (hj ,hr ))2 /φ
(r)
0

D2
Diff(hi ,hj) will be small if there is a large number of paths

connecting hi and hj that is, if there is a large probability of
transition between hi and hj and vice versa

The diffusion distance can be well approximated by the Euclidean
distance in the embedded domain:

DDiff(hi ,hj) ∼= ‖Φd(hi )−Φd(hj)‖

i 

j 

r 
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A Brief Introduction to Manifolds

Measuring Smoothness over Manifold M

Let h ∈M and f :M→ R
The gradient ∇f (h) represents amplitude and direction of variation of
f around h

A global measure of smoothness of f on M:

‖f ‖2
M =

∫
M
‖∇f (h)‖2dµ(h)

where µ(h) is the probability measure of h on M
Stokes' theorem links gradient and Laplacian:∫

M
‖∇f (h)‖2dµ(h) =

∫
M

f (h)Lf (h)dµ(h) = 〈f (h),Lf (h)〉

where L = ∇ · ∇ is the Laplace-Beltrami (“Laplacian”) operator
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A Brief Introduction to Manifolds

Smoothness on the Manifold: Discretization

Define the graph Laplacian: L , D−K

P = D−1K and N = D−1L = I− P

Smoothness of f = [f (h1), ..., f (hn)] on the graph: fTLf = 〈f,Lf〉
Small fTLf implies smooth f on the graph

Further insight can be obtained by:

fTLf =
1

2

n∑
i ,j=1

Kij (f (hi )− f (hj))2

⇒ When Kij is large, the mappings f (hi ) and f (hj) are “encouraged”
to be close
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Data Model and Acoustic Features
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Data Model and Acoustic Features

Data Model: The Two Microphone Case

Microphone signals:

The measured signals in the two microphones (an extension to multiple
microphone pairs will be discussed later):

y1(n) = a1(n) ∗ s(n) + u1(n)

y2(n) = a2(n) ∗ s(n) + u2(n)

s(n) - the source signal

ai (n), i = {1, 2} - the acoustic impulse responses relating the source
and each of the microphones

ui (n), i = {1, 2} - noise signals, independent of the source
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Data Model and Acoustic Features

Data Model: The Two Microphone Case

Microphone signals:

The measured signals in the two microphones:

y1(n) = a1(n) ∗ s(n) + u1(n)

y2(n) = a2(n) ∗ s(n) + u2(n)

s(n) - the source signal

ai (n), i = {1, 2} - the acoustic impulse responses relating the source
and each of the microphones

ui (n), i = {1, 2} - noise signals, independent of the source

Find a feature vector representing the characteristics of the acoustic path
and independent of the source signal
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Data Model and Acoustic Features The relative transfer function (RTF)

Relative Transfer Function (RTF) [Gannot et al., 2001]

Defined as the ratio between the transfer functions of the two mics:

H12(k) =
A2(k)

A1(k)

low-noise' Ŝy2y1(k)

Ŝy1y1(k)

estimated based on PSD and cross-PSD

Define the feature vector: h = [Ĥ12(k1), . . . , Ĥ12(kD)]T
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Data Model and Acoustic Features The RTF

Relative Transfer Function (RTF) [Gannot et al., 2001]

 room dimensions 

 reverberation time 

 microphone position 

 source position 

 … 

 

Represents the acoustic paths and is independent of the source signal

Generalizes the TDOA

Depends on the physical characteristics of the environment

In a static environment the source position is the only varying DoF

A plethora of methods for RTF Estimation [Gannot et al., 2001];

[Markovich et al., 2009]; [Markovich-Golan et al., 2018]; [Laufer-Goldshtein et al., 2018c]
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The Acoustic Manifold
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The Acoustic Manifold

How to Measure the Affinity between Two RTF
Samples? [Laufer-Goldshtein et al., 2015]

The RTFs are represented as points in a high dimensional space
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The Acoustic Manifold

How to Measure the Affinity between Two RTF
Samples? [Laufer-Goldshtein et al., 2015]

The RTFs are represented as points in a high dimensional space

Acoustic manifold

They lie on a low dimensional nonlinear manifold M

Linearity is preserved in small neighbourhoods

Distances between RTFs should be measured along the manifold
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The Acoustic Manifold Affinity measures

How to 
measure 
Affinity? 

Euclidean 
Distance 

Diffusion 
Distance 

PCA-based 
Distance 

RTF samples Feature extraction 

Each distance measure relies on a different hidden assumption about the
underlying structure of the RTF samples
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The Acoustic Manifold Affinity measures

Euclidean Distance

The Euclidean distance between
RTFs

DEuc(hi ,hj) = ‖hi − hj‖

Compares two RTFs in their
original space

Does not assume an existence of
a manifold

Respects flat manifolds

A good affinity measure only when the RTFs are uniformly scattered all
over the space, or when they lie on a flat manifold
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The Acoustic Manifold Affinity measures

PCA-Based Distance [Pearson, 1901]

PCA algorithm

The principal components - the d dominant eigenvectors {vi}di=1 of
the covariance matrix of the data
The RTFs are linearly projected onto the principal components:

ν (hi ) = [v1, . . . vd ]T (hi − µ)

PCA-based distance between RTFs

DPCA(hi ,hj) = ‖ν(hi )− ν(hj)‖

A global approach - extracts
principal directions of the entire
set

Linear projections - the manifold
is assumed to be linear/flat
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The Acoustic Manifold Affinity measures

How to 
measure 
Affinity? 

Euclidean 
Distance 

Diffusion 
Distance 

PCA-based 
Distance 

RTF samples  

Nonlinear 
Manifold 

Uniform 
Scattering 

Flat  
Manifold 

No 
processing 

Global 
Processing 

Local & Global 
Processing 

Which of the distance measures is proper?
What is the true underlying structure of the RTFs?
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The Acoustic Manifold Verification

Simulation Results

Room setup

Simulate a reverberant room using the
image method [Allen and Berkley, 1979]:

Room dimension 6× 6.2× 3m

Microphones at: [3, 3, 1] and [3.2, 3, 1]

The source is positioned at 2m from the
mics, the azimuth angle in 10◦ ÷ 60◦

T60 = 150/300/500 ms

SNR= 20 dB

0.2m 

2m 

6m 

6
.2
m

 

10◦ 

60◦ 

Test

Measure the distance between each of the RTFs and the RTF
corresponding to 10◦:

If monotonic with respect to the angle - proper distance

If not monotonic with respect to the angle - improper distance
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The Acoustic Manifold Verification

Euclidean Distance & PCA-based Distance [Laufer-Goldshtein et al., 2015]

(a) Euclidean Distance (b) PCA-based Distance

For both distance measures:

Monotonic with respect to the angle only in a limited region

This region becomes smaller as the reverberation time increases

They are inappropriate for measuring angles’ proximity
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The Acoustic Manifold Verification

Diffusion Maps

(c) Diffusion Distance (d) Diffusion Mapping

The diffusion distance:

Monotonic with respect to the angle for almost the entire range

It is an appropriate distance measure in terms of the source DOA

Mapping corresponds well with angles - recovers the latent parameter
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Data-Driven Source Localization: Microphone Pair
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Data-Driven Source Localization: Microphone Pair Motivation

Semi-Supervised Approaches for Localization

The existence of an acoustic manifold in a specific environment was
established

The RTF was shown to be a proper feature vector that can capture
the acoustic variability as a function of the source position
(alternative feature vectors [Laufer-Goldshtein et al., 2018a]; [Hu et al., 2019];[Hu et al., 2020])

Learning paradigms:
1 Unsupervised localization ⇒ array constellation required
2 Supervised localization ⇒ many labels
3 Semi-supervised ⇒ utilizes a small number of labelled data and a large

number of unlabelled data; array constellation not required

Two acoustic manifold-based speaker localization methods:
1 Diffusion Distance Search (DDS) [Talmon et al., 2011, Laufer-Goldshtein et al., 2013]

2 Manifold Regularization for Localization (MRL) [Laufer-Goldshtein et al., 2016b]

S. Gannot Speaker Localization on Manifolds HUJI, 27.4.2020 33 / 89



Data-Driven Source Localization: Microphone Pair Motivation

Semi-Supervised Approaches for Localization (cont.)

Unlabelled Samples

Recover the Manifold 
Structure

Labelled Samples

Anchor Points – Translate 
RTFs to Positions
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Data-Driven Source Localization: Microphone Pair Motivation

Semi-Supervised Learning

Mixed of supervised (attached with known locations as anchors) and
unsupervised (unknown locations) learning
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Data-Driven Source Localization: Microphone Pair Motivation

Semi-Supervised Learning

Mixed of supervised (attached with known locations as anchors) and
unsupervised (unknown locations) learning

Why using unlabeled data?

1 Localization - training should fit the specific environment of interest:

Cannot generate a general database for all possible acoustic scenarios
Generating a large amount of labelled data is cumbersome/impractical
Unlabelled data is freely available - whenever someone is speaking

2 Unlabelled data can be utilize to recover the manifold structure

3 Semi-supervised learning is the natural setting for human learning

1 
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Cannot generate a general database for all possible acoustic scenarios
Generating a large amount of labelled data is cumbersome/impractical
Unlabelled data is freely available - whenever someone is speaking

2 Unlabelled data can be utilize to recover the manifold structure

3 Semi-supervised learning is the natural setting for human learning
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Data-Driven Source Localization: Microphone Pair Motivation

Datasets

Training Set Test Set 

HL = {hi}
nL
i=1 - nL labelled samples

PL = {p̄i}
nL
i=1 - labels/positions

HU = {hi}
nD
i=nL+1 - nU unlabelled samples

HD = HL ∪ HU - entire training set

HT = {hi}ni=nD+1 - nT test samples
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Data-Driven Source Localization: Microphone Pair Manifold Regularization

Manifold Regularization for Localization [Laufer-Goldshtein et al., 2016b]

Goal: Recover the function f which transforms an RTF to position

h 
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Manifold Regularization for Localization [Laufer-Goldshtein et al., 2016b]

Goal: Recover the function f which transforms an RTF to position

Complex nonlinear relation  
between  RTFs and positions  

Infinite search space 

How to prevent overfitting? 

How to utilize unlabelled data? 
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Data-Driven Source Localization: Microphone Pair Manifold Regularization

Manifold Regularization for Localization [Laufer-Goldshtein et al., 2016b]

Goal: Recover the function f which transforms an RTF to position

Complex nonlinear relation  
between  RTFs and positions  

• Learn a data-driven model from training data  

Infinite search space 

• Work in a reproducing kernel Hilbert space (RKHS) 

How to prevent overfitting? 

• Add regularizations to control smoothness 

How to utilize unlabelled data? 

• Use manifold regularization 
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Data-Driven Source Localization: Microphone Pair Manifold Regularization

Reproducing Kernel Hilbert Space
(RKHS) [Berlinet and Thomas-Agnan, 2011]

Moore-Aronszajn theorem: [Aronszajn, 1950]

A positive definite symmetric kernel k on M, defines a unique reproducing
kernel Hilbert space (RKHS) Hk that consists of functions on M,
satisfying:

k(h, ·) ∈ Hk , ∀h ∈M;

span{k(h, ·); h ∈M} is dense in Hk ;

The reproducing property: 〈f (·), k(h, ·)〉 = f (h), ∀f ∈ Hk ,h ∈M.

The Representer theorem: [Schölkopf et al., 2001]

f (h) =

nD∑
i=1

aik(hi ,h)

where k :M×M→ R is the reproducing kernel of Hk
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Data-Driven Source Localization: Microphone Pair Manifold Regularization

Optimization and Manifold Regularization

Optimization in a reproducing kernel Hilbert space (RKHS) [Belkin et al., 2006]:

f ∗ = argmin
f ∈Hk

1

nL

nL∑
i=1

(p̄i − f (hi ))2 + γk‖f ‖2
Hk

+ γM‖f ‖2
M
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(p̄i − f (hi ))2 + γk‖f ‖2
Hk

+ γM‖f ‖2
M

correspondence 
between  

function values 
and labels 

smoothness 
condition in 

the RKHS 

smoothness 
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Manifold 
Regularization 

Tikhonov 
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Data-Driven Source Localization: Microphone Pair Manifold Regularization

Manifold Regularization

Smoothness on the manifold: A reminder

The graph Laplacian:
L = D−K

Define the manifold regularization by:

‖f ‖2
M = fTD LfD =

1

2

nD∑
i ,j=1

Kij (f (hi )− f (hj))2

fTD = [f1, f2, . . . , fnD ] comprising labelled and unlabelled training data

Kij
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Data-Driven Source Localization: Microphone Pair Manifold Regularization

Optimization and Manifold Regularization

The optimization problem can be recast as:

f ∗ = argmin
f ∈Hk

1

nL

nL∑
i=1

(p̄i − f (hi ))2 + γk‖f ‖2
Hk

+ γM fTD LfD
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Data-Driven Source Localization: Microphone Pair Manifold Regularization

Optimization and Manifold Regularization

The optimization problem can be recast as:

f ∗ = argmin
f ∈Hk

1

nL

nL∑
i=1

(p̄i − f (hi ))2 + γk‖f ‖2
Hk

+ γM fTD LfD

Due to the Representer theorem, the minimizer over Hk of the regularized
optimization is represented by:

f ∗(h) =

nD∑
i=1

aik(hi ,h)

with Kij = k(hi ,hj) = exp
{
−‖hi−hj‖2

ε

}
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Data-Driven Source Localization: Microphone Pair Manifold Regularization

Optimization and Manifold Regularization

The optimization problem can be recast as:

f ∗ = argmin
f ∈Hk

1

nL

nL∑
i=1

(p̄i − f (hi ))2 + γk‖f ‖2
Hk

+ γM fTD LfD

Substituting the function expansion in the regularized optimization yields:

f ∗(h) =

nD∑
i=1

aik(hi ,h) ⇒ closed-form solution for a∗

Mapping 
from h 
 to p 

Search in 
RKHS 

Add 
Regularizations 

to Control 
Smoothness 

Optimization 
over a finite 

set of 
parameters 
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Data-Driven Source Localization: Microphone Pair Manifold Regularization

Manifold Regularization for Localization (MRL)
[Laufer-Goldshtein et al., 2017a]
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Data-Driven Source Localization: Microphone Pair Comparative experimental study

Simulation Results

Setup:

Source positions: angles between 10◦ ÷ 60◦

Training: 6 labelled, 400 unlabelled (SNR=10 dB)

Figure: RMSEs of GCC, DDS and MRL as a function of reverberation time (left), SNR (right)

MRL achieves 2◦ accuracy in typical noisy and reverberant environments
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Data-Driven Source Localization: Microphone Pair Comparative experimental study

Recordings setup

Setup:

Real recordings carried out at Bar-Ilan acoustic lab

A 6× 6× 2.4m room controllable reverberation time (set to 620ms)

Region of interest: a 4m long line at 2.5m distance from the mics

Microphones 

Loudspeaker 

Air-conditioner 

Andiamo.mc 

Room panels 
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Setup:

Real recordings carried out at Bar-Ilan acoustic lab

A 6× 6× 2.4m room controllable reverberation time (set to 620ms)
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Data-Driven Source Localization: Microphone Pair Comparative experimental study

Experimental Results
[Laufer-Goldshtein et al., 2016b]

Setup:

Training: 5 labelled samples (1m resolution), 75 unlabelled samples

Test: 30 random samples in the defined region

Two noise types: air-conditioner noise and babble noise

Compare with:

Nearest-neighbour (NN)

Generalized
cross-correlation (GCC)
method [Knapp and Carter, 1976]
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Experimental Results
[Laufer-Goldshtein et al., 2016b]

Setup:

Training: 5 labelled samples (1m resolution), 75 unlabelled samples

Test: 30 random samples in the defined region

Two noise types: air-conditioner noise and babble noise

Compare with:

Nearest-neighbour (NN)

Generalized
cross-correlation (GCC)
method [Knapp and Carter, 1976]
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The MRL algorithm outperforms the two other methods
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Data-Driven Source Localization: Microphone Pair Comparative experimental study

Effect of Labelled & Unlabelled Samples
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Effect of increasing the amount of labelled/unlabelled samples

→ As the size of the labelled set is reduced - performance gap increases

→ Locate the source even with few labelled samples, using unlabelled
information
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Bayesian Perspective

Outline

1 A Brief Introduction to Manifolds

2 Data Model and Acoustic Features

3 The Acoustic Manifold

4 Data-Driven Source Localization: Microphone Pair

5 Bayesian Perspective

6 Data-Driven Source Localization: Ad Hoc Array
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8 Conclusions
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Bayesian Perspective RKHS vs. GP

Manifold-Based Bayesian
Inference [Sindhwani et al., 2007],[Laufer-Goldshtein et al., 2016a]

Cost Function Manifold 
Regularization 

Search in RKHS defined 
by the kernel  

norm 
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Bayesian Perspective RKHS vs. GP

Manifold-Based Bayesian
Inference [Sindhwani et al., 2007],[Laufer-Goldshtein et al., 2016a]

Cost Function Manifold 
Regularization 

Manifold-Based Prior 

Search in RKHS defined 
by the kernel  

f  is a Gaussian Process 
with Covariance   

Cost Function Search in RKHS defined 
by the kernel  

norm 

norm 

Posterior Likelihood Function 
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Bayesian Perspective Bayesian Localization

Bayesian Localization

Joint probability:

Goal: estimate the function value at some test sample ht ∈M
The training positions p̄L = vec{PL} and f (ht) are jointly Gaussian:[

p̄L

f (ht)

] ∣∣∣∣HL,HU ∼ N
(

0nL+1,

[
Σ̃LL + σ2InL Σ̃Lt

Σ̃T
Lt Σ̃tt

])
The elements of Σ̃LL, Σ̃Lt and Σ̃tt are calculated by the
manifold-regularized kernel

cov(f (hr ), f (hl)) ≡ k̃(hr ,hl)

Note that the unlabelled points are implicitly considered in the
covariance terms
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Bayesian Perspective Bayesian Localization

Bayesian Localization (cont.)

MAP/MMSE estimator:

The posterior

p(f (ht)|PL,HL,HU) ∼ N (f̂ (ht), var(f̂ (ht)))

is a multivariate Gaussian, where:

The MAP/MMSE estimator of f (ht) is given by:

f̂ (ht) = Σ̃T
Lt

(
Σ̃LL + σ2InL

)−1

p̄L

The estimation confidence:

var(f̂ (ht)) = Σ̃tt − Σ̃T
Lt

(
Σ̃LL + σ2InL

)−1

Σ̃Lt
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Data-Driven Source Localization: Ad Hoc Array

Outline

1 A Brief Introduction to Manifolds

2 Data Model and Acoustic Features

3 The Acoustic Manifold

4 Data-Driven Source Localization: Microphone Pair

5 Bayesian Perspective

6 Data-Driven Source Localization: Ad Hoc Array

7 Speaker Tracking on Manifolds

8 Conclusions

9 Prior Art
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Data-Driven Source Localization: Ad Hoc Array Multiple manifolds

Source Localization with Ad Hoc Array [Laufer-Goldshtein et al., 2017a]

Each node

Represents a different view point on the same acoustic event

Induces relations between RTFs according to the associated manifold
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Data-Driven Source Localization: Ad Hoc Array Multiple manifolds

Source Localization with Ad Hoc Array [Laufer-Goldshtein et al., 2017a]

How to fuse the different views in a unified mapping f : ∪Mm=1Mm 7→ R ?
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Data-Driven Source Localization: Ad Hoc Array Multiple manifolds

Inta-Manifold Relations

The mapping follows a Gaussian process f m(hm) ∼ GP(0, k̃m (hm,hm
i ))

m-th node 

m

rh

m

ih

m

lh

Covariance function

Defined by a new manifold-based covariance function:

cov (f m(hm
r ), f m(hm

l )) ≡ k̃m(hm
r ,h

m
l ) =

nD∑
i=1

km(hm
r ,h

m
i )km(hm

l ,h
m
i )

= 2km(hm
r ,h

m
l ) +

nD∑
i=1
i 6=l,r

km(hm
r ,h

m
i )km(hm

l ,h
m
i )
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Data-Driven Source Localization: Ad Hoc Array Multiple manifolds

Inter-Manifold Relations

How to measure relations between RTFs from different nodes?

q-th node 

w-th node 

Multi-node covariance

The covariance between f q(hq
r ) and f w (hw

r ):

cov (f q(hq
r ), f w (hw

r )) =

nD∑
i=1

kq(hq
r ,h

q
i )kw (hw

l ,h
w
i )
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Data-Driven Source Localization: Ad Hoc Array Localization with Distributed Microphones

Multiple Manifold Gaussian Process (MMGP)

Define the average process f = 1
M (f 1 + f 2 + . . .+ f M) ∼ GP(0, k̃)

+ 

+ 

+ 
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Data-Driven Source Localization: Ad Hoc Array Localization with Distributed Microphones

Bayesian Multi-View Localization

MAP/MMSE estimator:

The posterior

p(f (ht)|PL,HL,HU) ∼ N (f̂ (ht), var(f̂ (ht)))

is a multivariate Gaussian, where:

The MAP/MMSE estimator of f (ht) is given by:

f̂ (ht) = Σ̃T
Lt

(
Σ̃LL + σ2InL

)−1

p̄L

The estimation confidence

var(f̂ (ht)) = Σ̃tt − Σ̃T
Lt

(
Σ̃LL + σ2InL

)−1

Σ̃Lt
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Data-Driven Source Localization: Ad Hoc Array Experimental Study

Recordings Setup

Setup:

Real recordings carried out at Bar-Ilan acoustic lab

A 6× 6× 2.4m room controllable reverberation time (set to 620ms)

Region of interest: Source position is confined to a 2.8× 2.1m area

3 microphone pairs with inter-distance of 0.2m

Microphones 

Loudspeaker 

Air-conditioner 

Andiamo.mc 

Room panels 
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Real recordings carried out at Bar-Ilan acoustic lab

A 6× 6× 2.4m room controllable reverberation time (set to 620ms)
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Data-Driven Source Localization: Ad Hoc Array Experimental Study

Experimental Results [Laufer-Goldshtein et al., 2017a]

Setup:

Training: 20 labelled samples (0.7m resolution), 50 unlabelled samples

Test: 25 random samples in the defined region

Two noise types: air-conditioner noise and babble noise

Compare with:

Concatenated independent
measurements
(Kernel-mult)

Average of single-node
estimates (Mean)

Beamformer scanning
(SRP-PHAT [DiBiase et al., 2001])
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Speaker Tracking on Manifolds Problem Formulation

Dynamic Scenario

Received Signals

ymi (n) =
∑
k

ami
n (k)s(n − k) + umi (n); m = 1, . . . ,M, i = 1, 2

ami
n - a time-varying AIR at node m, microphone i in time n

hm(t) - the instantaneous RTF (iRTF) vector at node m in the STFT
frame t

h(t) =
[
[h1(t)]T , . . . , [hM(t)]T

]T
- a concatenation of the iRTF

vectors from all nodes

pc(t) = f (h(t)), c ∈ {x , y , z} - mapping of the concatenated iRTF
vector to position (for brevity pc(t) ≡ p(t))

Reminder: The covariance between pr = f (hr ) and pl = f (hl)

cov(f (hr ), f (hl)) ≡ k̃(hr ,hl) = 1
M2

∑M
q,w=1

∑nD
i=1 kq(hq

r ,h
q
i )kw (hw

l ,h
w
i )
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Speaker Tracking on Manifolds Problem Formulation

Bayesian Inference for Source Tracking

Standard (Nonlinear) State-Space Model

p(t) = bt(p(t − 1)) + ξt

qt = ct(p(t)) + ζt
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Bayesian Inference for Source Tracking

Standard (Nonlinear) State-Space Model

p(t)= bt(p(t − 1)) + ξt

qt = ct(p(t)) + ζt

Propagation Model

Relate current and previous
positions arbitrarily using
random walk or Langevin

Independent of measurements

Noise statistics is unknown
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Speaker Tracking on Manifolds Problem Formulation

Bayesian Inference for Source Tracking

Standard (Nonlinear) State-Space Model

p(t) = bt(p(t − 1)) + ξt

qt= ct(p(t)) + ζt

Propagation Model

Relate current and previous
positions arbitrarily using
random walk or Langevin

Independent of measurements

Noise statistics is unknown

Observation Model

Relate current position to
measurements

Examples: TDOA or steered
response power readings

Noise statistics is unknown
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Speaker Tracking on Manifolds State-Space Representation

Tracking on the Manifold [Laufer-Goldshtein et al., 2017b]

Propagation Model - Local

Transform nonlinear regression of
high-dimensional RTFs to linear
transition of source positions

S. Gannot Speaker Localization on Manifolds HUJI, 27.4.2020 62 / 89



Speaker Tracking on Manifolds State-Space Representation

Tracking on the Manifold [Laufer-Goldshtein et al., 2017b]

Propagation Model - Local

Transforms nonlinear regression of
high-dimensional RTFs to linear
transition of source positions

Observation model - Global

Formed by a regression of training
positions according to relations on
the manifold
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Speaker Tracking on Manifolds State-Space Representation

State Space Representation (1)

Probabilistic Motion Model:

Current and previous positions, p(t) = f (h(t)) and
p(t − 1) = f (h(t − 1)), are jointly GP:[

p(t)
p(t − 1)

]
∼ N

(
0,

[
Σ̃t,t Σ̃t,t−1

Σ̃t,t−1 Σ̃t−1,t−1

])
Their conditional probability is given by:

p(t)|p(t − 1) ∼ N

(
Σ̃t,t−1

Σ̃t−1,t−1

p(t − 1), Σ̃t,t −
Σ̃2
t,t−1

Σ̃t−1,t−1

)

where Σ̃t,τ ≡ k̃ (h(t),h(τ))
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Speaker Tracking on Manifolds State-Space Representation

State Space Representation (2)

Propagation Model:

Induces a linear propagation equation with an
additive Gaussian noise ξt :

p(t) = bt · p(t − 1) + ξt

with

bt =
Σ̃t,t−1

Σ̃t−1,t−1
- The Wiener filter

ξt ∼ N
(

0, σ2
ξ

)
with σ2

ξ = Σ̃t,t −
Σ̃2

t,t−1

Σ̃t−1,t−1
, the

corresponding variance
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Speaker Tracking on Manifolds State-Space Representation

State Space Representation (3)

Probabilistic Observation Model:

p̄L = [p̄1, . . . , p̄nL ]T - measured positions of the labelled set

p̄i = pi + ηi - noisy versions of the actual position pi

ηi - independent Gaussian noise with variance σ2

p(t) = f (h(t)) and p̄L are jointly GP:[
p(t)
p̄L

]
∼ N

(
0,

[
Σ̃t,t Σ̃Lt

Σ̃Lt Σ̃LL + σ2InL

])
Their conditional probability is given by:

p(t)|p̄L ∼

N
(

Σ̃H
Lt

(
Σ̃L + σ2InL

)−1
p̄L, Σ̃t,t − Σ̃H

Lt

(
Σ̃L + σ2InL

)−1
Σ̃Lt

)
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Speaker Tracking on Manifolds State-Space Representation

State-Space Representation (4)

Observation model:

Induces a noisy artificial observation
qt that represents a linear regression
on the training set:

qt = Σ̃H
Lt

(
Σ̃LL + σ2InL

)−1
p̄L

The corresponding observation model:

qt = p(t) + ζt

where ζt ∼ N
(

0, σ2
ζ

)
with σ2

ζ = Σ̃t,t − Σ̃H
Lt

(
Σ̃LL + InL

)−1
Σ̃Lt .
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Speaker Tracking on Manifolds State-Space Representation

Tracking Algorithm

Space-State Representation:

The proposed state-space model is given by:
p(t) = bt · p(t − 1) + ξt

qt = p(t) + ζt

Time Update  

• Predicted Position:  

 

 

• Predicted Covariance:  

Measurement Update 

• Kalman Gain: 

 

 

• Updated position estimate: 

 

 

• Updated Covariance: 

 

Kalman Filter 
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Speaker Tracking on Manifolds Experimental Results

Experimental Results

Setup:

A 5.2× 6.2× 3m room with T60 = 300ms

M = 4 nodes with 0.2m distance between microphones

Region of interest: a 2× 2m square region

Training: 36 samples (0.4m resolution)

0.2m

Training 

samples

Mics

0.4m

5
.2

m
6.2m
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Speaker Tracking on Manifolds Experimental Results

Results

Test:

Trajectories: straight line (for 3s) and sinusoidal movement (for 5s).

Velocity: approximately 1m/s
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True Trajectory
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True Trajectory
Tracking Results

RMSE: 13cm for straight line and 17cm for sinusoidal movement.
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Conclusions

Conclusions

Summary

Acoustic reflection patterns (RTF) pertain to a low-dimensional
manifold controlled by source position

Data-driven, manifold learning algorithms for source localization and
tracking were presented, using regularized optimization in RKHS (or
an equivalent Bayesian inference), with highlights:

Successful application to both simulations and real-life recordings
Array constellation not required, but instead labelled RTFs
Multi-view fusion of several manifolds
Linearized Kalman filter with propagation and observation models
inferred from the manifold structure to address dynamic scenarios
[Laufer-Goldshtein et al., 2017b]; hybrid approach [Laufer-Goldshtein et al., 2018b]
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Conclusions

Challenges and Perspectives

Challenges

Robustness to environmental changes:

Mismatch between train and test conditions
Displacement of microphones

Multiple concurrent speakers

A preliminary study using a Mixture of Gaussian Model with
Manifold-based Centroids [Bross and Gannot, 2020]

Source extraction problems are even more complex, as they target
enhanced speech rather than only its location

A first attempt using projections of beamformer weights on the inferred
manifold [Talmon and Gannot, 2013]
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Prior Art

Structured List of Algorithms

Single-step

MUSIC [Schmidt, 1986]; used as a baseline for LOCATA challenge
[Löllmann et al., 2018]

ESPRIT [Roy and Kailath, 1989]; applied to speech signals (e.g.
[Teutsch and Kellermann, 2005]) or as features for subsequent spatial processing
(e.g. [Thiergart et al., 2014])

Steered-response beamformer phase transform (SRP-PHAT)
[DiBiase et al., 2001, Do et al., 2007]; can also be used as features for subsequent
spatial processing (e.g. [Madhu and Martin, 2018, Hadad and Gannot, 2018])

Maximum-Likelihood (e.g. [Yao et al., 2002])
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Prior Art

Structured List of Algorithms (cont.)

TDOA estimation and tracking

Generalized cross-correlation
(GCC) [Knapp and Carter, 1976]

Subspace methods
[Benesty, 2000, Doclo and Moonen, 2003]

Relative transfer function
(RTF)-based
[Dvorkind and Gannot, 2005]

Geometric intersections

Linear intersections
[Brandstein et al., 1997]

Spherical intersections
[Schau and Robinson, 1987]

Spherical interpolation
[Smith and Abel, 1987]

One-step least squares
(OSLS) [Huang et al., 2000]

Linear-correction
least-squares [Huang et al., 2001]
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Prior Art

Structured List of Algorithms (cont.)

Bayesian

Extended, Unscented and Iterated-Extended Kalman filter
[Gannot and Dvorkind, 2006, Faubel et al., 2009, Klee et al., 2006]

Particle filters (PF), Rao-Blackwellised Monte-Carlo
[Ward et al., 2003, Lehmann and Williamson, 2006, Zhong and Hopgood, 2008, Levy et al., 2011]

Variational Bayes [Ban et al., 2019, Soussana and Gannot, 2019]

Probability hypothesis density (PHD) filters [Evers and Naylor, 2017]

Viterbi algorithm for Hidden Markov model (HMM) [Roman et al., 2003]
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Prior Art

Structured List of Algorithms (cont.)

Non-Bayesian

Mixture of Gaussians (MoG) clustering of SRP outputs with
expectation-maximization (EM) [Madhu et al., 2008]; using binaural cues and
MoG clustering with predefined grid positions as Gaussian centroids
[Mandel et al., 2007, Mandel et al., 2010]; using mixture of von Mises distribution
[Brendel et al., 2018]

RANdom SAmple Consensus (RANSAC) and EM [Traa and Smaragdis, 2014]

Recursive [Schwartz and Gannot, 2013] and distributed
[Dorfan and Gannot, 2015, Dorfan et al., 2018] EM MoG clustering with predefined grid
positions as Gaussian centroids

EM with spectrogram clustering
[Dorfan et al., 2016, Schwartz et al., 2017, Weisberg et al., 2019]
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Prior Art

Structured List of Algorithms (cont.)

Learning-based methods

Probabilistic piecewise affine mapping based on smooth binaural
manifolds of low dimensions
[Deleforge and Horaud, 2012, Deleforge et al., 2013, Deleforge et al., 2015]

MoG clustering of binaural cues using multi-condition training
[May et al., 2011]

Gaussian processes inference to map coherent-to-diffuse power ratio
and source distance [Brendel and Kellermann, 2019]

Deep learning for classifying feature vectors to candidate positions:
Fully connected [Xiao et al., 2015]; convolutional neural networks (CNN)
[Takeda and Komatani, 2016, Chakrabarty and Habets, 2019], convolutional recurrent neural
network (CRNN) [Adavanne et al., 2018, Perotin et al., 2019]

Deep ranking using triplet loss [Opochinsky et al., 2019]

Back to main
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