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Abstract

In this thesis, we present three algorithms for speech signal processing problems. First, a

mixture of Gaussians-deep neural network (MoG-DNN) algorithm is presented to address

the single-microphone speech enhancement task. We combine between the generative

Mixture of Gaussians (MoG) model and the discriminative deep neural network (DNN).

The proposed algorithm consists of two phases, the training phase and the test phase. In

the training phase, the clean speech power spectral density (PSD) is modeled as a MoG

representing an unsupervised assortment of the speech signal. Following, the database is

labeled to fit the given MoG. DNN is then trained to classify noisy time-frame features

to one of the Gaussians from the already inferred MoG. Given the classification results,

a speech presence probability (SPP) is obtained in the test phase. Using the SPP, soft

spectral subtraction is then applied, while, simultaneously updating the noise statistics.

The generative unsupervised MoG can be applied to any unknown database, in addition

to preserving the speech spectral structure. Furthermore, the discriminative DNN main-

tains the continuity of the speech. Experimental study shows that the proposed algorithm

produces higher objective measurements scores compared to other speech enhancement

algorithms.

Next, we approach the multi-microphone speech separation task. We present an algo-

rithm based on masking inferred from the speaker’s direction of arrival (DOA). According

to the W-disjoint orthogonality property of speech signals, each time-frequency (TF) bin

is dominated by a single speaker. This TF bin can therefore be associated with a single

DOA. In our procedure, we apply a DNN with a U-net architecture to infer the DOA of

each TF bin from a concatenated set of the spectra of the microphone signals. Separation
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is obtained by multiplying the reference microphone by the masks associated with the

different DOAs. Our proposed deep direction estimation for speech separation (DDESS)

method is inspired by the recent advances in deep clustering methods. Unlike already

established methods that apply the clustering in a latent embedded space, in our approach

the embedding is closely associated with the spatial information, as manifested by the

different speakers’ directions of arrival.

Last, we approach the multi-microphone speaker localization task. We present a

DNN-based online multi-speaker localization algorithm. Following the W-disjoint or-

thogonality principle in the spectral domain, each TF bin is dominated by a single speaker,

and hence, by a single DOA. A fully convolutional network is trained with instantaneous

spatial features to estimate the DOA for each TF bin. The high resolution classification

enables the network to accurately and simultaneously localize and track multiple speak-

ers, both static and dynamic. Elaborated experimental study using both simulated and

real-life recordings in static and dynamic scenarios, confirms that the proposed algorithm

outperforms both classic and recent deep-learning-based algorithms.
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Chapter 1

Introduction and Background

Time-frequency distributions have been used to provide high resolution representation

in a large number of signal processing applications. By exploiting sparsity in the TF

domain, it is possible to obtain solutions for many speech processing problems. In this

thesis, we focus on three core problem in speech processing: speech enhancement, speech

separation and speaker localization. We present algorithms that combine model-based and

DNN-based approaches.

1.1 Single Microphone Speech Enhancement

Single microphone speech enhancement is a broadly researched problem. An overabun-

dance of algorithms utilizing speech and noise characteristics can be found in the liter-

ature [1]. Even though many current devices are equipped with multiple microphones,

there are still many applications that require only a single microphone.

The short-time spectral amplitude (STSA) estimator and log spectral amplitude (LSA)

estimator [2, 3] are widely-used model-based algorithms. The optimally modified log

spectral amplitude (OMLSA) and particularly, the improved minima controlled recursive

averaging (IMCRA) noise estimator are customized specifically for non-stationary noise

environments [4, 5]. Still, fast changes in the noise statistics often yield the musical noise

phenomenon.
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CHAPTER 1. INTRODUCTION AND BACKGROUND

In recent years, DNN techniques gained a lot of popularity due to the theoretical and

algorithmic progress, in addition to the availability of more data and stronger processing

power. Methods such as [6, 7] try to train a DNN to find a binary mask, which clas-

sifies the time-frequency frames into speech/noise classes. Given this mask, the noisy

bins are reduced. These approaches use neither models nor assumptions for their speech

enhancement. Nonetheless, they are trained with specific noise types and when used in

an untrained noise environment, the enhancement is poorly executed. A comprehensive

overview of the DNN-based algorithms can be found in [8]. Although these approaches

demonstrate good results, we believe that the model-based approaches should not be ne-

glected and that their advantages should be utilized alongside with the advantages of

data-driven models.

Training-based algorithms, such as MixMax [9], were proposed to solve the speech

enhancement problem. More recently, a combination between model-based and data-

driven approaches was proposed in [10] in order to take advantage of the discriminative

quality of DNNs. These algorithms consist of two phases, the training phase and the test

phase. In [9], the posteriori distribution was calculated using the Bayes’ rule. To improve

the enhancement, in [10] the clean speech was modeled as a phoneme-based MoG, and the

posteriori distribution was calculated using a phoneme-classifier DNN. The classification

using the Bayes’ rule is not always beneficial, resulting in poor enhancement. On the

other hand, the phoneme-classifier, although showing good results, requires a phoneme

labeled database, which is not always available. Additionally, the phonemes-based model

might not be the best model for the speech enhancement task.

In this thesis, we present a MoG-DNN algorithm for speech enhancement. As in [9]

the clean speech is modeled with a MoG and the noise is modeled with a single Gaussian.

Following the maximization approximation [11], the posteriori distribution of the MoG

is required. In the training phase, we first apply the expectation-maximization (EM) algo-

rithm to estimate the MoG parameters. A noisy database is then built for training a DNN

to classify noisy segments into their associate EM prior distributions over the MoG. In the

2



CHAPTER 1. INTRODUCTION AND BACKGROUND

test phase, using the results of the DNN, an SPP is calculated and soft spectral attenuation

is applied to the noisy signal. Simultaneously, the noise statistics are updated. The super-

vised DNN is trained with the labels obtained with the unsupervised EM algorithm. In

the proposed algorithm, we utilize the results of unsupervised training-based algorithms

as a supervision of the DNN. This way, we circumvent the unlabeled database problem.

Furthermore, we show that the proposed algorithm even outperforms the neural network

mixture-maximum (NN-MM) algorithm [10] which uses a phoneme-labeled database.

Note that in [12], similar work was presented where a DNN was used in order to

choose the correct Gaussian within the given MoG. The purpose of using the DNN here

was solely for time and complexity reasons.

1.2 Multi-Microphone Static Speaker Separation

The next speech processing task that we targeted was audio and speech source separation.

This is an active research field for the past two decades. A comprehensive survey of

single- and multi-microphone approaches can be found in [13, 14, 15] and will hence

not be explored here. We rather focus on learning-based approaches, most notably those

using DNN.

Most single microphone approaches utilize masking operation. Similarly to the mask-

ing described in Sec. 1.1, masking for speech separation involves clustering of TF bins

to the various speakers in the scene, and a multiplication of the noisy spectrogram by ‘1’

in TF bins clustered to the desired speaker, and ‘0’ otherwise. The underlying assump-

tion of these masking algorithm is the W-disjoint orthogonality principle introduced in

[16, 17], stating that each TF bin is dominated by a single speaker, at least if the number

of speakers is small enough.

Recently, deep clustering approach was introduced for single-microphone speaker

separation [18, 19]. In this approach, an embedding from the high-dimensional short-

time Fourier transform (STFT) representation of the speech to a low-dimensional latent

3



CHAPTER 1. INTRODUCTION AND BACKGROUND

space was first inferred, followed by a clustering operation in the latent space. Another ap-

proach, which uses permutation invariant training (PIT) was presented in [20]. Both these

approaches had a dramatic impact on the single-microphone speech separation field. Yet,

as they only exploit spectral information, their performance deteriorates in the presence of

high reverberation, or when the speakers are characterized by similar spectral patterns. In

many cases, the outcome of these algorithms is characterized by musical-noise artifacts.

Spatial information, namely the attenuation and the time-delay between each of the

sources’ positions and a microphone pair, were utilized to estimate the separation mask in

the degenerate unmixing estimation technique (DUET) approach [21]. Other multichan-

nel separation algorithms are utilizing the single-channel deep clustering approach for

estimating the building-blocks of the beamformer, specifically its steering vector [22, 23].

These approaches combine the advantages of the TF clustering operation, with the low

distortion characteristics of the linear spatial processing that substitutes the masking op-

eration. Other works train DNNs in order to estimate spectral masks. In [24] a DNN

is applied to spatial features to infer a DOA-based mask, which is then used as a post-

filtering stage at the output of a delay-and-sum beamformer. In [25] a group of DNNs,

each applied in a different frequency band, is trained to predict a mask from spatial fea-

tures. This information is then aggregated to generate a soft mask which is used for the

final speech separation. In [26] an unsupervised deep clustering approach was applied to

multiple mixtures of sources in a training stage. The trained DNN was then applied to

the test mixture to predict the separating masks. In [27], a single-channel deep clustering

network was trained in a supervised manner, where the supervision was obtained by a

multichannel segmentation network.

Other approaches combining DNNs and beam-forming are presented in [28, 29]. In

these methods, a concurrent speakers detector (CSD) is implemented to distinguish be-

tween noise-only frames, single-speaker frames and concurrently active speakers frames.

In the first two classes, the noise spatial correlation matrix and the steering vectors are

estimated, respectively. In the third class, the beamformer weights are not updated.
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CHAPTER 1. INTRODUCTION AND BACKGROUND

The deep clustering framework was extended to the multichannel setting in [30]. Spa-

tial information was augmented with the spectral cues to form an input feature to the

bidirectional long short-term memory (BLSTM) deep clustering network. The separa-

tion in this approach is still applied by single-channel masking using the clustering in the

embedded latent domain.

In the current contribution, we are presenting a U-net architecture to address the

speech separation task. It is assumed that the speakers are in different DOAs in the room.

Consequently, rather than inferring a latent embedded domain, we utilize the DOA as

the supervision of our network. Motivated by the great success of the U-net architecture

in the computer vision field [31], and the high performance of the convolutional neural

networks (CNNs) in estimation the DOA of multi speakers in noisy and reverberant envi-

ronments [32], we train a U-net to classify each TF bin of the multichannel STFT image

to one of the DOA candidates. The performance of the proposed schemes is demonstrated

using recorded acoustic channels, while training is carried out using simulated data.

1.3 Multi-microphone Dynamic Source Localization

Consequent to the good results achieved in the speech separation task using the DOA as

the supervisor, we changed our focus to refine and perfect the DOA of the speakers in

order to achieve source localization.

Locating multiple sound sources recorded with a microphone array in an acoustic en-

vironment is an essential component in various cases such as source separation and scene

analysis. The relative location of a sound source with respect to a microphone array is

generally given in the term of the DOA of the sound wave originating from that location.

DOA estimation and tracking are generating interest lately, due to the need for far-field

enhancement and recognition in smart home devices. In real-life environments, sound

sources are captured by the microphones together with acoustic reverberation. While

propagating in an acoustic enclosure, the sound wave undergoes reflections from the room

5



CHAPTER 1. INTRODUCTION AND BACKGROUND

facets and from various objects. These reflections deteriorate speech quality and, in ex-

treme cases, its intelligibility. Furthermore, reverberation increases the time dependency

between speech frames, making source DOA estimation a very challenging task.

A plethora of classic signal processing-based approaches have been proposed through-

out the years for the task of broadband DOA estimation. The multiple signal classifica-

tion (MUSIC) algorithm [33] applies a subspace method that was later adapted to the

challenges of speech processing in [34]. The steered response power with phase trans-

form (SRP-PHAT) algorithm [35] uses generalizations of cross-correlation methods for

DOA estimation. These methods are still widely used. However, in high reverberation

enclosures, their performance is not satisfactory.

Supervised learning methods encompass an advantage for this task since they are data-

driven. Deep-learning methods can be trained to find the DOA in different acoustic con-

ditions. Moreover, if a network is trained using rooms with different acoustic conditions

and multiple noise types, it can be made robust against noise and reverberation even for

rooms which were not in the training set. Deep learning methods have recently been pro-

posed for sound source localization. In [36, 37] simple feed-forward DNNs were trained

using generalized cross correlation (GCC)-based audio features, demonstrating improved

performance as compared with classic approaches. Yet, this method is mainly designed

to deal with a single sound source at a time. In [38] the authors trained a DNN for multi-

speaker DOA estimation. In high reverberation conditions, however, their performance is

not satisfactory. In [39, 40] time domain features were used and they have shown perfor-

mance improvement in highly-reverberant enclosures. In [41], a CNN based classification

method was applied in the STFT domain for broadband DOA estimation, assuming that

only a single speaker is active per time frame. The phase component of the STFT coef-

ficients of the input signal were directly provided as input to the CNN. This work was

extended in [32] to estimate multiple speakers’ DOAs, and has shown high DOA classi-

fication performances. In this approach, the DOA is estimated for each frame indepen-

dently. The main drawback of most DNN-based approaches, however, is that they only

6



CHAPTER 1. INTRODUCTION AND BACKGROUND

use low-resolution supervision, namely only time frame or even utterance-based labels.

In speech signals, however, each time-frequency bin is dominated by a single speaker, a

property referred to as W-disjoint orthogonality (WDO) [16] as mentioned in section 1.1.

Adopting this model results in higher resolution, which might be beneficial for the task at

hand. This model was also utilized in chapter 3 for speech separation where the authors

recast the separation problem as a DOA classification at the TF domain. A fully convo-

lutional network (FCN) was trained using spatial features to infer the DOA at every TF

bin. Although the DOA resolution was relatively low, it was sufficient for the separation

task at low reverberation conditions. When applying this method in high-reverberation

enclosures or to separate adjacent speakers, a performance degradation was observed.

In this work, we present a multi-speaker DOA estimation algorithm. According to the

WDO property of speech signals [16, 17], each TF bin is dominated by (at most) a single

speaker. This TF bin can therefore be associated with a single DOA. We use instantaneous

spatial cues from the microphone signals. These features are used to train a FCN to infer

the DOA of each TF bin. The FCN is trained to address various reverberation conditions.

The TF-based classification facilitates the tracking ability for multiple moving speakers.

In addition, unlike many other supervised domains, the DOA domain lacks a standard

benchmark. The LOCATA dataset [42] was recorded in one room with relatively low

reverberation (RT60 = 0.55). Furthermore, a training dataset with high TF labels is not

publicly available. Therefore, we generated training and test datasets simulating various

real-life scenarios. We tested the proposed method on simulated data, using publicly

available room impulse responses (RIRs) recorded in a real room [43], as well as real-life

experiments. We show that the proposed algorithm significantly outperforms state-of-the-

art competing methods.

This is a high resolution TF-based approach that improves DOA estimation perfor-

mances with respect to (w.r.t.) the state-of-the-art (SOTA) approaches, which are frame-

based, and enables simultaneous tracking of multiple moving speakers.

7



CHAPTER 1. INTRODUCTION AND BACKGROUND

Chapter Where published

MoG-DNN 2 [44]
DDESS 3 [45]
TF-DOAnet 4 Submitted

Table 1.1: Summary of the algorithms proposed in this thesis.
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Chapter 2

Speech Enhancement With DNNs Using

MoG Based Labels

In this chapter we present a MoG-DNN algorithm for single-microphone speech enhance-

ment. We combine between the generative MoG model and the discriminative DNN. The

proposed algorithm consists of two phases, the training phase and the test phase. In the

training phase, the clean speech PSD is modeled as a MoG representing an unsupervised

assortment of the speech signal. Following, the database is labeled to fit the given MoG.

DNN is then trained to classify noisy time-frame features to one of the Gaussians from

the already inferred MoG. Given the classification results, a SPP is obtained in the test

phase. Using the SPP, soft spectral subtraction is then applied, while, simultaneously

updating the noise statistics. The generative unsupervised MoG can be applied to any un-

known database, in addition to preserving the speech spectral structure. Furthermore, the

discriminative DNN maintains the continuity of the speech. Experimental study shows

that the proposed algorithm produces higher objective measurements scores compared to

other speech enhancement algorithms.

2.1 Problem formulation and probabilistic modeling

In this section, we present a generative model of the noisy speech signal.

9



CHAPTER 2. SPEECH ENHANCEMENT WITH DNNS USING MOG BASED LABELS

2.1.1 Maximization approximation

Let z(t) = x(t) + y(t) be the observed noisy speech at time t, where x(t) and y(t) denote

the speech and noise signals, respectively.

Let Z(n, k) denote the STFT of z(t), with n the frame index and k = 0, . . . , L − 1

the frequency index. The frame length is set to L with an overlap of 75% between two

successive frames. The frame index n is henceforth omitted for brevity, whenever appli-

cable. Denote the L/2 + 1 dimensional log-spectrum vector z, with the k-th frequency

component, zk defined by:

zk = log |Z(k)| = log |Z(ej2πk/L)|, k = 0, . . . , L/2. (2.1)

Note that zk, k = L/2 + 1, . . . , L − 1 may be obtained by the symmetry of the discrete

Fourier transform (DFT), i.e., zk = zL−k. Similarly, we define x and y to be the log-

spectral vectors of the clean speech signal, xk and the noise signal, yk, respectively.

Following Nádas et al. [11], the noisy log-spectrum vector can be approximated by:

z ≈ max(x,y) (2.2)

such that the maximization is component-wise over the elements of x and y. This ap-

proximation was found useful for recognition [11], speech enhancement [9, 46, 10] and

speech separation tasks [47, 48]. In speech enhancement tasks only the noisy signal z is

observed, and the aim is to estimate the clean speech x.

2.1.2 Clean speech model - MoG

A speech utterance can be described as a time-series of phonemes, as utilized in [10]. In

our study, since we aim to find a general speech model that is not based on prior knowl-

edge of the spoken language, we give this observation a probabilistic description. Specif-

ically, the log-spectral vector of the clean speech signal x, is modeled by a MoG distribu-

10



CHAPTER 2. SPEECH ENHANCEMENT WITH DNNS USING MOG BASED LABELS

tion, where similar to [9], we use unsupervised clustering of the speech frames. Based on

the MoG model, the probability density function (p.d.f.) f(x) of the clean speech x [for

simplicity, we avoid the more accurate notation, fx(x)], can be written as

f(x) =
M∑
i=1

cifi(x) =
M∑
i=1

ci
∏
k

1√
2πσi,k

e
−

(xk−µi,k)
2

2σ2
i,k (2.3)

where M is the number of mixture components.

Let I be the class (mixture) random variable (r.v.) linked to the MoG r.v. x. The term

fi(x) is the Gaussian p.d.f. of x given that I = i. The scalar ci is the probability of the

i-th mixture and µi,k and σi,k are the mean and standard deviation of the k-th entry of

the i-th mixture Gaussian, respectively. We neglect the residual correlation between the

frequency bins due to the Fourier transform properties. Since for each class I = i the r.v.

x is a Gaussian, we use a simplified modeling of the clean speech signal by using a MoG

with diagonal covariance matrices. Although this is not a precise model of the speech,

it has an advantage of a robust modeling that circumvents the need for large matrices

inversion.

2.1.3 Noise model

As previously defined, y denotes the log-spectral vector of the noise signal, and let g(y)

denote the p.d.f. of y. We assume that the components of y are statistically independent.

For simplicity, we also assume that g(y) can be modeled by a single Gaussian, with

diagonal covariance i.e.,

g(y) =
∏
k

1√
2πσy,k

e
−

(yk−µy,k)
2

2σ2
y,k . (2.4)

In order to obtain the mean and covariance of the noise, we use the assumption that the

first 200 msec of any given audio signal are solely noise. Using this assumption, we

define the noise parameters based only on the beginning of the utterance. Updating the

11



CHAPTER 2. SPEECH ENHANCEMENT WITH DNNS USING MOG BASED LABELS

noise parameters throughout the utterance is required in order to generalize this problem

to non-stationary noises. The noise statistics are updated as presented in [10].

2.1.4 Noisy speech model

The following generative model, nicknamed MixMax [9, 11], is based on the maximum

assumption and on the modeling of the clean speech signal as a Gaussian mixture p.d.f.

and the noisy speech is modeled as the maximum between the clean speech and the noise

signal.

Let Fi,k(x), Gk(y) denote the cumulative distribution functions of fi,k(x) and gk(y),

respectively. Using the maximum assumption as shown in (2.2), it can be verified [11]

that the p.d.f. of z is given by the following mixture model:

h(z) =
M∑
i=1

cihi(z) =
M∑
i=1

ci
∏
k

(fi,k(zk)Gk(zk) + Fi,k(zk)gk(zk)) (2.5)

where hi(z) is the p.d.f. of z given that I = i.

2.2 Application to speech enhancement

In this section, we describe the speech presence probability (SPP) and how it is utilized

for speech enhancement.

2.2.1 The speech presence probability

Define the SPP ρk ∈ [0, 1] as the conditional probability, given the noisy speech vector

z, that the k-th frequency component is dominated by the clean speech, and not by the

noise.

ρk =
M∑
i=1

ρi,k · p(I = i|z) = p(xk > yk|z) (2.6)

12
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such that

ρi,k = p(yk < xk|zk, I = i) =
fi,k(zk)Gk(zk)

hi,k(zk)
(2.7)

and the posterior probability p(I = i|z) can be obtained from (2.5) using the Bayes’ rule:

pi , p(I = i|z) =
cihi(z)

h(z)
. (2.8)

Given an SPP, the k-th component of the log-spectrum of the clean speech x̂k, is estimated

using soft attenuation:

x̂k = zk − (1− ρk) · β (2.9)

where β is the noise attenuation level (in the log domain).

Respectively, in vector form:

x̂ = z− (1− ρ) · β (2.10)

where 1 is a vector of ones with the same dimensions as ρ, the vector concatenation of

ρk, k = 0, 1, . . . , L/2.

The observed noisy phase is used for reconstructing the time-domain speech signal,

similarly to most speech enhancement algorithms. In this work we aim to find an accurate

estimate of ρ, using a special purpose neural network architecture.

2.2.2 Hybrid approach

In [10] the following changes were made in order to improve enhancement. First, the

MoG (2.3) was generated using a phoneme labeled database. Then, (2.8) was replaced by

a phoneme classifier DNN.

13
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2.3 Generating a Supervised Database

The changes made in [10], improved the results. However, a labeled database was re-

quired, which is not always available. Additionally, the phoneme distribution of the

speech may not be the natural distribution for the task of speech enhancement.

In this section, we present a new approach to overcome the mentioned above obstacles.

The main idea of the proposed approach is (i) first apply the unsupervised EM algorithm

on clean speech samples to model the speech with a MoG. (ii) A supervision is then

generated to a synthetic unsupervised noisy database, which will be utilized to train a

DNN. The DNN task is to substitute the posterior probability (2.8). The rest of the

enhancement is as described in Sec. 2.2.

2.3.1 Training the MoG model and generating labels

The calculation of the SPP ρk, (2.6) involves two terms, ρi,k which is computed using

(2.7) and the posterior probability p(I = i|z). Similar to [10] we want to make use of

the high performance of the DNN in classification tasks in order to find a more accurate

posterior probability. Yet, we intend to maintain the ability to use this method for any

unlabeled database. Therefore, our goal is to generate labels for the given data in order to

train a DNN.

First, we construct a MoG to model the clean speech (2.3). Let the training data

consist of N log-spectrum frames, where x = (x1, . . . ,xN) and y = (y1, . . . ,yN) denote

the clean speech dataset and the noise dataset, respectively. Additionally, let z denote the

training dataset of the simulated noisy signal at frame n, and let the training data consist

of N log-spectrum frames.

We aim to estimate ci, µi,k and σi,k so as to maximize the log-likelihood

log f(x) =
N∑
n=1

log f(xn).

14
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In order to do so, we apply the EM algorithm [49]. Let γni be defined by:

γni = cif(xn|In = i) (2.11)

and αni be defined by:

αni = Pr(In = i|xn) =
γni∑M
i′=1 γ

n
i′

(2.12)

where ci, µi,k and σ2
i,k denote the current values of the model parameters. The EM iteration

for this problem are described in [9].

After the final EM iteration we obtain the following estimated parameters: 1) the

mean vectors µ1, . . . ,µM , where µi = [µi,0, . . . , µi,L/2]>; 2) the covariance elements

σ2
i,k; i = 1, . . . ,M ; k = 0, . . . , L/2 and 3) the MoG weights c1, . . . , cM .

In order to create the label vector `n for every given noisy vector zn, we find which of

the M Gaussians is the most probable for the respective clean speech training vector xn

as follows:

`n = argmax
i
{αni } . (2.13)

Define ln to be the ‘one-hot’ encoded label vector corresponding to `n.

2.3.2 Deep neural network for Gaussian classification

In our approach, we substitute (2.8) with a DNN. The DNN is trained using a labeled

noisy speech database. We use the same given database of vectors that was used for

the EM algorithm x1, . . . ,xN , label it with the corresponding labels, `1, . . . , `N and then

contaminate it with noise, resulting in the noisy training database z1, . . . , zN .

In order to preserve the smoothness of the speech, we add context frames prior to

training the DNN (4 frames from the future and 4 from the past were added to the current

frame as proposed in [50]). Let v1, . . . ,vN denote the vectors z1, . . . , zN with the addi-

tional context frames, respectively, and let qni denote the posterior probability computed
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by the DNN at frame n, i.e.,

qni , p(In = i|vn;θ) (2.14)

where θ is the DNN parameter-set.

To train the DNN we used a single hidden layers DNN, comprising of 512 rectified

linear unit (ReLU) units. The output layer was set to be the ‘softmax’.

Given a training sequence of vectors v1, . . . ,vN , with their corresponding label vec-

tors, l1, . . . , lN , the DNN is trained to minimize the cross entropy function:

L(θ) = −
N∑
n=1

M∑
i=1

(lni · log qni + (1− lni ) · log (1− qni )) (2.15)

where lni denotes the i-th component in ln. We normalized every utterance, so that the

sample mean and variance of all utterances are zero and one, respectively, in order to

avoid mismatch between the train and test conditions.

In test phase, to calculate the SPP ρk we propose to use (2.6), where ρi,k is calculated

from the generative model using (2.7), and pi is produced by the trained DNN (2.14):

ρk =
M∑
i=1

qi · ρi,k. (2.16)

The proposed algorithm is summarized in Algorithm 1 and in the block diagram 2.1.

2.4 Experimental Study

In this section, we describe the experimental setup, evaluation measures and experimental

results.

2.4.1 Experimental setup

The train set of the TIMIT database [51] was utilized for modeling the clean speech 2.3.1.

To train the DNN, we used the train set of the TIMIT database, randomly contaminated
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by either speech-like noise or Factory noise from NOISEX-92 database [52]. The noise

was added to the clean signal with the signal to noise ratio (SNR) level of 7 dB.

To test the proposed algorithm, we contaminated clean speech signals from the test set

of the TIMIT database [51] with several types of noise from NOISEX-92 database [52],

namely speech-like, Babble, Factory and White. The noise was added to the clean signal

drawn from the test set of the TIMIT database, with 5 levels of SNR at -5 dB, 0 dB, 5

dB, 10 dB and 15 dB chosen to represent various practical conditions. Sampling rate is

equal to 16 KHz and the frame length was set to L = 512, with overlap of 75% between

two successive frames. The size of the input to the DNN, z, prior to adding the context

frames, thus equals to L/2 + 1 = 257. Note that there is no overlap between the train

and test database. To assess the performance of the proposed algorithm, we have used the

perceptual evaluation of speech quality (PESQ) measure, which is known to have a high

correlation with subjective score [53].

We compared the proposed algorithm with three competing algorithms: 1) The OMLSA

algorithm [4]. 2) The MixMax algorithm [9]. 3) The NN-MM algorithm [10]. All meth-

ods were trained with the same database.

2.4.2 Results

Fig. 2.2 portrays an example of the spectrogram of the clean input, the noisy input which

is the clean signal contaminated with Factory noise [52], and the enhanced speech using

the MixMax algorithm, the NN-MM algoirthm and the proposed MoG-DNN algorithm.

Fig. 2.3 depicts the PESQ results of all examined algorithms for the different types of

noise as a function of the input SNR. In addition, we examined the oracle results for the

presented algorithm. First, it is evident that the proposed MoG-DNN algorithm outper-

forms the OMLSA algorithm and the MixMax algorithm. Additionally, the MoG-DNN

outperforms the NN-MM algorithm with a slight marginal improvement, a riveting result

since the NN-MM algorithm is supervised. Finally, comparing the presented algorithm

using the trained DNN and the oracle results, we conclude that by improving the DNN
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we can achieve even better results.

As previously stated, the difference between the MoG-DNN algorithm and the Mix-

Max algorithm is in the classification method. In the MoG-DNN algorithm (2.14) is used

as opposed to MixMax where (2.8) is used.

Define the Kullback-Leibler divergence (KL-divergence) from p = [p1, . . . , pM ] (2.8)

to α = [α1, . . . , αM ] to be:

DKL(α‖p) =
∑
i

αi log
αi

pi
. (2.17)

We used the KL-divergence as a measure for the classification accuracy. Table 2.1

depicts the KL-divergence results of the two algorithms for different noise types and dif-

ferent levels of SNR. It is evident that the MoG-DNN algorithm exceeds the MixMax

algorithm in the classification task.

Table 2.1: KL-divergence results for various noise types

Speech-like noise Babble noise

Method \SNR -5 [dB] 0 [dB] 5 [dB] 10 [dB] -5 [dB] 0 [dB] 5 [dB] 10 [dB]

MoG-DNN 3.74 2.81 2.22 2.15 5.87 4.70 3.94 3.80
MixMax 16.97 15.11 14.61 14.05 22.43 21.81 21.26 18.56

White noise Factory noise

Method \SNR -5 [dB] 0 [dB] 5 [dB] 10 [dB] -5 [dB] 0 [dB] 5 [dB] 10 [dB]

MoG-DNN 5.16 4.38 3.51 2.85 4.31 3.22 2.53 2.24
MixMax 14.73 15.33 14.0 13.48 20.53 20.60 18.65 19.48
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Figure 2.1: Block diagram of MoG-DNN algorithm
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Algorithm 1 Algorithm 1: Summary of the proposed mixture of Gaussians-deep neural
network (MoG-DNN) algorithm
Train phase:

input: Log-spectral vectors of the clean speech x1, . . . ,xN and log-spectral vectors of the

noisy speech z1, . . . , zN .

MoG training:

Using the EM algorithm, given x1, . . . ,xN we obtain the MoG parameters for the speech

model.

Generating data labels: Create the posterior probability labels l1, . . . , lN (2.13) .

DNN training: Train a DNN to output posterior probability of data using

(z1, l1), . . . , (zN , lN).

Test phase:

input: Log-spectral vectors of the noisy speech z.

output: Estimated log-spectral vector of the clean speech x̂.

Compute the classification probabilities for every frame (2.14):

qni , p(In = i|vn;θ), i = 1, . . . ,M ; n = 1, . . . , N

for k = 1 : L/2 do
Compute (2.7):

ρi,k = p(yk < xk|zk, I = i) =
fi,k(zk)Gk(zk)

hi,k(zk)
,

i = 1, . . . ,M

Compute the speech presence probability (SPP) (2.16):

ρk =
∑M

i=1 qi · ρi,k

Estimate the clean speech (2.9):

x̂k = zk − (1− ρk) · β

Adapt the noise parameters:

µnew
y,k =ρk · µold

y,k+

(1− ρk)(δ · zk + (1− δ) · µold
y,k)

σnew
y,k =ρk · σold

y,k+

(1− ρk)
(
δ ·
√

(zk − µnew
y,k )2 + (1− δ) · σold

y,k

)
end
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(a) Clean speech.

(b) Noisy speech signal.

(c) Mix-Max enhanced signal.

(d) NN-MM enhanced signal.

(e) MoG-DNN enhanced signal.

Figure 2.2: An example of the enhancement results of the MoG-DNN algorithm compared
to the MixMax and the NN-MM algorithms.
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(a) Speech-like noise.

(b) Factory noise.

(c) Babble noise.

(d) White noise.

Figure 2.3: PESQ results for different noise types.
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Chapter 3

Multi-Microphone Speaker Separation

Based on Deep DOA Estimation

In this chapter, we present a multi-microphone speech separation algorithm based on

masking inferred from the speakers’ DOA. According to the W-disjoint orthogonality

property of speech signals, each TF bin is dominated by a single speaker. This TF bin

can therefore be associated with a single DOA. In our procedure, we apply a DNN with

a U-net architecture to infer the DOA of each TF bin from a concatenated set of the

spectra of the microphone signals. Separation is obtained by multiplying the reference

microphone by the masks associated with the different DOAs. Our proposed DDESS

method is inspired by the recent advances in deep clustering methods. Unlike already

established methods that apply the clustering in a latent embedded space, in our approach

the embedding is closely associated with the spatial information, as manifested by the

different speakers’ directions of arrival.
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3.1 Deep Speech Separation

3.1.1 The separation algorithm

Consider an array of M microphones capturing a mixture of N speech sources in a re-

verberant enclosure. The i-th speech signal si(t) propagates through the acoustic channel

before being captured by the mth microphone:

zm(t) =
N∑
i=1

si(t) ∗ him(t), m ∈ {1, . . . ,M} (3.1)

where, him is the RIR relating the ith speaker and the mth microphone. In the STFT

domain, (3.1) can be rewritten as:

zm(l, k) =
N∑
i=1

si(l, k)him(l, k), (3.2)

where l and k, are the time-frame and the frequency-bin (TF) indexes, respectively.

Following the W-disjoint orthogonality assumption [16], each TF bin is dominated by

a single speaker. We assume that each speaker is located at a different DOA and therefore

each bin is dominated by a single DOA. The crux of our speech separation method is to

estimate the DOA for each TF bin by a neural network and then separate the speakers by

grouping these bins according to their estimated DOA.

The main building block of the algorithm is a neural network that uses the microphone

signals to infer the DOA at each TF bin of a given time-frequency image. The network

input is a L×K time-frequency “image” where L is the number of time frames and K is

the number of frequency bins. We have chosen to substitute the raw microphone signals

with the phase of the instantaneous relative transfer function (iRTF) estimate, calculated

as the phase of the bin-wise ratio between the mth microphone signal and the reference

microphone signal. The phase angle is encoded as a point in the unit circle. The input

features to the network, therefore, is an L × K matrix R where each (l, k) entry has M
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channels each correspond to a microphone:

R(m, l, k) = (cos(∠
zm(l, k)

zref(l, k)
), sin(∠

zm(l, k)

zref(l, k)
)). (3.3)

Due to the W-disjoint assumption, the normalized featuresR(m, l, k) are dominated by a

single speaker and hence correspond to a specific DOA. Ideally, the speech contribution

toR(m, l, k) is negligible. Hence, it is expected that these are better features than the raw

data for DOA estimation.

We form the DOA estimation as a classification task by discretizing the possible angles

to be in the set Θ = {0◦, 15◦, 30◦ . . . , 180◦}. Let Dl,k be a random variable indicating

the active direction at bin (l, k). The target of the network is to infer the conditional

distribution of the discrete set of candidate DOAs in Θ for each TF bin, given the recorded

signal:

pl,k(θ) = p(Dl,k = θ|R), θ ∈ Θ. (3.4)

whereR is an M×L×K matrix of all the TF bins. The image-to-image DOA prediction

task in (3.4) is implemented by a U-net, which details are given in the next section.

Next, the direction-dependent power is calculated by the instantaneous power of the

reference microphone, weighted by the U-net output:

E(θ) =
∑
l,k

pl,k(θ) · |zref(l, k)|2, θ ∈ Θ. (3.5)

Note that the total power is satisfying the following equation:

E =
∑
θ∈Θ

E(θ) =
∑
l,k

|zref(l, k)|2. (3.6)

High power from a specific direction is an indication for an active speaker in this direction.

To find all directions of the active speakers in the scene, we sort the powers according to

their power level:

E(θ1) ≥ E(θ2) ≥ E(θ3) ...
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where θ1 corresponds to the direction with the highest power, θ2 the second highest, etc.

The speakers’ directions are then determined by the N DOAs with the highest power

level. If the number of speakers N is not known in advance, we can set N as the minimal

value such that
∑N

i=1E(θi) > αE, with α is a predefined threshold.

The next step is to use the estimated DOA to form a mask for each detected speaker

in the scene. The estimated mask of the ith speaker is the U-net output:

M̂i(l, k) = pl,k(θi) (3.7)

and the absolute value of the ith speaker signal is reconstructed as follows:

|ŝi(l, k)| = |zref(l, k)| · M̂i(l, k). (3.8)

The noisy phase is then used to reconstruct the separated signals in the time-domain,

by the application of the inverse STFT. We dub the proposed algorithm deep direction

estimation for speech separation (DDESS).

Note, that if a static acoustic scene can be assumed, namely that the sources do not

significantly change their DOA during the entire utterance, permutation problems, which

are typical to clustering-based approaches [19], are circumvented.

Note that estimating the DOA is modeled here as a classification problem and not as

a regression task. We are not interested in finding the exact DOAs of the speakers in

the scenario but rather, grouping them into distinct directions. That is, even with inaccu-

rate DOA estimate, the speech separation can still work, provided that most TF bins are

clustered to mutually exclusive classes.

3.1.2 The U-net for DOA estimation

The input to the network is the feature matrix R. The overlap between successive STFT

frames is set to 75 %. Hence, to improve the estimation accuracy of the relative trans-

fer functions (RTFs), we have used an average of three consecutive frames both in the
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numerator and denominator of (3.3).

In our U-net architecture, the input shape is (2(M − 1), L,K) where, K = 256 is

the number of frequency bins, L = 96 is the number of frames, and M is the number of

microphones. The output shape is (|Θ|, L,K) where |Θ| is the cardinality of the set Θ.

The U-net architecture is presented in Fig. 3.1. The blue boxes depict the encoder and

the green boxes the decoder. In this architecture, in the encoder part, the input image is

squeezed into a bottleneck using 2 × 2 max pooling operations (downsample), and then

in the encoder part, it is upsampled back to the original image shape. The main problem

with this architecture is that during the pooling operation, important local information is

lost. To tackle this problem, a U-shape architecture was developed in [31]. The U-net

connects between mirrored layers in the encoder and decoder by passing the information

without going through the bottleneck and thus, alleviating the information loss problem.

Let CEl,s denote a 2D convolution layer with ‘elu’ as the activation function, where l

is the number of filters and s×s is the filter size. Similarly, let DEl,s is the de-convolution

‘elu’ layer. Finally, let Ps denote the max-pooling operation with filter size s× s.

The encoder down-sampling path is given by:

CE16,3 → CE16,3 → P2 → CE32,3 → CE32,3 → P2 → CE64,3 → CE64,3 → P2 →

CE128,3 → CE128,3 → P2 → CE256,3 → CE256,3.

The decoder up-sampling path is given by:

DE128,3 → CE128,3 → CE128,3 → DE64,3 → CE64,3 → CE32,3 → DE32,3 → CE32,3 →

CE32,3 → DE16,3 → CE16,3 → CE16,3 → CE13,1.

The output DOA distribution is finally obtained by a softmax layer. To overcome the

problem of overfitting, we add dropout layers[54] after every CEl,s layer. Additionally,

the raw data input is normalized to zero mean and unit variance.

To train the network, we use a simulated data where both the location and a clean

recording of each speaker are given. We can thus easily find for each TF bin (l, k) the

dominant speaker and the corresponding DOA yk,l ∈ Θ. The network is trained to min-

imize the cross entropy between the correct and the estimated DOA. The cross entropy
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Figure 3.1: U-net architecture for DOA-mask speech separation. The blue blocks depict
the encoder and the green blocks depict the decoder.

cost function is summed over all the images in the training set. The network was imple-

mented with Tensor-Flow and training was done using the ADAM optimizer [55]. The

number of epochs was set to be 100, and the training stopped after validation loss was

going up for 3 successive epochs. The minibatch size was 64 images.

3.2 Experimental study

In this section, we evaluate the proposed DDESS algorithm and compare its performance

to the DUET algorithm [21].

3.2.1 Training database

To generate the training data, we used the RIR generator1 efficiently implementing the

image method [56]. We simulated an eight microphone array with (3, 3, 3, 8, 3, 3, 3) cm

between microphones. Similar microphone inter-distance was used in the test phase. The

dimensions of the room are 6× 6× 2.4 (width, length and height), similar to the acoustic

lab used in the test phase. The microphone array was positioned at (3, 1, 1.5) m.

For each scenario, two clean signals from the Wall Street Journal 1 (WSJ1) database

[57] were randomly selected and two different DOAs were also randomly selected from

the possible values in the range Θ = {0, 15, . . . , 180}. The speakers were located in a

1Available online at github.com/ehabets/RIR-Generator
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radius of r = 1.5m from the center of the microphone array. To increase the training

diversity, the radius of the speakers was perturbed by a Gaussian noise with variance

0.3 m. The DOA of each speaker was computed with respect to the center of the array.

We used T60 ∈ {0.2, 0.3, 0.4}sec. Once the scenario is set, the RIRs were generated, and

the clean signals were separately convolved with them. Finally, we added the signals with

signal to interfering ratio (SIR) randomly chosen in the range SIR ∈ [−2, 2]. Sampling

rate was set to 16KHz and the frame length of the STFT was set to K = 512, with

overlap of 75% between two successive frames. The training set comprises two hours of

recordings with 6000 different scenarios of mixtures of two speakers.

3.2.2 Separation results

For each test scenario, we selected two speakers (male or female) from the test set of the

TIMIT database, placed them in two different angles between 0◦ to 180◦ relative to the

microphone array, at the distance of either 1 m or 2 m.

Each clean speech signal was convolved with a real RIR, drawn from the multichan-

nel impulse response database recorded in our acoustic lab [43] (similar room dimen-

sions and microphone inter-distances to the simulated scenarios), and then mixed the with

SIR=0 dB. We used T60 = 160/360 ms for the room reverberation. Overall, in the test

dataset, we had 30 different scenarios for each T60, and the results are averaged over all

scenarios.

We used a standard blind source separation (BSS) evaluation toolbox [58] to test the

separation capabilities of the DDESS algorithm and the DUET algorithm [21]. Tables

3.1 and 3.2 present the SIR and signal to distortion ratio (SDR) results for the two source

distances, 1m and 2m, respectively. It is evident that the DDESS algorithm outperforms

the DUET in all experiments.

Fig. 3.2 depicts the spectrogram of the noisy input, the clean signals and the estimates

obtained by the proposed algorithm for two equi-power speakers positioned at 90◦ and

180◦ and r = 2 m and for T60 = 160 ms. It is evident that the DDESS separates the
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signals. Fig. 3.2b depicts the power level for DOA candidates. It is clear that the DOAs

were accurately classified. Sound samples can be found in the lab website.2

Table 3.1: SDR and SIR results with two T60 and distance 1m.

T60 = 160 T60 = 360

SDR SIR SDR SIR

Speaker 1 2 1 2 1 2 1 2

Noisy -1.05 -1.41 0.23 -0.11 -0.91 -1.75 0.5 -0.41
DUET 1.3 0.7 4.24 3.38 0.87 -0.33 3.59 2.24
DDESS 2.26 1.95 12.6 12.43 1.68 1.69 13.06 12.76

Table 3.2: SDR and SIR results with two T60 and distance 2m.

T60 = 160 T60 = 360

SDR SIR SDR SIR

Speaker 1 2 1 2 1 2 1 2

Noisy -1.22 -1.49 0.19 -0.07 -2.07 -1.07 -0.5 0.68
DUET -0.31 -0.26 2.24 2.41 -1.79 -0.1 1.04 2.44
DDESS 1.38 1.31 11.46 11.44 0.08 1.02 11.1 11.68

2www.eng.biu.ac.il/gannot/speech-enhancement/
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(a) Mixture signal. (b) The power of each DOA candidate.

(c) Original speaker 1. (d) Original speaker 2.

(e) Estimated speaker 1. (f) Estimated speaker 2.

Figure 3.2: An example of the separation results of the DDESS algorithm.
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Chapter 4

FCN Approach for Dynamically

Locating Multiple Speakers

In this chapter, we present a deep neural network-based online multi-speaker localisation

algorithm. Following the W-disjoint orthogonality principle in the spectral domain, each

TF bin is dominated by a single speaker, and hence by a single DOA. A fully convo-

lutional network is trained with instantaneous spatial features to estimate the DOA for

each TF bin. The high resolution classification enables the network to accurately and si-

multaneously localize and track multiple speakers, both static and dynamic. Elaborated

experimental study using both simulated and real-life recordings in static and dynamic

scenarios, confirms that the proposed algorithm outperforms both classic and recent deep-

learning-based algorithms.

4.1 Multiple speakers’ location algorithm

4.1.1 Time-frequency features

Consider an array with M microphones acquiring a mixture of N speech sources in a

reverberant environment. The i-th speech signal si(t) propagates through the acoustic
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channel before being acquired by the m-th microphone:

zm(t) =
N∑
i=1

si(t) ∗ him(t), m = 1, . . . ,M, (4.1)

where him is the RIR relating the i-th speaker and the m-th microphone. In the STFT do-

main (4.1) can be written as (provided that the frame-length is sufficiently large w.r.t. the

filter length):

zm(l, k) =
N∑
i=1

si(l, k)him(l, k), (4.2)

where l and k, are the time frame and the frequency indices, respectively.

The STFT (4.2) is complex-valued and hence comprises both spectral and phase infor-

mation. It is clear that the spectral information alone is insufficient for DOA estimation.

It is therefore a common practice to use the phase of the TF representation of the received

microphone signals, or their respective phase-difference, as they are directly related to the

DOA in non-reveberant environments. We decided to use an alternative feature, which

is generally independent of the speech signal and is mainly determined by the spatial in-

formation. For that, we have selected the RTF [59] as our feature, since it is known to

encapsulate the spatial fingerprint for each sound source. Specifically, we use the instan-

taneous relative transfer function (iRTF), which is the bin-wise ratio between the m-th

microphone signal and the reference microphone signal zref(l, k):

iRTF(m, l, k) =
zm(l, k)

zref(l, k)
. (4.3)

Note, that the reference microphone is arbitrarily chosen. Reference microphone selection

is beyond the scope of this chapter (see [60] for a reference microphone selection method).

The input feature set extracted from the recorded signal is thus a 3D tensorR:

R(m, l, k) = [Re(iRTF(m, l, k)), Im(iRTF(m, l, k))]. (4.4)

The matrix R is constructed from L × K bins, where L is the number of time frames
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and K is the number of frequencies. Since the iRTFs are normalized by the reference

microphone, it is excluded from the features. Then for each TF bin (l, k), there are P =

2(M − 1) channels, where the multiplication by 2 is due to the real and imaginary parts

of the complex-valued feature. For each TF bin the spatial features were normalized to

have a zero mean and a unit variance.

Recall that the WDO assumption [16] implies that each TF bin (l, k) is dominated

by a single speaker. Consequently, as the speakers are spatially separated, i.e. located at

different DOAs, each TF bin is dominated by a single DOA. Our goal in this work is to

accurately estimate the speaker direction at every TF bin from the given mixed recorded

signal.

4.1.2 FCN for DOA estimation

We formulated the DOA estimation as a classification task by discretizing the DOA

range. The resolution was set to 5◦, such that the DOA candidates are in the set Θ =

{0◦, 5◦, 10◦, . . . , 180◦}. Let Dl,k be a r.v. representing the active dominant direction,

recorded at bin (l, k). Our task boils down to deducing the conditional distribution of

the discrete set of DOAs in Θ for each TF bin, given the recorded mixed signal:

pl,k(θ) = p(Dl,k = θ|R), θ ∈ Θ. (4.5)

For this task, we use a DNN. The network output is an |Θ| × L×K× tensor, where |Θ|

is the cardinality of the set Θ. Under this construction of the feature tensor and output

probability tensor, a pixel-to-pixel approach for mapping a 3D input ‘image’, R and a

3D output ‘image’, pl,k(θ), can be utilized. An FCN is used to compute (4.5) for each

TF bin. The pixel-to-pixel method is beneficial in two ways. First, for each TF bin in

our input image the network estimates the DOA distribution separately. Second, the TF

supervision is carried out with the spectrum of the different speakers. The FCN hence

takes advantage of the spectral structure and the continuity of the sound sources in both
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the time and frequency axes. These structures contribute to the pixel-wise classification

task, and prevent discontinuity in the DOA decisions over time. In our implementation,

we used a U-net architecture, similar to the one described in [61]. We dub our algorithm

time-frequency direction-of-arrival net (TF-DOAnet).

The input to the network is the feature matrix R (4.4). In our U-net architecture, the

input shape is (P,L,K) where K = 256 is the number of frequency bins, L = 256 is the

number of frames, and P = 2M−2 whereM is the number of microphones. The overlap

between successive STFT frames is set to 75%. This allows to improve the estimation

accuracy of the RTFs, by averaging three consecutive frames both in the numerator and

denominator of (4.3), without sacrificing the instantaneous nature of the RTF.

TF bins in which there is no active speech are non-informative. Therefore, the estima-

tion is carried out only on speech-active TF bins. As we assume that the acquired signals

are noiseless, we define a TF-based voice activity detector (VAD) as follows:

VAD(l, k) =

 1 |zref(l, k)| ≥ ε

0 o.w.
, (4.6)

where ε is a threshold value. In noisy scenarios, we can use a robust SPP estimator instead

of the VAD [8].

The task of DOA estimation only requires time frame estimates. Hence, we aggregate

over all active frequencies at a given time frame to obtain a frame-wise probability:

pl(θ) =
1

K ′

K∑
k=1

pl,k(θ)VAD(l, k). (4.7)

where K ′ is the number of active frequency bands at the l-th time frame. We thus obtain

for each time frame a posterior distribution over all possible DOAs. If the number of

speakers is known in advance, we can choose the directions corresponding to the highest

posterior probabilities. If an estimate of the number of speakers is also required, it can be

determined by applying a suitable threshold. Figure 3.1 summarizes the TF-DOAnet in a
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Table 4.1: Configuration of training data generation. All rooms are 2.7 m in height

Simulated training data

Room 1 Room 2 Room 3 Room 4 Room 5

Room size (6× 6) m (5× 4) m (10× 6 m) (8× 3) m (8× 5) m
RT60 0.3 s 0.2 s 0.8 s 0.4 s 0.6 s

Signal Noiseless signals from WSJ1 training database
Array position in room 6 arbitrary positions in each room
Source-array distance 1.5 m with added noise with 0.1 variance

block diagram.

4.1.3 Training phase

The supervision in the training phase is based on the WDO assumption in which each TF

bin is dominated by (at most) a single speaker. The training is based on simulated data

generated by a publicly availble RIR generator software1, efficiently implementing the

image method [56]. A four microphone linear array was simulated with (8, 8, 8) cm inter-

microphones distances. Similar microphone inter-distances were used in the test phase.

For each training sample, the acoustic conditions were randomly drawn from one of the

simulated rooms of different sizes and different reverberation levels RT60 as described

in Table 4.1. The microphone array was randomly placed in the room in one out of six

arbitrary positions.

For each scenario, two clean signals were randomly drawn from the WSJ1 database

[57] and then convolved with RIRs corresponding to two different DOAs in the range

Θ = {0, 5, . . . , 180}. The sampling rate of all signals and RIRs was set to 16KHz. The

speakers were positioned in a radius of r = 1.5m from the center of the microphone array.

To enrich the training diversity, the radius of the speakers was perturbed by a Gaussian

noise with a variance of 0.1 m. The DOA of each speaker was calculated w.r.t. the center

of the microphone array.

1Available online at github.com/ehabets/RIR-Generator
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Table 4.2: Configuration of test data generation. All rooms are 3 m in height

Simulated test data

Room 1 Room 2

Room size (5× 7) m (9× 4) m
RT60 0.38 s 0.7 s
Source-array distance 1.3 m 1.7 m

Signal Noiseless signals from WSJ1 test database
Array position in room 4 arbitrary positions in each room

The contributions of the two sources were then summed with a random SIR selected in

the range of SIR ∈ [−2, 2] to obtain the received microphone signals. Next, we calculated

the STFT of both the mixture and the STFT of the separate signals with a frame-length

K = 512 and an overlap of 75% between two successive frames.

We then constructed the audio feature matrix R as described in Sec. 4.1.1. In the

training phase, both the location and a clean recording of each speaker were known, hence

they could be used to generate the labels. For each TF bin (l, k), the dominating speaker

was determined by:

dominant speaker← argmax
i
|si(l, k)hiref(l, k)|. (4.8)

The ground-truth label Dl,k is the DOA of the dominant speaker. The training set com-

prised four hours of recordings with 30000 different scenarios of mixtures of two speak-

ers. It is worth noting that as the length of each speaker recording was different, the

utterances could also include non-speech or single-speaker frames. The network was

trained to minimize the cross-entropy between the correct and the estimated DOA. The

cross-entropy cost function was summed over all the images in the training set. The net-

work was implemented in Tensorflow with the ADAM optimizer [55]. The number of

epochs was set to be 100, and the training stopped after the validation loss increased for

3 successive epochs. The mini-batch size was set to be 64 images.
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4.2 Experimental Study

4.2.1 Experimental setup

In this section we evaluate the TF-DOAnet and compare its performance to classic and

DNN-based algorithms. To objectively evaluate the performance of the TF-DOAnet, we

first simulated 2 unfamiliar test rooms. Then, we tested our TF-DOAnet with real RIR

recordings in different rooms. Finally, a real-life scenario with fast moving speakers was

recorded and tested.

For each test scenario, we selected two speakers from the test set of the WSJ1 database [57],

placed them at two different angles between 0◦ and 180◦ relative to the microphone array,

at a distance of either 1m or 2m. The signals were generated by convolving the signals

with RIRs corresponding to the source positions and with either simulated or recorded

acoustic scenarios.

Performance measures Two different measures to objectively evaluate the results

were used: the mean absolute error (MAE) and the localization accuracy (Acc.). The

MAE, computed between the true and estimated DOAs for each evaluated acoustic con-

dition, is given by

MAE(◦) =
1

N · C

C∑
c=1

min
π∈SN

N∑
n=1

|θcn − θ̂cπ(n)|, (4.9)

where N is the number of simultaneously active speakers and C is the total number of

speech mixture segments considered for evaluation for a specific acoustic condition. In

our experiments N = 2. The true and estimated DOAs for the n-th speaker in the c-th

mixture are denoted by θcn and θ̂cn, respectively.

The localization accuracy is given by

Acc.(%) =
Ĉacc.

C
× 100 (4.10)

where Ĉacc. denotes the number of speech mixtures for which the localization of the speak-
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ers is accurate. We considered the localization of speakers for a speech frame to be accu-

rate if the distance between the true and the estimated DOA for all the speakers was less

than or equal to 5◦.

Compared algorithms We compared the performance of the TF-DOAnet with two

frequently used baseline methods, namely the MUSIC and SRP-PHAT algorithms. In

addition, we compared its performance with the CNN multi-speaker DOA (CMS-DOA)

estimator [32].2 To facilitate the comparison, the MUSIC pseudo-spectrum was computed

for each frequency sub-band and for each STFT time frame, with an angular resolution

of 5◦ over the entire DOA domain. Then, it was averaged over all frequency subbands to

obtain a broadband pseudo-spectrum followed by averaging over all the time frames L.

Next, the two DOAs with the highest values were selected as the final DOA estimates.

Similar post-processing was applied to the computed SRP-PHAT pseudo-likelihood for

each time frame.

4.2.2 Speaker localization results

Static simulated scenario We first generated a test dataset with simulated RIRs. Two

different rooms were used, as described in Table 4.2. For each scenario, two speakers

(male or female) were randomly drawn from the WSJ1 test database, and placed at two

different DOAs within the range {0, 5, . . . , 180} relative to the microphone array. The

microphone array was similar to the one used in the training phase. Using the RIR gen-

erator, we generated the RIR for the given scenario and convolved it with the speakers’

signals.

The results for the TF-DOAnet compared with the competing methods are depicted in

Table 4.3. The tables shows that the deep-learning approaches outperformed the classic

approaches. The TF-DOAnet achieved very high scores and outperformed the DNN-

based CMS-DOA algorithm in terms of both MAE and accuracy.

2the trained model is available here https://github.com/Soumitro-Chakrabarty/
Single-speaker-localization
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Static real recordings scenario The best way to evaluate the capabilities of the TF-DOAnet

is testing it with real-life scenarios. For this purpose, we first carried out experiments with

real measured RIRs from a multi-channel impulse response database [43]. The database

comprises RIRs measured in an acoustics lab for three different reverberation times of

RT60 = 0.160, 0.360, and 0.610 s. The lab dimensions are 6× 6× 2.4 m.

The recordings were carried out with different DOA positions in the range of [0◦, 180◦],

in steps of 15◦. The sources were positioned at distances of 1 m and 2 m from the center

of the microphone array. The recordings were carried out with a linear microphone array

consisting of 8 microphones with three different microphone spacings. For our experi-

ment, we chose the [8, 8, 8, 8, 8, 8, 8] cm setup. In order to construct an array setup

identical to the one in the training phase, we selected a sub-array of the four center mi-

crophones out of the total 8 microphones in the original setup. Consequently, we used a

uniform linear array (ULA) with M = 4 elements with an inter-microphone distance of

8 cm.

The results for the TF-DOAnet compared with the competing methods are depicted

in Table 4.4. Again, the TF-DOAnet outperforms all competing methods, including the

CMS-DOA algorithm. Interestingly, for the 1 m case, the best results for the TF-DOAnet

were obtained for the highest reverberation level, namely RT60 = 610 ms, and for the 2 m

case, for RT60 = 360 ms. While surprising at first glance, this can be explained using the

following arguments. There is an accumulated evidence that reverberation, if properly ad-

dressed, can be beneficial in speech processing, specifically for multi-microphone speech

enhancement and source extraction [59, 62, 63] and for speaker localization [64, 65]. In

reverberant environments, the intricate acoustic propagation pattern constitutes a specific

“fingerprint” characterizing the location of the speaker(s). When reverberation level in-

creases, this fingerprint becomes more pronounced and is actually more informative than

its an-echoic counterpart. An inference methodology that is capable of extracting the es-

sential driving parameters of the RIR will therefore improve when the reverberation is

higher. If the acoustic propagation becomes even more complex, as is the case of high
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reverberation and a remote speaker, a slight performance degradation may occur, but as

evident from the localization results, for sources located 2 m from the array, the perfor-

mance for RT60 = 610 ms was still better than the performance for RT60 = 160 ms.

Real-life dynamic scenario To further evaluate the capabilities of the TF-DOAnet, we

also carried out real dynamic scenarios experiments. The room dimensions are 6 × 6 ×

2.4 m. The room reverberation level can be adjusted and we set the RT60 at two levels,

390 ms and 720 ms, respectively. The microphone array consisted of 4 microphones

with an inter-microphone spacing of 8 cm. The speakers walked naturally on an arc at

a distance of about 2.2 m from the center of the microphone array. Figure 4.1a depicts

the real-life experiment setup and Fig. 4.1b depicts a schematic diagram of the setup of

these experiments. The ground truth labels of these experiment were measured with the

Marvelmind indoor 3D tracking set.3

For the first experiment, the two speakers started at the angles 20◦ and 160◦ and walked

until they reached 70◦ and 100◦, respectively, turned around and walked back to their

starting point. This was done several times throughout the recording. Figures 4.2 and 4.3

depict the results of the this experiment in both RT60 levels.

For the second experiment, the two speakers started at the angles 30◦ and 150◦ and

walked until they reached 150◦ and 30◦, respectively. Note that in this experiment there

is an overlap between the DOAs of the speakers. Figures 4.4 and 4.5 depict the results of

the this experiment in both RT60 levels.

It is clear that the TF-DOAnet outperformed the CMS-DOA algorithm, especially for

the high RT60 conditions. Whereas the CMS-DOA fluctuated rapidly, the TF-DOAnet

output trajectory was smooth and noiseless.

3https://marvelmind.com/product/starter-set-ia-02-3d/

41

https://marvelmind.com/product/starter-set-ia-02-3d/


CHAPTER 4. FCN APPROACH FOR DYNAMICALLY LOCATING MULTIPLE SPEAKERS

Table 4.3: Results for two different test rooms with simulated RIRs

Test Room Room 1 Room 2

Measure MAE Acc. MAE Acc.

MUSIC [34] 26.2 28.4 31.5 16.9
SRP-PHAT [35] 25.1 26.7 35.0 15.6
CMS-DOA [32] 13.1 71.1 24.0 38.1
TF-DOAnet 0.3 99.5 1.7 94.3

Table 4.4: Results for three different rooms at distances of 1 m and 2 m with measured
RIRs

Distance 1 m 2 m

RT60 0.160 s 0.360 s 0.610 s 0.160 s 0.360 s 0.610 s

Measure MAE Acc. MAE Acc. MAE Acc. MAE Acc. MAE Acc. MAE Acc.

MUSIC 18.7 57.6 19.2 53.2 21.9 42.9 18.4 54.1 26.1 35.8 25.4 32.2
SRP-PHAT 9.0 39.0 13.9 39.4 18.6 29.9 9.7 36.0 16.5 24.7 27.7 21.3
CMS-DOA 1.6 76.3 7.3 75.2 8.4 71.9 5.1 79.5 9.7 60.1 17.5 40.0
TF-DOAnet 1.3 97.5 3.5 83.5 0.9 98.3 5.0 89.5 1.7 95.7 4.8 84.2

42



CHAPTER 4. FCN APPROACH FOR DYNAMICALLY LOCATING MULTIPLE SPEAKERS

4.2.3 Ablation study

In our implementation, we used the real and imaginary part of the RTF (4.4). Other

approaches might be beneficial. For example, in chapter 3, the cos and the sin of the

phase of the RTF were used. In other approaches, the spectrum was added to the spatial

features [30].

In this section, the different features were tested with the same model. We compared

the proposed features with two other features. First, we used the proposed features as

described in (4.4). The second approach was a variant of our approach with the spectrum

added (‘TF-DOAnet with Spec.’). The third, used the cos and the sin features as presented

in chapter 3 (‘Cos-Sin’). All features were crafted from the same training data described

in Sec. 4.1.3. We tested the different approaches in the test conditions described in 4.2.

First, it is clear that all the features with our high resolution TF model outperformed

the frame-based CMS-DOA algorithm, as reported in Table 4.3. This confirms that the

TF supervision is beneficial for the task at hand. Second, the proposed features were

shown to be better than the Cos-Sin features. Finally, it is very interesting to note that the

addition of the spectrum features slightly deteriorated the results for this task.

Table 4.5: Ablation study results with different features

Test Room Room 1 Room 2

Measure MAE Acc. MAE Acc.

Cos-Sin 1.2 96.1 2.8 91.3
TF-DOAnet with Spec. 0.6 98.4 3.3 86.7
TF-DOAnet 0.3 99.5 1.7 94.3

Broader impact

Several modern technologies can benefit from the proposed localization algorithm. We

already mentioned the emerging technology of smart speakers in the Introduction. These

devices are equipped with multiple microphones and are implementing location-specific
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tasks, e.g. the extraction of the speaker of interest. Of particular interest are socially

assistive robots (SARs), as they are likely to play an important role in healthcare and

psychological well-being, in particular during non-medical phases inherent to any hospital

process.

The algorithm neither uses the content nor the identity of the speakers and hence does

not to violate the privacy of the users. Moreover, since normally speech signal cannot

propagate over long distances, the algorithm application is limited to small enclosures.
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(a) Room view.

6 m.

6 m.

m.

cm.

(b) Speakers’ trajectory.

Figure 4.1: Real-life experiment setup.

45



CHAPTER 4. FCN APPROACH FOR DYNAMICALLY LOCATING MULTIPLE SPEAKERS

(a) Ground truth.

(b) CMS-DOA.

(c) The TF-DOAnet.

Figure 4.2: Real-life recording of two moving speakers in a 6×6×2.4 room with RT60 =
390 ms.
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(a) Ground truth.

(b) CMS-DOA.

(c) The TF-DOAnet.

Figure 4.3: Real-life recording of two moving speakers in a 6×6×2.4 room with RT60 =
720 ms.
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(a) Ground truth.

(b) CMS-DOA.

(c) The TF-DOAnet.

Figure 4.4: Real-life recording of two moving speakers, crossing each other, in a 6×6×2.4
room with RT60 = 390 ms.
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(a) Ground truth.

(b) CMS-DOA.

(c) The TF-DOAnet.

Figure 4.5: Real-life recording of two moving speakers, crossing each other, in a 6×6×2.4
room with RT60 = 720 ms.
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Chapter 5

Conclusions

In this thesis, we considered three different core problems in speech signal processing.

The MoG-DNN algorithm for speech enhancement: The proposed algorithm combines

a model-based generative model for the clean speech signal with a discriminative,

DNN-based SPP estimator. In this algorithm, we strive to use the advantages of

model-based approaches along with the advantages of data driven DNN approaches

and by that, turn an unsupervised problem into a supervised one. Additionally,

we take advantage of the discriminative nature of the DNN that preserves speech

smoothness by using context frames.

Speech separation based on DOA classification and masking: A DNN with a U-net

architecture is trained to classify TF bins to DOAs. The association of each TF

bin to specific DOA is used to construct spectral masks, which when applied to the

spectrogram of the reference microphone obtain spectral source separation. The

U-net was trained in a simulated room and tested with real RIR recordings, demon-

strating the proposed algorithm capabilities in the task of blindly separating the

sources.

Future directions:

1. Increase the robustness of the proposed algorithm to mismatch between train
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and test conditions. This can be done by adding more scenarios to the train-

ing dataset, which can assist the DNN in learning specific features that are

scenario independent.

2. Address dynamic scenarios and provide a trajectory estimate for the speakers.

This can be done by generating a higher resolution dataset. Instead of dis-

cretizing the possible angles to be in the set Θ = {0◦, 15◦, 30◦ . . . , 180◦} we

can discretize them to be in the set Θ = {0◦, 5◦, 10◦ . . . , 180◦}. This way we

can track the speakers movement more smoothly.

A FCN approach for DOA estimation: Instantaneous RTF features were used to train

the model. The high TF resolution facilitated the tracking of multiple moving

speakers simultaneously. A comprehensive experimental study was carried out

with simulated and real-life recordings. The proposed approach outperformed both

the classic and CNN-based SOTA algorithms in all experiments. Training and test

datasets which represent different real-life scenarios were constructed as a DOA

benchmark and will become available after publication.

Future directions:

1. It would be interesting to apply the high resolution DOA labels which we

received using the TF-DOAnet algorithm in order to obtain better speech sep-

aration results.

2. We would like to re-examine the feature vector in the TF-DOAnet algorithm

and find more specific and accurate features. This may lead to better results

both for the source localization and the speech separation tasks.

3. Improve the TF-DOAnet algorithm, so it can be applied when the microphone

array is moving on top of the speakers’ movement.
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 תקציר 
 

בעבודה זו אנו מציגים אלגוריתמים לפתרון שלוש בעיות בעיבוד אותות דיבור. האלגוריתמים  

 ברשתות נוירונים. עושים שימושתדר ו- של הדיבור במרחב הזמן  הדלילותמתבססים על תכונת 

 

 ניקוי אותות דיבור מרעש עם מיקרופון יחיד 

שהוא   Mixture of Gaussians (MOG). אנו משלבים בין MoG-DNNנו מציגים אלגוריתם א

מודל גנרטבי לבין רשת נוירונים שהיא מודל דיסקרימינטיבי. האלגוריתם מכיל שני שלבים, שלב  

ספקטרלית של הדיבור הנקי  ההספק ה האימון ושלב הבחינה. בשלב האימון, נמדל את צפיפות 

מונחה של אותות הדיבור ועל ידי גאוסיאן יחיד  -המשמש למיון בלתי  MoGוהרעש באמצעות 

הנתון, נתייג את מערך הנתונים. לאחר מכן, נאמן רשת נוירונים על    MoG-בהתאמה. בהתאם ל

.  MoG-המנת לסווג את מסגרות הזמן של הדיבור המורעש לאחד מהגאוסיאנים מבין גאוסיאני 

ונבצע חיסור ספקטרלי במקביל לעדכון   (SPP)בשלב הבחינה, נחשב את ההסתברות לקיום דיבור 

שומר על המבנה הספקטרלי של הדיבור ובנוסף הוא מודל גנרטיבי,    MoGפרמטרי הרעש. מודל 

נוירונים  המונחה ולכן ניתן ליישם אותו על כל מערך נתונים בלתי ידוע. רשת  -בלתי

 בית שומרת על רציפות הדיבור.  הדיסקרימינטי

 

 מיקרופוני-הפרדת דוברים רב

של   (DOA)מתוך כיוון ההגעה  תהמחושב מסכההמתבסס על  DDESSאנו מציגים אלגוריתם 

  רק תדר - כל נקודת זמן בשל אותות דיבור,  W-disjoint orthogonality  -הדובר. על פי תכונת ה

. באלגוריתם  יחד DOA-תדר יכולה להשתייך ל-ן. לכן, כל נקודת זמ הוא דומיננטי דובר יחיד

היא שרשור לרשת  כאשר הכניסה   ,U-net תהנתון, נשתמש ברשת נוירונים עם ארכיטקטור

תדר. לאחר מכן,  -בכל נקודת זמן DOA-נים והמוצא הוא הו הספקטרום של אותות המיקרופ

ונבצע הפרדה על ידי הכפלת האות ממיקרופון הייחוס עם כל   DOAנייצר את המסכות עבור כל  

 אחת מהמסכות. 

 

 מיקרופוני-רב  איכון דוברים

- נקודת זמן מניח שכל. גם כאן, אנו מתבססים על העיקרון ש TF-DOAnetאנו מציגים אלגוריתם 

רונים  יחיד. באלגוריתם הנתון, נאמן רשת נוי DOAדר נשלטת על ידי דובר יחיד ולכן משוייכת לת

אלא שכאן הרזולוציה גבוהה בהרבה ובכך   DDESSעם ארכיטקטורה זהה לזו שבאלגוריתם 

כמה דוברים במקביל, כאשר הדוברים יכולים להיות   מדוייקתמאפשרת לרשת לאכן בצורה 

 ים.  י ים או דינמיסטט

 

אות  ביצענו סימולציות רבות וניסויי מעבדה המדגימים כי האלגוריתמים המוצעים משיגים תוצ

 ילים. בטובות מהתוצאות המושגות על ידי אלגוריתמים מתחרים מו

 

 



 של פרופ' שרון גנות  עבודה זו נעשתה בהדרכתו 
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