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Abstract

In this work, we handle two common tasks of speech processing - DOA tracking, and

speech separation - using microphone array.

Working in the short-time Fourier transform (STFT) domain and following the spar-

sity assumption, only single speaker is active at each time-frequency (TF) bin. We also

assume that the DOA is discrete, hence, the speakers’ DOA can be one of a predefined

set of candidate DOAs. The problem is then formulated as a statistical inference problem,

where we aim to infer from the time and frequency observations on both the speakers’

DOA, and on the active speaker at each TF bin. The association of each TF bin to a par-

ticular speaker, can be used in turn to build a per speaker TF mask, and to separate the

STFT signal to the different speakers.

We first determine a statistical model for the microphone array observations given

the speech signal, the DOAs and the associations of each TF bin to a speaker. Using

the maximum likelihood estimator (MLE) we estimate the speech signal, and following

several mathematical manipulations on the conditional probability we show that it can be

replaced with the minimum variance distortionless response (MVDR)-beamformer (BF)

outputs, applied on each of the candidate DOAs. We then propose three different statisti-

cal models for the DOAs and the associations, for each we derive its own inference algo-

rithm which finds those unknowns given the observations. The first is based on Mixture

of Gaussians (MoG) model, and we use two variations of the EM algorithm for inference,

Batch-EM and Recursive-EM for a static and dynamic case, respectively. The second is

either HMM or a variation called Coupled HMM, where for inference we use standard

or extended Forward-Backward (FB) algorithm, respectively. The last is a general Factor

i
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Graph (FG) model, where the DOAs are modeled as a Markov chain, and the speaker

associations are modeled either independently or as a Markov random field (MRF). For

this model we derive a novel inference scheme based on the LBP algorithm.

A comprehensive experimental study demonstrates the benefits of the proposed algo-

rithms in both simulated data and real-life measurements, compared to reference meth-

ods.
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Chapter 1

Introduction
Multiple-speaker separation is a well-known problem in the speech processing commu-

nity, aiming to separate the measured microphone signal to its different sources. Another

problem of substantial interest is tracking of a moving speaker, which can be used for

separation tasks, and is also required in other applications, including navigation, target

acquisition and beamforming. Both problems become challenging when multiple moving

speakers are concurrently active, as well as when additive interference signals are also

captured by the microphone array.

1.1 Literature Survey
Among the most common DOA estimation methods are the steered response power

(SRP)-phase transform (PHAT) algorithm [1] and the multiple signals classification

(MUSIC) algorithm [2]. However, these techniques are not optimal in the multiple-

speaker case, and do not address dynamic scenarios where the sources are moving during

the recording. For the separation task, existing algorithms can be roughly divided into four

groups: independent component analysis (ICA) algorithms that assume independence of

the original source signals [3]; beamforming methods based on the spatial diversity of

the speakers; algorithms based on nonnegative matrix factorization (NMF) of the speech

PSD; and methods that rely on the sparsity of speech signals in the TF domain [4]. In the

latter, the main assumption is that each TF bin is dominated by a single active speaker.

1



CHAPTER 1. INTRODUCTION

These algorithms usually estimate a separation mask that assigns each TF bin to the active

speaker, and use it for separation by applying a mask to the PSD of the measured signal.

Comprehensive surveys of separation methods can be found in [5; 6; 7].

Several algorithms address the problem of localization and separation. In [8], the EM

algorithm is implemented for estimating both the DOAs and the separation masks of mul-

tiple static speakers with a single microphone pair. The algorithm is based on a MoG

model defining a grid of possible DOA candidates. Assuming a single dominant speaker

in each TF bin, the interaural phase differences (IPDs) from all TF bins are clustered into

groups associated with a particular speaker from a candidate DOA. The E-step in the pro-

posed EM iterations provides a soft assignment of each observation to both speaker and

DOA. By marginalizing over the DOAs, a separation mask is obtained. The weights of

the Gaussians, obtained by the M-step, define a probability distribution on the candidate

DOAs, and the DOAs of the active speakers are estimated from the candidates with the

highest probabilities. In [9], the algorithm was extended using a MRF model to promote

smoothness of the separation mask in both time and frequency, which was shown to im-

prove the separation results. In [10], a dynamic scenario was addressed by two recursive

EM (REM) variants, applied to a multichannel extension of the model in [8]: one based

on Titterington recursive EM (TREM) [11] and the second based on Cappé and Moulines

recursive EM (CREM) [12]. The separation task was not addressed in this paper.

In [13], a multichannel source separation and tracking algorithm was proposed. In

this paper, the basic model assumes static sources, and the tracking is applied as a post

processing step following the static localization procedure. Here also, the IPDs are used

as feature vectors, and are modeled using wrapped distributions. The DOA of each source

is computed using circular linear regression, which in the multiple-speaker case, is solved

by the EM algorithm. Similar to [8], the E-step is used for estimating the separation

mask, and the slopes of the IPDs are transformed to DOAs using the prior knowledge on

the inter-channel delay. A dynamic scenario is addressed by first finding the DOAs for

each time-step, and then using the estimated DOAs as observations for a factorial wrapped

2



CHAPTER 1. INTRODUCTION

Kalman filter.

The above papers use the IPD features for the localization task, however with these

features, the presence of additive measurement noise is not directly addressed. In [14;

15; 16], the phase-related feature vectors were substituted by the raw STFT observations.

In addition, the noise (or reverberation) was explicitly modeled, resulting in improved

performance in noisy (or reverberant) scenarios. The observations at the microphone array

were modelled as a mixture of multivariate complex-Gaussians with zero-mean, and a

spatial covariance matrix consisting of both the speech and the noise PSDs. Furthermore,

it was shown in [15] that the PSDs of the candidate speakers can be estimated in advance

(prior to the application of the EM algorithm) from the outputs of a set of MVDR-BFs.

The above algorithms do not provide an explicit DOA estimate, but rather a probability

map over the candidate DOAs. While for the static localization task the actual DOA can be

found relatively easily by finding the peaks in the probability map, in a dynamic case the

peaks should be calculated for each time-step rendering the explicit trajectory inference

difficult.

Another approach to address the tracking task is to substitute the MoG model with an

HMM. In this approach, the DOAs of the speakers are also discretized to a finite set of

candidates. The model assumes that the dynamics of the sources is governed by a Markov

process, with higher probability for switching from one candidate to an adjacent candidate

at each time-step, thus allowing small changes in the DOA [17; 18].

The tasks of tracking and separation depend on each other. The reason is that when the

DOAs of the speakers are known, we can identify the dominating DOA in each TF bin and

associate it with the corresponding speaker, and thus extract it by masking. In the opposite

direction, given the association map that relates each TF bin to its dominating speaker, we

can use the set of TF bins attached with each speaker to infer its corresponding DOA.

Examples of using the outcomes of localization to perform separation can be found in

[8; 10; 15; 19], and for the other direction in [20; 21].

A simultaneous tracking and separation algorithm was proposed in [18] using a

3



CHAPTER 1. INTRODUCTION

Bayesian approach. The definition of the hidden variables here is different from that

defined in [8]. In [8] each TF observation is associated with both a DOA and a speaker,

whereas in [18] each observation is associated only with a speaker, and the speaker is

associated with a DOA. This approach uses fewer hidden variables, hence reducing the

computational requirements, while modeling real scenarios more accurately. The contin-

uous movement of the speakers is reflected by modelling the DOAs of the speakers as

Markov processes. Since an exact inference of the hidden variables from the observations

is intractable, a variational inference was applied.

1.2 Main Contribution
In the current contribution we formulate these problems as a statistical inference prob-

lems, where the hidden data are either the DOA of each TF bin (as in [15]), or both the

association of each bin to the active speaker in this bin and the DOA of each speaker at

each time-stamp (as in [18]). In order to estimate the hidden data given the observations,

one needs to define statistical model for both the hidden data, and for the observations

given the hidden data. For the latter we use a model similar to [15], and we show that

the raw observation features can be substituted by new features, which are the likelihood

ratio test (LRT) at each candidate DOA indicating whether the MVDR-BF output at this

DOA dominated by either speech or noise. The utilization of these new features, results in

a lower computational burden that is beneficial in online and real-time applications. For

the hidden data, three different models are proposed, based on our papers [22; 23; 24],

described in the following.

The first, presented in Chapter 3, is the instantaneous model, where the hidden vari-

ables are the DOA of each TF bin, which assumed to be statistically independent with

shared prior probability. In this model the marginal distribution of the observations is

MoG and the inference is done using the EM algorithm. We further propose a tracking

procedure for dynamic scenario by applying the CREM algorithm.

In the second model, presented in Chapter 4, the hidden data is similarly defined,

4



CHAPTER 1. INTRODUCTION

however, it is modeled using two variants of HMM. In the first, a frequency-dependent

HMM with the DOAs of the observations as the hidden Markov process, is used to ob-

tain a smooth track of the sources. Since the set of active frequencies can vary across

time-frames, we extend the model by introducing the coupled HMM paradigm [25]. In

both models the emission probabilities of the HMMs are the LRT outputs. The inference

procedure is then implemented by an extended FB algorithm [26]. The results of this pro-

cedure is a smooth DOA posterior probability per TF bin. Finally, a per-frame probability

map of the DOAs is obtained by frequency averaging.

The above algorithms provide a per-frame probability map of the speakers DOAs, and

any peak-picking method can then be applied to this map to extract a time-varying DOA

estimate for each speaker. In Chapter 5 we present a factor graph model, where in contrast

to the two previous models, the hidden variables are both the speakers DOA and the TF

bins association to speakers. By estimating those variables, both separation mask and

explicit DOA trajectory is obtained for each speaker.

Factor graph models [27] are used in many complex tasks in various signal processing

fields, such as communication [28], sonar detection [29] and robotics [30; 31]. To the best

of our knowledge, this model was not used for the task of speaker tracking and separation.

In the factor graph model, we define the hidden data as in [18] using two groups of latent

variables. The first group consists of the DOA of the sources that are modeled as sepa-

rated Markov chain for each source, where the transition probability is set to allow only

small changes in the DOAs in subsequent time steps. The second group consists of the

associations of the TF bins to the different sources, which can be modeled by an i.i.d. dis-

tribution or, following [9], using a MRF model to smoothen the associations in time and

frequency. We then show that the posterior of the latent variables given the observations

defines a factor graph, and we derive a novel inference method for simultaneously esti-

mating all latent variables, using the loopy belief propagation (LBP) inference algorithm

[32].

The algorithms proposed in this work are summarized in table 1.1.

5



CHAPTER 1. INTRODUCTION

Model name Graphical model Inference algorithm Chapter Where published

Instantaneous None EM/Recursive EM 3 [22]
Parrallel HMM HMM FB 4.1 [23]
Coupled HMM Coupled HMM Extended FB 4.2 [23]
Factor graph Factor Graph LBP 5 [24]

Table 1.1: Summary of the algorithms proposed in this work.

6



Chapter 2

Problem Statement and Observations

Model

In this chapter we will formulate the tracking and separation tasks as a statistical inference

problem, where we aim to infer from the observations on the unobserved (“hidden”) data.

In addition, we will define the statistical model of the observations given the hidden data,

which is identical for all of our proposed algorithms, described later in this work. The

difference between our proposed methods lies in the statistical model of the hidden data,

as will be explained in details in Chapters 3, 4 and 5.

2.1 Problem Formulation

Consider an array of N microphones, receiving signals of J moving speakers. At each

time step, each speaker is located at a specific DOA on a grid of M possible DOAs

[ϑ1, . . . , ϑM ]. Due to the dynamic nature of the problem, the DOAs may vary from one

time step to the other. The proposed method is applied in the STFT domain with t =

1, . . . , T denoting the time index and k = 1, . . . , K denoting the frequency index. Let

dt(j) be a categorical random variable denoting the DOA index of the jth speaker at time

index t, i.e. dt(j) ∈ [1, . . . ,M ]. Relying on the W-disjoint orthogonality (WDO) property

of speech signals in the STFT domain [4], it can be assumed that each TF bin is dominated

7



CHAPTER 2. PROBLEM STATEMENT AND OBSERVATIONS MODEL

by a single active speaker. Let at,k be a categorical random variable denoting the active

speaker at the (t, k)th bin, i.e. at,k ∈ [1, . . . , J ]. Following these definitions, the nth

microphone signal is given by:

z
(n)
t,k = g

(n)
k (dt(at,k))st,k(dt(at,k)) + v

(n)
t,k , (2.1)

where dt(at,k) ∈ [1, . . . ,M ] is the DOA index of the active speaker at the (t, k)th bin,

g
(n)
k (m) is the relative transfer function (RTF) associated with the mth candidate DOA

and defined between the nth microphone and the reference microphone, st,k(m) is the

speech signal from the mth candidate as measured by the reference microphone, and v(n)t,k

denotes a stationary ambient noise at microphone n ∈ [1, . . . , N ].

In low-reverberation environments, the RTF approximately corresponds to the direct

path between the source and the microphone:

g
(n)
k (m) = exp

(
−ι2πk

K

τm,n
Ts

)
(2.2)

where Ts denotes the sampling period, and τm,n denotes the known time difference of

arrival (TDOA) between the nth microphone and the reference microphone, associated

with the mth candidate DOA.

The measured signals (2.1) can be written in a vector form as:

zt,k = gk(dt(at,k))st,k(dt(at,k)) + vt,k (2.3)

where

zt,k =
[
z
(1)
t,k , z

(2)
t,k , . . . z

(N)
t,k

]T
gk(m) =

[
1, g

(2)
k (m), . . . , g

(N)
k (m)

]T
vt,k =

[
v
(1)
t,k , v

(2)
t,k , . . . , v

(N)
t,k

]T
.

8



CHAPTER 2. PROBLEM STATEMENT AND OBSERVATIONS MODEL

assuming, without loss of generality, that the first microphone is chosen as the reference

microphone. The generation of the observation by the defined model is illustrated in

Figure 2.1.

In the following we will denote a = vect,k{at,k} and d = vect,j{dt(j)} as the hidden

data, and z = vect,k{zt,k}, as the observations. In some cases, it is more convenient to

define the DOA association of each TF bin, namely bt,k ≡ dt(at,k) ∈ [1, . . . ,M ] as the

hidden data, and we will define accordingly b = vect,k{bt,k}. Our goal is to estimate the

hidden data given the observations. To this end, we need to define a statistical model and

to present an inference scheme that estimates the hidden data.

M
u
x

LTI +

M
u
x

M
u

x

DOA 

Selection

System 

Selection

Signal 

Selection

Selection Stage LTI System

Figure 2.1: An illustration of the generation of the observations by the presented model.
The first part is the selection stage. The variable at,k representing the active speaker, is
used for selecting the DOA associated with the active speaker. The chosen DOA candidate
is used for selecting both the RTF and the input speech signal that are associated with this
candidate. The second part describes the actual generation of the observations by an LTI
system model, in which the chosen speech signal is filtered by the chosen RTF and noise
is added.
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CHAPTER 2. PROBLEM STATEMENT AND OBSERVATIONS MODEL

2.2 The observations model

The statistical model of the hidden variables, either P (a,d) or P (b) will be discussed

latter in Chapters 3, 4 and 5. We will now define the statistical model of the observa-

tions given the hidden variables P (z|a,d). The speech signal is modeled as a zero-mean

complex-Gaussian random variable with a time-varying PSD:

P (st,k(dt(at,k))) = N (st,k(dt(at,k)); 0, φs,t,k(dt(at,k))) (2.4)

where N (·; ·, ·) denotes the complex-Gaussian probability and φs,t,k(dt(at,k)) is the un-

known PSD of the speech signal received from the DOA of the active speaker at the

(t, k)th bin. The noise is modeled as a zero-mean complex-Gaussian random vector with

a time-invariant covariance matrix Φv,k:

P (vt,k) = N (vt,k; 0,Φv,k) . (2.5)

It is assumed that the noise covariance matrix is known in advance, or can be estimated

during speech-absent segments, due to the noise stationarity.

Following equations (2.3), (2.4) and (2.5), the conditional probability density function

(p.d.f.) of the (t, k)th observation given the DOA of the active speaker at this bin can be

expressed as

P (zt,k|dt(at,k)) = N (zt,k,0,Φz,t,k(dt(at,k))), (2.6)

with:

Φz,t,k(m) = gk(m)gHk (m)φs,t,k(m) + Φv,k, (2.7)

where the speech and noise signals are assumed to be statistically independent.

10



CHAPTER 2. PROBLEM STATEMENT AND OBSERVATIONS MODEL

2.3 Likelihood simplification

We will now simplify the conditional probability of the observations given the hidden

variables (2.6). We first factorize the probability, then we estimate the speech PSD using

the maximum likelihood estimator (MLE) and finally we substitute the estimated PSD in

the factorized probability to obtain the final simple expression.

2.3.1 Likelihood factorization

We factorize the likelihood of the observation to obtain a simpler expression. We first

define the a priori signal to noise ratio (SNR) of the signal impinging the array from the

mth candidate position as:

ζt,k(m;φs,t,k(m)) =
φs,t,k(m)

φv,k(m)
. (2.8)

and the a posteriori SNR as:

ηt,k(m) =
|ŝw,t,k(m)|2

φv,k(m)
(2.9)

where ŝw,t,k(m) is the output of an MVDR-BF directed towards the mth candidate:

ŝw,t,k(m) ≡ wH
k (m)zt,k (2.10)

where the MVDR-BF is defined by:

wk(m) =
Φ−1v,kgk(m)

gHk (m)Φ−1v,kgk(m)
, (2.11)

and φv,k(m) is the PSD of the residual noise at the output of the MVDR-BF, and is given

by:

φv,k(m) ≡ 1

gHk (m)Φ−1v,kgk(m)
. (2.12)

11



CHAPTER 2. PROBLEM STATEMENT AND OBSERVATIONS MODEL

According to (2.6), the conditional distribution of a single observation given the hidden

data is given by:

N (zt,k,0,Φz,t,k(m)) =
1

πN det(Φz,t,k(m))
exp(−zH (Φz,t,k(m))−1 z). (2.13)

Using the definition of Φz,t,k(m) (2.7) and Sylvester’s determinant theorem, the determi-

nant can be written as:

det(Φz,t,k(m)) = det(Φv,k) · det(1 + φs,t,k(m)gHk (m)Φ−1v,kgk(m))

= det(Φv,k) · (1 + ζt,k(m;φs,t,k(m))).

In addition, using the Woodbury identity, the inversion of Φz,t,k(m) can be written as:

Φz,t,k(m)−1 = Φ−1v,k −
Φ−1v,kgk(m)gHk (m)Φ−1v,k

φs,t,k(m)−1 + gHk (m)Φ−1v,kgk(m)
. (2.14)

By substituting these relations into the p.d.f., we can factorize it as following:

N (zt,k,0,Φz,t,k(m)) = Tt,k(m;φs,t,k(m)) ·Gt,k (2.15)

where Gt,k aggregates all terms which do not depend on m:

Gt,k =
1

πN det(Φv,k)
exp

(
−zHΦ−1v,kz

)
≡ N (zt,k,0,Φv,k) (2.16)

and Tt,k(m;φs,t,k(m)) aggregates the other terms:

Tt,k(m;φs,t,k(m)) =
1

1 + ζt,k(m;φs,t,k(m))

· exp

(
zHΦ−1v,kgk(m)gHk (m)Φ−1v,kz

φs,t,k(m)−1 + gHk (m)Φ−1v,kgk(m)

)
.

12



CHAPTER 2. PROBLEM STATEMENT AND OBSERVATIONS MODEL

Using (2.10),(2.12), (2.9) and (2.8) we can write Tt,k(m;φs,t,k(m)) in a simple way:

Tt,k(m;φs,t,k(m)) =
1

1 + ζt,k(m;φs,t,k(m))
exp

(
ζt,k(m;φs,t,k(m))ηt,k(m)

1 + ζt,k(m;φs,t,k(m))

)
. (2.17)

Note that Tt,k(m;φs,t,k(m)) is the likelihood ratio test (LRT), as presented in [33,

Eq. (14)]. The LRT tests whether zt,k is either associated with a speaker located in themth

candidate DOA or with noise only. The computation of Tt,k(m) is described in Algorithm

1.

Finally we obtain for the conditional probability for each TF bin observation:

P (zt,k|dt(at,k)) = Tt,k(dt(at,k)) ·Gt,k (2.18)

and assuming independence between the different TF bins observations given the latent

variables, the likelihood of the entire set of the observations is given by:

P (z|a,d) =
∏
t,k

Tt,k(dt(at,k)) ·Gt,k. (2.19)

2.3.2 Speech PSD estimation

In this section we substitute the hidden variables at,k and dt(j) with bt,k = dt(at,k) for

simplicity. Since φs,t,k(m) does not directly depend on the identity of the active speaker

but on its DOA, we can estimate it prior to the algorithm application using the maxi-

mum likelihood estimator (MLE). To this end, we write the marginal distribution of the

observations, by marginalizing out the hidden variables:

P (z;φs) =
∑
b

∏
t,k

P (zt,k|bt,k)P (b) (2.20)

where P (b) is the prior probability of b which depends on the priors P (a) and P (d).

The MLE for φs,t̃,k̃(m) is obtained by maximizing (2.20) w.r.t. φs,t̃,k̃(m). We first

rearrange the marginal distribution by excluding the (t̃, k̃)th observation from the product

13



CHAPTER 2. PROBLEM STATEMENT AND OBSERVATIONS MODEL

and summation:

P (z;φs) =
∑
bt̃,k̃

[
P (zt̃,k̃|bt̃,k̃)

∑
b\
bt̃,k̃

∏
t,k\
(t̃,k̃)

P (zt,k|bt,k)P (b)

]
. (2.21)

Substituting (2.6) into (2.21), and explicitly writing the first summation over all candi-

dates, we have:

P (z;φs) =
M∑
w=1

N (zt̃,k̃,0,Φz,t̃,k̃(w)) · C (2.22)

where C ≡
∑

b\bt̃,k̃

∏
t,k\(t̃,k̃) P (zt,k|bt,k)P (b) denotes a positive term, independent of

the parameter of interest φs,t̃,k̃(m). Then, taking the derivative w.r.t φs,t̃,k̃(m) we get:

∂P (z;φs)

∂φs,t̃,k̃(m)
=
∂N (zt,k,0,Φz,t,k(m))

∂φs,t̃,k̃(m)
· C. (2.23)

By setting this derivative to zero we get the MLE for φs,t,k(m) [34]:

φ̂s,t,k(m) = |ŝw,t,k(m)|2 − φv,k(m). (2.24)

where ŝw,t,k(m) is the MVDR-BF output defined in (2.10), and φv,k(m) is the PSD of the

residual noise at the output of the MVDR-BF defined in (2.12).

Using the estimator of φs,t,k(m) we can further simplify Tt,k(m;φs,t,k(m)). Dividing

(2.24) by φv,k(m) and using the definitions in (2.9) and (2.8), we obtain:

ζt,k(m; φ̂s,t,k(m)) = ηt,k(m)− 1. (2.25)

By substituting this relation into (2.17), we finally obtain:

Tt,k(m) = Tt,k(m; φ̂s,t,k(m)) =
1

ηt,k(m)
exp (ηt,k(m)− 1) . (2.26)

14



CHAPTER 2. PROBLEM STATEMENT AND OBSERVATIONS MODEL

Algorithm 1 Likelihood calculation
• Calculate the MVDR-BF wk(m) ∀k,m using (2.11)

• Calculate the output of the MVDR-BF ŝw,t,k(m) ∀t, k,m using (2.10)

• Calculate the PSD of the residual noise ∀k,m:

φv,k(m) ≡ 1

gHk (m)Φ−1v,kgk(m)

• Calculate the SNR at the output of the MVDR-BF ∀t, k,m:

ηt,k(m) =
|ŝw,t,k(m)|2

φv,k(m)

• Calculate the LRT ∀t, k,m:

Tt,k(m; φ̂s,t,k(m)) =
1

ηt,k(m)
exp (ηt,k(m)− 1)

15



Chapter 3

Instantaneous Hidden Data Model

The material presented in this chapter is based on [22]:

K. Weisberg, S. Gannot, and O. Schwartz, “An online multiple-speaker doa

tracking using the Cappé-Moulines recursive expectation-maximization

algorithm,” in IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), 2019, pp. 656–660.

In this section we will present the instantaneous hidden data model. The hidden data

is defined to be the DOA of the active speaker at each TF bin, while in-dependency is

assumed along time and frequency. In this model we aim to solve only the tracking

problem, using either batch EM or recursive EM algorithm.

3.1 The hidden data model

In order to simplify the inference procedure, the hidden data is defined as the DOA asso-

ciations of each TF bin bt,k, and it assumed that those variables are independent along the

TF bins with:

P (bt,k = m) = ψm (3.1)

where ψm is the a priori probability of the activity of a speaker at the mth position, and∑M
m=1 ψm = 1. Because the actual number of speakers is usually lower than the number
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CHAPTER 3. INSTANTANEOUS HIDDEN DATA MODEL

of candidates, most of ψm will be close to zero [35]. A graphical representation of this

model is shown in Fig. 3.1 (top). Following this definition the marginal distribution of

the observations is MoG, and we can write the p.d.f. of the entire set of observations as:

P (z;θ) =
∏
t,k

M∑
m=1

ψmTt,k(m;φs,t,k(m)) ·Gt,k (3.2)

where θ is the set of unknown parameters, namely θ =
[
ψT ,φs

T
]T

withψ = vecm {ψm}

and φs = vect,k,m {φs,t,k(m)}, and we used the factorized likelihood from 2.15. The

maximum likelihood (ML) problem can readily be stated as: θ̂ = argmaxθ log f(z;θ).

Note that although the parameters φs can be estimated in advance, as described in Sec.

2.3.2, we write them here as unknown parameters. This will facilitate the derivation of

recursive algorithm, as detailed in Chapter. 3.3.

3.2 Localization using Batch EM

In the batch-EM, we assume that φs,t,k(m) is changing independently over time, and there-

fore can be calculated in advance as derived above Sec. 2.3.2. An alternative approach

is to apply the EM algorithm to infer this parameter as in [22], however, both approaches

obtain the same estimator.

The auxiliary function of the EM algorithm is given by:

Q(θ|θ(`−1)) = E
{

log (P (z,b;θ)) |z;θ(`−1)
}

(3.3)

where the joint p.d.f. of the observations and the hidden data (the complete data) is given

by:

P (z,b;θ) = P (z|b)P (b;ψ). (3.4)
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The E-step is then given by:

b̂
(`−1)
t,k (m) = E

{
bt,k(m)|zt,k(m);θ(`−1)

}
==

ψ
(`−1)
m Tt,k(m; φ̂s,t,k(m)) ·Gt,k∑

m ψ
(`−1)
m Tt,k(m; φ̂s,t,k(m)) ·Gt,k

,

(3.5)

and the M-step by:

ψ̂(`)
m =

∑
t,k b̂

(`−1)
t,k (m)

T ·K
. (3.6)

Since Gt,k is not depend on m, it can cancelled out in the E-step, and therefore we

obtain simpler expression:

b̂
(`−1)
t,k (m) =

ψ
(`−1)
m Tt,k(m; φ̂s,t,k(m))∑

m ψ
(`−1)
m Tt,k(m; φ̂s,t,k(m))

(3.7)

where Tt,k(m; φ̂s,t,k(m)) is defined in (2.26).

3.3 Recursive EM

In this section, we will apply the CREM algorithm, presented in [12], to the problem at

hand. To allow for a smooth estimate of the speech PSD, we introduce time-dependency

between frames, i.e. φ̂s,t,k(m) depends on a set of frames. The (smooth) time-variations

of the speech PSD will be naturally obtained by the recursive nature of the algorithm.

In the CREM scheme, the iteration index ` is substituted by the time index t, and the

recursive auxiliary function is based on smoothing of the instantaneous auxiliary function

over time:

QR(t;θ) = (1− γ)QR(t;θ) + γQ(θ|θ(t− 1)) (3.8)

where QR(t;θ) is the recursive auxiliary function, and Q(θ|θ(t − 1)) is the instanta-

neous auxiliary function given only the current observations. The M-step is obtained by

maximizing QR(t;θ) w.r.t θ. Using (3.3) and (3.4) the recursion in (3.8) boils down to:

ηt,k(m) = (1− γ)ηt−1,k(m) + γb̂t,k(m), (3.9a)
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ξt,k(m) = (1− γ)ξt−1,k(m) + γb̂t,k(m) |ŝw,t,k(m)|2 . (3.9b)

Maximizing QR(t;θ) with respect to ψm and φs yields the M-step:

ψ̂t(m) =

∑
k ηt,k(m)

K
(3.10)

φ̂s,t,k(m) =
ξt,k(m)

ηt,k(m)
− φv,k(m). (3.11)

A recursive estimator of b̂t,k(m) can be obtained from the CREM by substituting ψ̂
(`)
m

with ψ̂(t)
m in (3.7) and by using the original LRT expression from (2.17) with the smoothed

estimator of φs,t,k(m):

Tt,k(m; φ̂s,t−1,k(m)) =
1

1 + ζt,k(m; φ̂s,t−1,k(m))
exp

(
ζt,k(m; φ̂s,t−1,k(m))ηt,k(m)

1 + ζt,k(m;φs,t,k(m))

)
.

(3.12)

Note the significant differences between (2.26) and (3.12). While the former does not

take into account the smoothness of the speech PSD, and hence uses only an instanta-

neous SNR estimate; the latter takes the smoothness of the PSD into account through the

recursively estimated a priori SNR estimate. We also note that the a priori SNR estimate

obtained here by the CREM procedure is very different from the estimators presnted in

[33]. An illustration of the difference between the batch and the recursive algorithms is

presented in 3.2.

3.4 Practical considerations

The original CREM uses one smoothing parameter γ. We note that in our problem, the

two parameters exhibit different time behaviors: while ψ, which is related to the source

position, is slowly time-varying, the speech PSD φs,t,k(m) is rapidly changing. There-
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fore, in our experiments, we used two different smoothing parameters: γψ and γφs . Ac-

cordingly, for estimating ξt,k(m), we always used γφs ≈ 1. For ηt,k(m), we used two

estimators: the first one used γφs ≈ 1 to obtain an estimate for φs,t,k(m) in (3.11), and the

second used γψ � 1 to obtain an estimate of ψ in (3.10).

3.5 Experimental study

The proposed algorithm was evaluated using two data-sets: simulated time-varying

scenes generated by a signal generator1 and real multichannel audio recordings from the

LOCATA challenge [36].

3.5.1 Algorithm settings and baseline methods

The parameters used in the implementation of our algorithm are as follows: 1) signals

re-sampled to 16 kHz; 2) STFT frame-length 64 ms with no overlap; 3) frequency band

used for localization 1− 6 KHz; 4) smoothing parameters γψ = 0.1, γφs = 0.8; 5) grid of

possible azimuth angle between−900 and 900, with resolution 2◦ and 5◦ for the simulated

data and LOCATA data-set, respectively; and 6) the probabilities were uniformly initial-

ized to ψ̂t(m) = 1
M
,∀m. The noise PSD matrix was estimated using speech absence

segment at the beginning of the recording, annotated manually for the LOCATA data-set.

The proposed method provides a probability map as a function of time and not directly

the DOA estimates. For estimating the actual trajectory of the speakers, one should use

a peak-selection method. To circumvent the effects of the peak-selection algorithm, we

have chosen to calculate instead the receiver operating characteristic (ROC) curve for

each frame and to use the area under the curve (AUC) as a measure. For calculating the

ROC curve, all detections in the range around the true DOA, specifically DOAgt± 3◦, are

considered true positive. The final score is obtained by time-averaging of the per-frame

AUC, excluding noise-only frames. For baseline methods, we used both the MUSIC

1www.audiolabs-erlangen.de/fau/professor/habets
/software/signal-generator
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algorithm [2], as provided by the challenge, and the PRP-REM algorithm [10] with the

same smoothing parameter, and with fixed variance for all the Gaussians, σ = 0.1. For a

fair comparison, the MUSIC results were similarly smoothed and normalized to obtain a

pseudo-distribution.

3.5.2 Evaluation using simulated data

In the simulated scenario, clean anechoic speech signals were drawn from the TIMIT

database [37], where speech utterances of the same speaker were concatenated to obtain a

5 s long speech signal. The speakers were randomly selected from 26 different speakers.

To simulate moving sources, we used the signal generator, as mentioned above. The

room dimensions were set to 6 × 6 × 6.1 m with reverberation time T60 ∼ 200 ms.

The signals were captured by an eight-microphone linear array with inter-distances of

[3, 3, 3, 8, 3, 3, 3] cm from one another, together with an additive spatially-white noise

with various SNR values.

Thirty Monte-Carlo trials, simulating two moving sources scenarios, were examined.

In each scenario, the initial DOAs of the speakers were set to 60◦ and 100◦, respectively.

The sources moved from their initial positions in a circle with a radius of 1 m around the

array center and with angular velocity randomly selected from a uniform distribution in

the range [−15 : 15] deg
s to obtain random trajectories. We first examined the influence of

γφs on the obtained localization score. We have noticed that the scores are insensitive to

the smoothing parameter value in the range 0.6 < γφs < 0.9. We have therefore selected

γφs = 0.8 for all experiments.

The results of the simulation study are depicted in Fig. 3.3. It is evident from

Fig. 3.3(a) that the proposed algorithm outperforms the PRP-REM algorithm [10] by ap-

proximately 5% for 0 dB SNR, and that their performance converges as the SNR level

increases. It is also demonstrated that the proposed method significantly outperforms the

MUSIC algorithm. Moreover, we note that the proposed method is computationally more

efficient than the PRP-REM, and that it additionally provides the speech PSD estimate
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that may be useful for further processing, e.g. in separation tasks [15]. In Fig. 3.3(b)

we depict the probability map ψ̂m of one the trials, clearly demonstrating the tracking

capabilities of the proposed method.

3.5.3 Evaluation on LOCATA data-set

The data for the LOCATA challenge [36] were recorded in a room of size 7.1× 9.8× 3 m

with a reverberation time T60 ∼ 0.55s. We tested our algorithm on Task #3, which

is a recording of a single moving speaker, and Task #4, which is a recording of two

moving speakers. We used the data recorded by the linear array (DICIT). We used the

first recording (Recording #1) of each task. As a reference method, an implementation of

the MUSIC algorithm was provided, as well as ground-truth location of the speakers. We

evaluate our algorithm on the azimuth estimation only. The results of the LOCATA test

are shown for the single source tracking task in Fig. 3.4 and for the two source tracking

task in Fig. 3.5. The proposed method clearly outperforms MUSIC in both tasks, as

can be deduced from the inspection of the probability maps and from the score values.

The differences are more pronounced in the two speakers case, for which the MUSIC

algorithm performs poorly.
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Independent.

b4,1b3,1b2,1b1,1
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Parallel HMM.
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Coupled HMM.

Figure 3.1: Graphical representation of the Instantaneous model (top) Parallel HMM
(middle) and the Coupled HMM (bottom).
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Figure 3.2: Batch and recursive EM illustration.
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(b) An example probability map for SNR = 25 dB and sources velocities ±15deg
s . The

dashed line is the ground truth DOA. The obtained AUC ≈ 0.96.

Figure 3.3: Experimental results of the instantaneous model for simulated data.
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(a) Proposed instantaneous model.
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(b) PRP-REM algorithm [10]

Figure 3.4: Probability maps for the LOCATA challenge (Task #3 - single moving
speaker). The dashed line is the ground truth azimuth, as provided with the LOCATA
database. AUC ≈ 0.95 for both methods.
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(a) Proposed instantaneous model.
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(b) MUSIC.

Figure 3.5: Probability maps for the LOCATA challenge (Task #4 - two moving speakers).
The dashed line is the ground truth azimuth, as provided with the LOCATA database.
AUC= 0.82, 0.69 for the Proposed instantaneous model and for the MUSIC algorithm,
respectively.
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Chapter 4

Parallel and Coupled HMM

The material presented in this chapter is based on [23]:

K. Weisberg and S. Gannot, “Multiple speaker tracking using coupled HMM

in the STFT domain,” in IEEE International Workshop on Computational

Advances in Multi-Sensor Adaptive Processing (CAMSAP), Le Gosier in

Guadeloupe, French West Indies, Dec. 2019.

In this section we will present the parallel and coupled HMM models. In these mod-

els the hidden data is defined similarly to the instantaneous model (Chapter 3), while

introducing dependency between the hidden variables.

4.1 Hidden Markov Model

In this model we formulate the observations per frequency as a HMM process. The

HMM is defined by three probabilities. The first is the emission probability P (zt,k|bt,k)

which, following (2.18), is proportional to Tt,k(bt,k). The second is the transition proba-

bility P (bt,k|bt−1,k), commonly described by a M ×M transition matrix with elements

Am1,m2 = P (bt,k = m2|bt−1,k = m1), which is the probability of the (t, k)th observa-

tion to be associated with candidate DOA m2, given that the (t− 1, k)th observation was

associated with the DOA candidate m1. In the single speaker case, the values Am1,m2
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are set to allow only small changes (or no change) in the DOA readings. In the multi-

ple speaker case, larger changes are also allowed to enable speaker switching. The third

probability is the initial-state probability P (b1,k), which is set as a uniform distribution

for all frequencies.

Under this model, the joint probability of the observations and the hidden data for the

kth frequency bin is given by [38]:

P (z1,k, z2,k, . . . , zT,k, b1,k, b2,k, . . . , bT,k) =

P (b1,k)

[
T∏
t=2

P (bt,k|bt−1,k)

][
T∏
t=1

P (zt,k|bt,k)

]
. (4.1)

Standard HMM inference addresses two questions: 1) what is the most probable state

sequence given the observations? 2) what is the marginal posterior of the hidden process

given the entire set of observations? While for answering the first, the Viterbi algorithm

is applied, providing hard estimation of the hidden variables, for answering the second,

the FB algorithm is applied, providing a soft estimation. In this work, we prefer the latter,

which is better suited for aggregating the estimates from all frequencies into a frame-wise

DOA estimate.

The FB inference algorithm [38] is based on two terms which are calculated induc-

tively: 1) α(bt,k), the forward term, and 2) β(bt,k), the backward term. The marginal

posterior of the hidden data is then given by:

P (bt,k|z) ∝ α(bt,k)β(bt,k), (4.2)

where z = vect,k{zt,k}. Note that since the forward and backward terms are not nor-

malized, we can use Tt,k(bt,k) as the emission probability, rather than the full conditional

probability, see (2.18). The forward term is therefore given by:

α(b1,k) = P (b1,k)T1,k(b1,k) (4.3a)
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α(bt,k) = Tt,k(bt,k)
∑
bt−1,k

α(bt−1,k)P (bt,k|bt−1,k) (4.3b)

and the backward term by:

β(bT,k) = 1 ∀bT,k (4.4a)

β(bt−1,k) =
∑
bt,k

β(bt,k)Tt,k(bt,k)P (bt,k|bt−1,k). (4.4b)

This inference is applied independently to each frequency. The model, denoted parallel

HMM, is depicted in Fig. 3.1 (middle).

4.2 Coupled Hidden Markov Model

The coupled HMM is an extension of the parallel HMM, with the state of each process

depending also on the states of the other processes from the previous time-step. In order to

simplify the inference, specific structure is commonly assumed in which the conditional

distribution is a linear combination of the marginal dependencies [25]:

P (bt,k|bt−1,1, . . . , bt−1,K) =
K∑
k′=1

Bk,k′Pk,k′(bt,k|bt−1,k′), (4.5)

where B is a coupling matrix between frequency pairs, and Pk,k′(bt,k|bt−1,k′) is the tran-

sition probability between the states at time-step t − 1 and time-step t, which in general,

also depends on the frequencies k′ and k at time-steps t − 1 and t, respectively. How-

ever, in this work we simplify the transition to a frequency-independent matrix, namely

Pk,k′(bt,k = m2|bt−1,k′ = m1) = P (bt,k = m2|bt−1,k′ = m1) = Am1,m2 . The coupled

HMM is depicted in Fig. 3.1 (bottom).

In order to find the posterior of each of the hidden variables given the entire set of ob-

servations P (bt,k|z), one should use the FB algorithm. An exact inference of this model

may be obtained by constructing a MK-dimension compound state comprising all fre-
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quencies. The forward and backward variables will also comprise all frequencies, namely

α(bt,1, . . . , bt,K) and β(bt,1, . . . , bt,K). To simplify the inference procedure, we will use

decomposed variables: α(bt,1), . . . , α(bt,K) and β(bt,1), . . . , β(bt,K). This decomposition

may be implemented in several ways [39; 40]. In the current contribution, we preferred

to use the simple approximation, which was shown to yield a satisfactory posterior [26].

This was also verified in our experimental study. In this method, the initialization of the

forward and backward variables is similar to (4.3a) and (4.4a) and the recursive inference

of the forward variable is given by:

α(bt,k) = Tt,k(bt,k)
K∑
k′=1

Bk,k′

∑
bt−1,k′

α(bt−1,k′)P (bt,k|bt−1,k′) (4.6)

and, similarly, for the backward variable:

β(bt−1,k) =
K∑
k′=1

Bk,k′

∑
bt,k′

β(bt,k′)Tt,k′(bt,k′)P (bt,k|bt−1,k′). (4.7)

Note that if the entries of the coupling matrix are set to Bk,k′ = δ(k′, k), with δ(·, ·)

the Kronecker delta function, the coupled HMM collapses to the parallel HMM. On the

contrary, we observed that coupling all frequencies together (e.g. by setting Bk,k′ = 1
K

∀k, k′) tends also to couple all DOA estimates across frequencies. While this is a desir-

able property in the single-speaker case, it falls short in modelling the multiple-speaker

case, where different sets of frequencies may be associated with different speakers. We

therefore propose to couple only the processes related to neighboring frequencies, namely

the DOA of the (t, k)th bin depends on the (t−1, k)th and (t−1, k±1)th bins, and to set

all other coupling coefficients to zero. Coupling more frequencies did not result in further

improvement.

As a result of the application of the FB algorithm, the posterior of the hidden data

is obtained. As this is a frequency-wise soft decision, it should be aggregated along the

frequency-index to obtain a single decision per frame. An intuitive approach is to average
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the soft associations of the frequencies to each time frame, namely:

ψt(m) =

∑
k b̂t,k(m)

K
(4.8)

where b̂t,k(m) = P (bt,k = m|z). Then, any peak-picking method can be applied to find

the actual DOA of all speakers.

4.3 Experimental study

The proposed algorithm was evaluated using two datasets: simulated time-varying

scenes, generated by a signal generator, and real multichannel audio recordings from the

LOCATA challenge [36].

4.3.1 Algorithm settings and baseline methods

The signals were resampled to 16 kHz and transformed into the STFT domain with frame-

length of 64 ms and 75% overlap. The frequency band used for localization was 300 −

4500 Hz. For applying the algorithm, a grid of possible azimuth angles is required. We

used a grid between −90◦ and 90◦, with a resolution of 2◦.

The entries of the transition matrix A were set to:

log Am1,m2 ∝


20 if m1 ∈ [m2 − 1,m2,m2 + 1]

0 otherwise
(4.9)

and the coupling matrix B, were set to:

Bk1,k2 ∝


103 if k1 = k2

1 if k1 ∈ [k2 − 1, k2 + 1]

0 otherwise

(4.10)
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35 dB 25 dB 15 dB

MUSIC [2] 0.8728 0.8535 0.8114
Instantaneous model 0.9374 0.9303 0.9081
Parallel HMM 0.9440 0.9327 0.9265
Coupled HMM 0.9443 0.9361 0.9288

Table 4.1: The AUC score results for the simulation study of two moving speakers. Best
value for AUC is 1 and the lowest value 0.5.

where the sign ∝ stands for proportion.

Similar to the instantaneous model, the proposed method provides a probability map

as a function of the time-step rather than a direct estimate of the DOAs. For estimating the

actual trajectory of the speakers, one can use any peak-picking method. To circumvent

the effects of the specific method selected, we will report instead the AUC figures. For

establishing the ROC curve, DOA estimates in the range of ±3◦ around the true value are

considered true positive and otherwise considered false positive.

For baseline methods, we used both the MUSIC algorithm [2], as provided by the

LOCATA challenge, as well as instantaneous model (chapter 3) with smoothing parame-

ters γψ = 0.1 and γφs = 0.8. For a fair comparison, the proposed results and the MUSIC

results were smoothed and normalized to obtain a pseudo-distribution similar to [22].

4.3.2 Evaluation using Simulations

In the simulated scenario, clean anechoic speech signals were drawn from the TIMIT

database [37], where speech utterances of the same speaker were concatenated to obtain a

4 s long speech signal. The speakers were randomly selected from 26 different speakers.

The simulated signals were generated using a signal generator [41]. The room dimensions

were set to 6× 4× 3 m with reverberation time T60 = 650 ms. The signals were captured

by an eight-microphone linear array with inter-distances of [3, 3, 3, 8, 3, 3, 3] cm from one

another, together with an additive spatially-diffuse speech-like noise with various SNR

values. The noise covariance matrix Φv,k was estimated using the long speech-absent

segments.
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Task #3 Task #4

MUSIC [2] 0.8844 0.7756
Instantaneous model 0.9455 0.8608
Parallel HMM 0.9589 0.8622
Coupled HMM 0.9547 0.8601

Table 4.2: The AUC results for the LOCATA experiment. Task #3 is single moving
speaker and task #4 is two moving speaker.

Twenty Monte-Carlo trials, simulating two moving sources scenarios, were examined.

In each scenario, the initial DOAs of the speakers were set to 40◦ and 100◦, respectively.

The sources moved from their initial positions in a circle with a radius of 1 m around the

array center and with angular velocity [15,−15] deg
s , respectively. An example probability

map from this experiment is shown in Fig. 4.1 (top). The results of this experiment are

depicted in Table 4.1.

4.3.3 Evaluation on LOCATA dataset

The data for the LOCATA challenge [36] were recorded in a room of size 7.1× 9.8× 3 m

with a reverberation time T60 ∼ 0.55s. We tested our algorithm on Task #3, which

is a recording of a single moving speaker, and Task #4, which is a recording of two

moving speakers. We used the data recorded by the linear array (DICIT). We used the

first recording (Recording #1) of each task. In order to estimate the noise covariance

matrix, we used noise-only frames ≈ 2 s long from the beginning of each utterance.

For the multiple speakers case, we used A and B as in Sec. 4.3.1, while for the single

speaker case we kept the same coupling matrix B but modified the transition matrix A to

log Am1,m2 ∝ 20 if m1 ∈ [m2 − 1,m2,m2 + 1] and −∞ otherwise. For calculating the

AUC, we used the ground-truth location of the speakers, as provided by the challenge.

We evaluated our algorithm on the azimuth estimation only. The LOCATA experiment

results are shown in Fig. 4.1 (middle and bottom). Comparative study for the proposed

methods and the baseline methods can be found in Table 4.2.
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Figure 4.1: Probability maps for the simulation experiment (top) and the LOCATA chal-
lenge - Task #3 (Single Speaker, middle), and Task #4 (Two Speakers, bottom).
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Chapter 5

Factor Graph Model

The material presented in this chapter is based on [24]:

K. Weisberg, B. Laufer-Goldshtein, and S. Gannot, “Simultaneous tracking

and separation of multiple sources using factor graph model,” IEEE/ACM

Transactions on Audio, Speech, and Language Processing, vol. 28, pp.

2848–2864, 2020.

In this chapter we present the factor graph model. In this model, the hidden data is

defined to be both the DOAs of the speakers and the associations of the TF bins to the

speakers. For inference we derive novel inference algorithm based on the LBP algorithm.

5.1 The model

In this model, we consider the speaker associations at,k and the DOAs dt(j) as latent

variables that we would like to infer from the observations zt,k. Applying Bayes rule, the

posterior of the latent variables is given by:

P (d, a|z) =
P (z|a,d)P (a)P (d)

P (z)
(5.1)

where a = vect,k{at,k}, d = vect,j{dt(j)}, z = vect,k{zt,k}, and we assume indepen-

dence between the DOAs d and the associations a.
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The main task is to find the marginal posterior of the variables, namely P (at,k|z) ∀t, k,

and P (dt(j)|z) ∀t, j. However, an exact computation of these marginal distributions is

intractable. In [18] this posterior was approximated by a product of probabilities from

known families, and the variational inference was used for estimating the parameters of

these probabilities. In the current work, we present a statistical model in which the pos-

terior is given in a form of a factor graph. We then propose to use the LBP inference

algorithm in order to find the marginal posterior for each variable.

In this section, we define the prior probabilities of the hidden variables P (a) and P (d),

as well as the probability of the observations given the hidden variables P (z|a,d), and use

them to form the factor graph of the posterior probability (5.1). The inference algorithm

that is applied to this factor graph model is described in Section 5.2. A brief general

review on factor graph models and their inference methods is given in Appendix A.

5.1.1 The DOA model

Following [17; 18] the prior probabilities of the DOAs of each of the speakers are modeled

as separated and independent Markov chains. The state of the Markov process associated

with each speaker is the DOA index of the corresponding speaker at each-time step. The

transition probabilities are set in a way that allows the DOA of each speaker to vary

smoothly overtime. Accordingly, the joint probability of d is given by:

P (d) =
J∏
j=1

[
Ωj(d1(j))

T∏
t=2

Ψ(dt−1(j), dt(j))

]
(5.2)

where we have defined the following potential functions:

Ψ(m1,m2) = P (dt(j) = m2|dt−1(j) = m1) (5.3a)

Ωj(m) = P (d1(j) = m) (5.3b)
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where P (dt(j) = m2|dt−1(j) = m1) is the probability to switch from one DOA to another

in subsequent time steps, and P (d1(j) = m) is the initial probability of the jth speaker at

time t = 1. In order to achieve a continuous trajectory, the transition probability is set as:

P (dt(j)|dt−1(j)) ∝


1 if dt(j) = dt−1(j)

exp(−α) if dt(j) = dt−1(j)± 1

0 otherwise

(5.4)

where α > 0 is a hyper-parameter which controls the smoothness of the trajectory. The

initial DOA probability is assumed to be known. However, we observed in our experi-

ments (see Sec. 5.3.3) for a case with three speakers) that it may also be randomly initial-

ized, hence a prior knowledge on the initial DOA is in practice unnecessary.

5.1.2 The association model

For the prior probability of the association variables a, we propose two alternative models.

The simple model is an i.i.d. distribution where an independence between the associations

in different TF bins is assumed, and each of them is uniformly distributed, namely:

P (a) =
∏
t,k

1

J
=

1

JTK
(5.5)

which is a constant expression. In the following, we derive the inference algorithm for

this model.

An alternative model is described in Section 5.2.6 following [9]. This model takes

into account the speech activity pattern across time and frequency, and represents the

relation between adjacent TF bins using a Markov random field (MRF). The MRF model

provides a more accurate description of the behavior of the association variables across

time and frequency compared to the uniform model (5.5), at the cost of slightly increasing

the complexity of the inference scheme. In the experimental part in Section 5.3, we

show that the MRF model has a slight advantage over the uniform model in terms of the
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actual performance. By describing both models, we would like to further demonstrate the

flexibility of the proposed statistical framework that facilitates the use of various models

for the associations with only small adjustments to the proposed inference algorithm.

5.1.3 The observation factor

For the factor graph model, we need to explicitly define a factor for each observation as a

function of all the associated latent variables. Thus, we rewrite (2.19) as:

P (z|a,d) =
1

Cz

∏
t,k

Υt,k(at,k, dt(1) . . . dt(J)) (5.6)

where 1
Cz
≡
∏

t,kGt,k is a constant normalization and:

Υt,k(at,k, dt(1) . . . dt(J)) ≡ Tt,k(dt(at,k)). (5.7)

We denote this function as the observation factor. Note that while Tt,k(·) is a function of

a single variable dt(at,k) ∈ [1 . . .M ], the potential function Υt,k(·, . . . , ·) is a function of

J + 1 variables, namely, at,k and dt(1) . . . dt(J). The definition of Υt,k(·, . . . , ·) is neces-

sary as the factor graph model requires that the factors are presented as direct functions of

each of the individual hidden variables separately. Note also that in contrast to the DOA

factor Ψ (5.4), which is fixed along time, the observation factor varies across time and

frequency, since it is determined by the specific observation in each TF bin.

5.1.4 The Factor Graph

We can now express the posterior P (a,d|z) as a factor graph. Substituting (5.2), (5.5)

and (5.6) into (5.1), we obtain:

P (d, a|z) =
1

C

∏
t,k

Υt,k(at,k, dt(1) . . . dt(J))
J∏
j=1

Ωj(d1(j))
T∏
t=2

Ψ(dt−1(j), dt(j)) (5.8)
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Figure 5.1: The proposed factor graph. Here, J = 2 speakers, K = 3 frequencies, and
T = 3 time-frames, for simplicity. Only three out of T×K observation factors are drawn.
The gray dashed lines and the factors Φ correspond to the modified factor graph presented
in Section 5.2.6, which is based on the MRF model for the associations. For the uniform
distribution model of the associations (5.5) these connections and factors are ignored.

where the factors Ψ(·, ·), Ωj(·) and Υt,k(·, . . . , ·) are defined in (5.3a),(5.3b) and (5.7)

respectively, and C ≡ Cz · JTK · P (z) is a normalization constant. The factor graph

model is illustrated in Fig. 5.1.

5.2 Inference using the LBP

The obtained factor graph contains loops, as can be seen in the illustrative example in

Fig. 5.1, and therefore the loopy belief propagation (LBP) [42] can be used for its infer-

ence. In this section, we derive the LBP algorithm to approximate the marginal posteriors

of the latent variables given the observations. The final DOA trajectory and the separated

signals are then obtained based on the computed marginals. In the LBP, messages are

sent from the factors to the variables and vice versa (see Appendix A). In the proposed

model there are three groups of factors: i) Ω (connected to d1(1), . . . , d1(J)); ii) Ψ (con-

nected to d); and iii) Υ (connected to all variables). The messages are functions of the

corresponding variable (either source or destination), and are calculated using the general
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Figure 5.2: The messages in the proposed LBP algorithm. The arrows are pointing from
the sending variable/factor to the receiving variable/factor, and the notation of the associ-
ated message is written above/below the arrow.

equations (A.2a) and (A.2b). However, these general equations can be simplified in our

case to achieve more efficient formulas, as shown in the sequel.

5.2.1 Notation

In the following derivations we use a simplified set of notations. The messages from Ψ

to dt(j) are denoted by
−→
ψ (dt(j)) and

←−
ψ (dt(j)) for the forward and backward messages,

respectively. For the completeness of the notation we use this notation also for t = 1

and t = T , where for t = 1 the forward message of the factor Ψ is replaced with the

corresponding Ω factor, and for t = T the backward message is fixed to uniform, as there

is no backward message to the last variable. For the observation factor, we use υt,k(·) for

the outgoing messages from the observation factor to each of the variables connected to

it, where the destination variable is deduced from the term in the brackets, i.e. υt,k(dt(j))

refers to messages to the DOA variables and υt,k(at,k) refers to messages to the association

variables. The messages from dt(j) to the observations are denoted by δt,k,j(dt(j)). The

different types of messages are illustrated in Fig. 5.2.
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5.2.2 Messages from the DOA factors

In general the factors send messages to their neighbor variables (the outgoing messages),

where these messages depend on the incoming messages from variables to the factors (the

incoming messages). However, for Ψ and Ω, the factor is a function of only a single or two

variables and it has only a single incoming message. Therefore, we do not explicitly define

the incoming messages for these factors. Instead, we substitute the incoming message

with its definition (A.2a). As a result, each of the outgoing messages is expressed in

terms of the outgoing messages of its neighbor factors to the corresponding variable.

The forward messages of Ψ for t > 1 are given by:

−→
ψ (dt(j)) =

∑
dt−1(j)

Ψ(dt−1(j), dt(j))
−→
ψ (dt−1(j))υt−1(dt−1(j)) (5.9)

where

υt(dt(j)) =
∏
k

υt,k(dt(j)) (5.10)

is the message of all K observations to dt(j). For t = 1 the message is given by:

−→
ψ (d1(j)) = Ωj(d1(j)). (5.11)

The backward message
←−
ψ (dt(j)) is symmetric, where for t = T it is set to uniform for

completeness.

5.2.3 Message from and to the observation factors

The incoming messages from the DOA variables dt(j) to the observations Υ are given by

the multiplication of the incoming messages of each DOA variable (A.2a), namely:

δt,k,j(dt(j)) =
−→
ψ (dt(j))

←−
ψ (dt(j))

∏
k̃ 6=k

υt,k(dt(j)). (5.12)
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Figure 5.3: Illustration of the calculation of ρt,k(j). The vectors represent the probabilities
over the candidate DOAs, where darker elements correspond to more probable candidates.
The case of two speakers is illustrated by blue and orange vectors representing the current
DOA estimate of the each of the speakers. The observation-based DOA likelihood vec-
tors (in gray) are correlated with the estimated DOA of the speakers, resulting in ρt,k(j),
which represents the association of the (t, k)th bin to either of the speakers based on the
observation.

The full derivation of the outgoing messages from the observation factors to their neighbor

variables can be found in Appendix B. In order to simplify the messages, we first define

the correlation between Tt,k(:) and the normalized incoming message δt,k,j(:) as:

ρt,k(j) =
M∑
m=1

Tt,k(m)δ̃t,k,j(m) (5.13)

where δ̃t,k,j(m) =
δt,k,j(m)∑
m δt,k,j(m)

is the normalized message. The correlation measures the

similarity between δt,k,j(:), which is the current estimate of the jth speaker DOA, and

Tt,k(:), which is the (t, k)th bin DOA likelihood based on the observation. The obtained

ρt,k(j) is therefore a non-normalized association of the (t, k)th bin to a speaker based on

the similarity between the observed DOA and the estimated DOA of each of the speakers,

namely, a higher value is given to the speaker whose estimated DOA matches the observed

DOA, and vice versa. This process is illustrated in Fig. 5.3.

Using the definition of ρt,k(j), the message from the observation factor to the associ-

ation variable is given by:

υt,k(at,k) = ρt,k(at,k) (5.14)
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and the message from the observation factor to the DOA variables is given by:

υt,k(dt(j)) = Tt,k(dt(j)) +
∑
`6=j

ρt,k(`). (5.15)

The meaning of the message conveyed by Υ to the jth speaker DOA is as follows.

The message consists of two terms: Tt,k(dt(j)) that depends on the DOA value dt(j), and∑
6̀=j ρt,k(`), which is independent of dt(j). If one of the other speakers is active with

high probability at this TF bin, then the value of the second term is high, and the message

is close to uniform with respect to dt(j), i.e. does not indicate any preference to a certain

DOA. Otherwise, the jth speaker is probably active at this TF bin, and the message is

dominated by the first term Tt,k(dt(j)), which is the DOA likelihood based on the (t, k)th

bin observation.

In the next step, the messages from all frequencies are integrated together for each

speaker in υt(dt(j)) (5.10) to determine its new DOA. In this integration, uniform mes-

sages do not add any information. Therefore the integrated message for the jth speaker,

contains only the information from the relevant frequencies where the jth speaker is ac-

tive. The calculation of the messages υt(dt(j)) is illustrated in Fig. 5.4.

Note that while the message to the variable at,k depends on the incoming messages

from all other variables ρt,k(1), . . . , ρt,k(J), the message to the DOA variable dt(j) of

the jth speaker depends on the message from all other variables ρt,k(1), . . . , ρt,k(j −

1), ρt,k(j + 1), . . . , ρt,k(J) except for the jth speaker message ρt,k(j), since by the defini-

tion of the LBP algorithm, the message to a particular variable depends on all incoming

messages except for the message from this variable itself.

Three additional notes on the differences between the general formulation of the

message (A.2b) in Appendix A and the simplified message (5.15) are in place. 1) In-

stead of the raw incoming messages δt,k,1(:), . . . , δt,k,J(:), the outgoing messages use

ρt,k(1), . . . , ρt,k(J) defined by the correlation between the incoming messages and the

observations (5.13); 2) The message from the association variable a does not appear here
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Figure 5.4: Illustration of the calculation of υt(dt(j)). Darker elements correspond to
higher values. For each speaker the association to the other speakers (colored in orange
or blue) is added to the DOA likelihood (colored in gray). The result is the per-frequency
non-normalized probability for each speaker υt,k(dt(j)). Multiplication along the fre-
quencies, results in the non-normalized DOA distribution.

since this variable has no connected factor except the observation; and 3) The obtained

messages involve only Tt,k(:), and not the entire factor Υt,k, since this is all the informa-

tion that the factor contains (5.7).

5.2.4 The inference algorithm

The full inference algorithm is as follows. We first initialize all messages to be uniform,

then we iterate over all the variables and update their incoming messages from their as-

sociated factors using equations (5.9, 5.11, 5.12, 5.14, 5.15). The iterations of the LBP

algorithm are stopped when the following stopping criterion is satisfied: the maximum

change in the log messages between subsequent iterations is smaller than ε or when the

number of iterations reachesNmax, which is defined as the maximum number of iterations.

The final stage is to compute the marginals, using the following equations:

P (dt(j)|z) ∝
−→
ψ (dt(j))

←−
ψ (dt(j))υt(dt(j)) (5.16a)
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P (at,k|z) ∝ υt,k(at,k) (5.16b)

where υt(dt(j)) is defined in (5.10) and the sign ∝ implies that an additional normaliza-

tion step is required. The inference algorithm is summarized in Algorithm 2.

Algorithm 2 Loopy belief propagation (LBP) for simultaneous tracking and separation
Initialize all messages to uniform

while Stopping criterion not satisfied do

for t=1:T do
update Ψ messages ∀j using (5.9 or 5.11)

compute δ̃t,k,j(dt(j)) ∀j, k using (5.12)

compute υt,k(at,k) and υt,k(dt(j)) ∀j, k using (5.14,5.15)

end

end

compute the marginals using (5.16a,5.16b)

5.2.5 Tracking and separation

Applying the inference procedure, the marginals of all the hidden variables are computed.

The trajectory of each speaker is obtained by selecting the most probable value for each

dt(j):

d̂t(j) = argmax
m∈{1,...,M}

P (dt(j) = m|z). (5.17)

The association variables provide the separation mask, which can be used in order to

separate the signal to its different sources. Following [15, Eq. (15)], the individual speech

signal can be estimated by spatial multichannel filtering followed by single channel post-

filtering (see e.g. [43]):

Ŝt,k(j) = P (at,k = j|z)ŝw,t,k(d̂t(j)) (5.18)

45



CHAPTER 5. FACTOR GRAPH MODEL

where P (at,k = j|z) is responsible for enhancing the jth speaker and attenuating the

other speakers and ŝw,t,k(d̂t(j)) defined in (2.10) is the output of the MVDR-BF directed

towards the estimated DOA of the jth speaker, and is responsible for reducing the ambient

noise.

5.2.6 MRF model for the associations

In this section, we replace the uniform model of the association variables (5.5) by a more

complex statistical model as suggested in [9], and describe the corresponding modifica-

tions to the factor graph and the inference algorithm. It was shown in [9] that in order

to smooth the associations, and to reduce musical noise, it is more reasonable to model

the dependency between the association variables in adjacent time and frequency indexes

using the Markov random field (MRF) model. For this model, the joint probability of the

association variables is given by:

P (a) =
1

Ca

∏
t,k

∏
t̃,k̃∈G{t,k}

Φ(at,k, at̃,k̃) (5.19)

where G{t, k} = {(t− 1, k), (t+ 1, k), (t, k − 1), (t, k + 1)} is the group of the indexes

couples, Ca is a normalization constant, and Φ(j1, j2) is usually defined as:

Φ(j1, j2) = exp(βδK(j1, j2)) (5.20)

where δK(·, ·) is the discrete Kronecker delta function, and β > 0 is a hyper-parameter of

the algorithm. This model encourages nearby TF bins to be associated to the same source,

and makes the association map smoother. The parameter β controls this smoothness,

where the map becomes smoother as β increases.
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Incorporating this model, the factor graph is given by:

P (d, a|z) =
1

C

∏
t,k

Υt,k(at,k, dt(1) . . . dt(J))

J∏
j=1

Ωj(d1(j))
T∏
t=2

Ψ(dt−1(j), dt(j))

∏
t,k

∏
t̃,k̃∈G{t,k}

Φ(at,k, at̃,k̃). (5.21)

In the LBP we add
−→
φ t(at,k) and

←−
φ t(at,k), for the backward and forward messages of

the MRF factors Φ in the time dimension and
−→
φ f (at,k) and

←−
φ f (at,k), for the messages in

the frequency dimension. The outgoing messages of the factor Φ are given by:

−→
φ t(at,k) =

∑
at−1,k

Φ(at−1,k, at,k)
−→
φ t(at−1,k)

−→
φ f (at−1,k)

←−
φ f (at−1,k)υt,k(at−1,k). (5.22)

The other three messages are defined similarly, and the edge messages are set to uniform.

We also define the incoming message from the association variables to the observation:

qt,k(at,k) =
−→
φ t(at,k)

←−
φ t(at,k)

−→
φ f (at,k)

←−
φ f (at,k). (5.23)

This modifies the incoming message (5.15) from the observation factor to the DOA vari-

able dt(j) as follows:

υt,k(dt(j)) = Tt,k(dt(j)) +

∑
`6=j qt,k(`)ρt,k(`)

qt,k(j)
(5.24)

Compared to (5.15), the second constant additive term now measures the activity of the

other speakers in the current TF bin based on both ρt,k(j) that measures the association

based on the current speaker DOA estimation, and qt,k(j) that measures the association

based on the information from neighbor TF bins. The final inference of the DOA vari-

ables remains unchanged (5.16a), and the inference of the associations variable (5.16b) is
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modified to include also the MRF messages:

P (at,k|z) ∝
−→
φ t(at,k)

←−
φ t(at,k)

−→
φ f (at,k)

←−
φ f (at,k)υt,k(at,t). (5.25)

5.2.7 Complexity and computation time

The complexity of the proposed algorithm depends on the number of microphones (N ),

number of DOA candidates (M ), number of frequencies (K), number of time-frames

(T ), number of speakers (J) and number of the LBP iterations (denoted as Niter). The

algorithm is implemented in two stages. In the first, we calculate the likelihood ratio

test (LRT) function Tt,k(m) as described in Algorithm 1. Then, we run LBP inference

procedure from Algorithm 2.

The calculation of Tt,k(m) consist of:

1. Calculate the MVDR-BF: K timesN×N matrix inversion andK ·M multiplication

of N ×N matrix with N × 1 vector, multiply the results with N × 1 vector, and K

scalar divisions - O(K ·N3 +K ·M ·N2 +K).

2. Apply the MVDR-BF on the signal: T ·K ·M dot products of two N × 1 vectors -

O(T ·K ·M ·N).

3. Calculate the residual noise: Already calculated for the MVDR-BF.

4. Calculate the LRT: O(T ·K ·M) operations.

In total the order of magnitude of the required operations:

O(K ·N3 +K ·M ·N2 + T ·K ·M ·N). (5.26)

For each iteration in the LBP and for each time-step we have the following computa-

tions:

1. Compute the messages Ψ: J · (K + 1) times element-wise multiplication of M × 1

vectors. Multiply the results with M ×M matrix - O(J ·K ·M + J ·M2).
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2. Compute δ̃t,k,j(·): J · (K + 1) times element-wise multiplication of M × 1 vectors

- O(J ·K ·M).

3. Compute ρt,k(·): K · J dot product of two M × 1 vectors - O(K · J ·M)

4. Compute υt,k(·) for associations: Simple assignment. No computations required.

5. Compute υt,k(·) for DOAs: (J − 1) × K operations for the sum computation and

then K · J additions of this sum to an M × 1 vector - O(K · J ·M).

In total the order of magnitude of the required operations:

O(Niter · T · (J ·K ·M + J ·M2)). (5.27)

The final inference algorithm consists of M · J · T for (5.17) and K · J · T for (5.18),

which is included in the complexity of (5.27). The actual computation time for typical

parameters, is reported in the experimental section 5.3.4.

5.3 Experimental Study

The proposed algorithm was evaluated using both simulated time-varying scenes and real

recordings carried out at the Bar-Ilan university (BIU) acoustic lab.

5.3.1 Parameters, evaluation methods and baseline algorithm

In our experiments we used a linear array, therefore the TDOA in (2.2) can be calculated

in advance from the predefined grid of DOA candidates and the array constellation. As-

suming that the sources are located far from the array (far-field condition), the TDOA in

(2.2) is given by τm,n = 1
cs
· (rn cos (ϑm)), where ϑm is the mth candidate DOA, cs is

the sound velocity and rn is the distance between the nth microphone and the first mi-

crophone. Note that we use the far-field assumption to analytically specify the RTF of

the candidates, however, in the experiments we show that the proposed algorithm is not
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restricted to the reverberation-free far-field case, but can rather be applied in reverberant

environments.

The parameters used in the implementation of our algorithm are as follows. The

signals are sampled at 16 kHz. The STFT frame-length is set to 64 ms with 75% overlap.

The grid of possible azimuth angles ranges between −900 and 900, with resolution of 2◦.

The noise PSD matrix was estimated in advance using a clean noise recording.

In our experiments, we observed that the optimal HMM parameter α highly depends

on the SNR of the experiment. We therefore select the value of α in each experiment to

be in the same order of magnitude of Tt,k, namely:

α =

∑
t,k (maxm log Tt,k(m)−minm log Tt,k(m))

T ·K
. (5.28)

The parameter of the MRF model was set to β = 0.5, which was selected using a

grid search. The LBP algorithm was stopped either after Nmax iterations, or when the

maximum change in the log messages between subsequent iterations was smaller than

ε = 10−3, where Nmax = 20 or 50, for the simulation and lab experiments, respectively.

We have two options of how to define the initial DOA message Ωj(m). The first

option is to assume that the initial DOA is known, so in Ωj(m) the known initial DOA

is assigned with probability one and the other DOAs are assigned with zero probabilities.

The second option is to assume that the initial DOA is unknown, to randomly generate

the values of Ωj(m), and to normalize them so they sum to one. In this option, we avoid

using a uniform message since it may cause the estimates to collapse to one track.

In order to assess the performance of the algorithm, we evaluated both the track-

ing accuracy and the separation results. The tracking estimation error was first eval-

uated for each speaker using the root mean square error (RMSE) measure, namely

ed(j) =
√

1
T

∑T
t=1(d̂t(j)− dt(j))2. The final score is obtained by averaging this value

for all speakers. For the separation performance, we used the source to distortion ra-

tio (SDR), source to interference ratio (SIR) and source to artifacts ratio (SAR) scores,
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evaluated by the BSS-Eval Toolbox [44].

As a baseline method we used the variational-based tracking algorithm proposed in

[18]. In this algorithm the covariance matrix of the RTF is a priori defined, and we set

it to Σa = 10I. The transition matrix was defined as in (5.4) with α = 0. This algo-

rithm requires the oracle initial DOA of the speakers for the RTF initialization. For fair

comparison, we initialized both algorithms with the true DOA, and separately examined

the performance of the proposed algorithm also with random initialization. For the same

reason, we implemented the same separation procedure using (5.18) for both methods.

In addition, we report the separation results obtained using the oracle DOA in the

construction of the MVDR-BF as well as the oracle separation mask, which was computed

using the known separated speech signals. It is the best performance that may be achieved

with the separation procedure defined in (5.18), and can therefore serve as an upper bound

for the performance of the proposed algorithm.

Note that a comparison to the former models from this work is not possible since

those models estimate the DOA distribution for each time frame rather than the actual

trajectories, and also do not handle the separation task.

5.3.2 Simulation experiment

For the simulated data, clean anechoic speech signals were drawn from the TIMIT

database [37]. The speakers were randomly selected from a subset of 26 speakers. Speech

utterances of the same speaker were concatenated to obtain a 5 s long speech signal. Note

that the proposed method cannot perform well when long silence periods exist, since it

stops tracking the speaker whenever he is inactive. However, the proposed method can

tolerate small natural silence periods. Therefore, long silence segments were removed, so

that all the speakers are almost simultaneously active during the entire signal.

To simulate moving sources, we used the signal generator.1 The room dimensions

1www.audiolabs-erlangen.de/fau/professor/habets/software/
signal-generator
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Figure 5.5: An illustration of the simulation setup.

were set to 6×4×3 m with reverberation time T60 ∼ 200 ms. The signals were captured by

an eight-microphone linear array with inter-distances of [3, 3, 3, 8, 3, 3, 3] cm. The array

center was positioned in the center of the room, in coordinates (3, 2, 1) m. The measured

signals were contaminated by an additive babble diffuse noise with various SNR levels.

The diffuse noise sound-field was generated using the noise generator software.2

Three moving speakers were simulated, with initial DOAs set to 36◦, 90◦ and 144◦,

respectively. The speakers moved from their initial positions along an arc of a circle with

a radius of 1 m from the array center. Their time-varying DOA has a sinusoidal form, with

time period randomly selected between 1 − 2.5s, and amplitude also randomly selected

between 5◦ − 8◦. The simulated setup is depicted in Fig. 5.5.

An example of the estimated TF associations as compared with the true associations

of one of the speakers is given in Fig. 5.6. For the clarity of the demonstration we focus

on a short segment of 2 s. We observe a good match between the true and the estimated

associations, indicating that the proposed algorithm successfully recovers the TF activity

2www.audiolabs-erlangen.de/fau/professor/habets/software/
noise-generators
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Figure 5.6: Comparison of TF associations of the first speaker in the simulation experi-
ment. The ground truth (left) and the estimated associations (right) are depicted.

of the speakers.

An example of the DOA estimation and the separation results obtained by the pro-

posed algorithm is illustrated in Fig. 5.7. It can be seen that the proposed algorithm

successfully recovers the trajectory of all speakers. True and estimated spectrograms of

all the speakers are also depicted, demonstrating good separation performance.

The tracking and separation results were evaluated on 200 Monte-Carlo (MC) trials

with different speakers and different trajectories for 3 SNR levels: 5 dB, 10 dB and 25 dB.

The statistics of the obtained scores are reported in boxplots in the left column of Fig. 5.8

with outliers omitted for clarity. It can be seen that for the proposed algorithm the re-

sults of the uniform and the MRF models are comparable, and that they outperform the

reference algorithm [18] on both tracking and separation tasks.

In addition, we examined the performance of the proposed method with respect to

different room environments. Here, we fixed the SNR to 25 dB, and examined three

reverberation times: 200 ms, 400 ms and 600 ms, and two source distances with respect to

the center of the array: 1 m and 1.5 m. The tracking and separation results were averaged

over 100 MC trials with different speakers and different trajectories. The results of this
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Figure 5.7: An example of the simulation results. True DOA in dashed line and estimated
DOA in solid line (a), first microphone mixed signal spectrogram (b), clean and estimated
spectrogram of the first speaker (c+d), the second speaker (e+f) and the third speaker
(g+h).

experiment are reported in Fig. 5.9. We observe a decrease in the separation scores and an

increase in the DOA RMSE for higher reverberation levels or larger source-microphone

distance. The difference in the performance between 1 m and 1.5 m distance becomes

more significant for higher reverberation levels, apparently due to the fact that in high

reverberation the direct-to-reverberant power ratio becomes much lower as the source-

microphone distance increases.

5.3.3 Laboratory experiment

In addition to the simulated experiment, we evaluated the proposed algorithm using real

recordings carried out at the BIU acoustic lab. We first defined two limited arcs on a

circle with radius of ∼ 2 m: the first arc between 20◦-75◦ and the other between 120◦-

165◦. Seven speakers participated in our experiment, five males and two females. Each

speaker moved back and forth while speaking with a natural random trajectory on each of

the defined arcs. The length of each recording was approximately 30s. The signals were

captured by an eight-microphone linear array with inter-distances of [3, 3, 3, 6, 3, 3, 3] cm.
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Figure 5.8: Simulation and lab experiment: separation and tracking performance mea-
sures for various SNRs for simulation (left) and lab experiments (right). The results are
reported for the reference variational method [18] and for the two versions of the proposed
method, with the simple uniform prior of the associations (Prop.) and with the more com-
plex MRF-model as described in Section 5.2.6 (Prop.-MRF). In addition, we report the
separation results obtained using the oracle DOA in the construction of the MVDR-BF
as well as the oracle separation mask, which was computed using the known separated
speech signals.
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Figure 5.9: Separation and tracking performance measures for three reverberation times:
200 ms, 400 ms and 600 ms, and two source distances with respect to the center of the
array: 1 m and 1.5 m, averaged over 100 MC trials, with SNR= 25 dB.
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Figure 5.10: A photo of the experimental setup at the BIU lab.

The array was located in the center of the designated circle, in a distance of approximately

1.5 meters from one of the walls. A photograph of the room configuration is given in

Fig. 5.10. The reverberation time was set to T60 ∼ 450ms by adjusting the controllable

room panels. A diffuse babble noise was also separately recorded by the same array using

4 loudspeakers facing the room corners. Finally, after discarding few utterances due to

technical problems in the recordings, we generated 29 combinations of different pairs of

speakers with noise added with different SNR levels.

In order to evaluate the results we need both the clean speech for the separation eval-

uation, and the ground-truth trajectory for the tracking evaluation. For the separation

evaluation we used the separately recorded speech signals in the first microphone as a ref-

erence. For the ground-truth DOA of the speakers we used Marvelmind indoor navigation

system.3 This system consists of a single mobile device and four stationary devices. The

coordinates of the mobile device are reported w.r.t. the stationary devices with reported

measurement error of±2 cm. In practice, we observed that occasionally this device intro-

duces small glitches, apparently due to noise or measurement instability. In the beginning

3https://marvelmind.com/product/starter-set-hw-v4-9/
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of our experiment, we measured the microphone locations, and then each participant held

the mobile device during his recording session. The ground-truth DOA is computed as

the angle between the microphone array and the line connecting the center of the array

and the speaker location.

An example of the DOA estimation obtained by the proposed method with random

DOA initialization is shown in Fig. 5.11 (a). The estimated trajectory is close to the

ground truth trajectory as measured by the indoor navigation system. Note that although

the estimated DOAs of one of the speakers deviates from the true trajectory around

t = 25s, the algorithm successfully traces back the true trajectory after few seconds.

Figure 5.11 (b) shows an example of the DOA estimation obtained with random DOA

initialization for a case with three speakers that two of them have close trajectories. It can

be seen that the proposed algorithm successfully tracks the three speakers for almost the

entire signal duration. The estimated trajectories deviate from the ground truth at the end

of the signal when two speakers get closer to each other.
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Figure 5.11: Examples of the tracking results in the lab experiment: two distant speakers
in a full 30 s recording (left) and three speakers, two of them very close to each other,
in a segment of 5 s recording (right). Dashed and solid lines correspond to ground truth
(obtained by the indoor navigation system) and estimated trajectories, respectively. The
initial DOAs were set randomly. In the three speakers case the estimated trajectories
deviate from the ground truth at the end of the signal when two speakers get closer to
each other.
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The statistics of the 29 different 2-speakers scenarios are reported in boxplots in the

right column of Fig. 5.8. While the proposed algorithm outperforms the reference al-

gorithm in the separation task for all SNR values, in the tracking task it obtains higher

errors. Comparing the uniform and the MRF models in the proposed algorithm, we ob-

serve a slight advantage to the latter in terms of the SIR measure as reflected from the

median and the 75 percentile. This advantage is more pronounced in the 5 dB SNR case.

Note that the DOA-RMSE might be biased due to measurement errors in the ground-truth

DOA, as mentioned above. Note also that the ground-truth separated speech signals, taken

as the measurements of the first microphone, cannot serve as a perfect reference as well,

which may explain the relatively low separation scores. For subjective evaluation, the

reader is referred to our website.4

We also examined the sensitivity of the proposed algorithm to the DOA initialization.

A comparison of the DOA RMSE obtained by the proposed algorithm with either ground

truth or random initialization is given in Fig. 5.12. It is observed that the error is increased

by approximately 1 degree for most of the readings. This small increase in the error

indicates that the proposed algorithm can track the speakers without prior knowledge on

their initial position.

We also examined the dependency of separation quality measures on the gender of

the speakers. We compared mixtures of same gender speakers, i.e. male and female, with

mixtures of male and female speakers. Analyzing the results, did not show any significant

differences. This conclusion might need further investigations, as the number of examples

is small.

5.3.4 Computation time

In this section, we report the average computation time of each iteration and the perfor-

mance of the proposed algorithm and the baseline algorithm as a function of the number

of iterations for the simulation experiment. The computation time was calculated using

4http://www.eng.biu.ac.il/gannot/speech-enhancement/
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Figure 5.12: Comparing DOA estimation performance with random and oracle initializa-
tion.

2.3 GHz Intel Core i9 single CPU, with 16 GB 2400 MHz DDR4 memory. The algo-

rithm was implemented using Matlab c©, without using the parallel computing utility. In

our experiments, the recording length was 30 seconds. The parameters were: N = 8,

K = 513, J = 3, M = 91, T = 309 and Nmax = 50. The average computation time

was roughly 3.8 s per iteration per second of input signal, compared to an average of 6.6 s

for the reference algorithm. Note also that the total computation time linearly depends on

the number of iterations. In Fig. 5.13, we report the tracking and separation performance

measures as a function of the number of iterations. It is demonstrated that in terms of the

separation performance, the proposed algorithm converges within 5 iterations, compared

to 15 iterations required by the reference algorithm, and also obtains better SIR scores

after convergence. For the DOA estimation, the proposed algorithm converges after 35

iterations to a lower RMSE compared to that achieved by the reference algorithm, which

converges after 20 iterations. Note also that the DOA RMSE obtained by the proposed

algorithm decreases to 3◦ − 4◦, already within 5 iterations. Therefore, when the available

computation time is limited, we can run only 5 iterations of the proposed algorithm to

obtain maximal separation performance and low DOA RMSE of less than 5◦.
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Figure 5.13: Tracking and Separation performance of a particular scenario as function of
the number of iterations.

61



Chapter 6

Conclusions

In this chapter we summarize our work and outline some future research directions.

6.1 Research summary

We have presented three algorithms for simultaneous tracking, separation and noise re-

duction of multiple speakers.

First we stated a statistical model for the observations given both the DOA trajectories

and the TF bin associations and simplify the obtained conditional distribution. Then we

used statistical inference method to infer on the hidden data which is defined to be the

DOA trajectories and the TF bin associations. We used three different models for the

hidden data.

The first model is the instantaneous model, where the hidden data is defined to be the

DOA association of each TF bin, which is actually the DOA of the active speaker in this

bin. We modeled the hidden data independently over time, with shared prior distribution

over the candidates DOA. For static scenario, this prior is constant and therefore we

proposed to use batch-EM algorithm for inference. We further derived a recursive-EM

algorithm for the dynamic case, where those priors are changing over time smoothly.

The second model has two variations, the parallel-HMM and the coupled-HMM. In

the the parallel-HMM, the hidden data was defined similarly to the first model, however,
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a time dependence was introduced, by modeling each frequency band as a Markov chain,

with transition matrix that allows for small changes in the DOA. The inference is done

using standard FB algorithm. In the second variation, per-frequency dependence was also

introduced, and we used an extended FB algorithm for inference.

In the third model the hidden dat defined to be both the DOA trajectories and the

associations. The posterior of the hidden data given the observations was modeled as a

factor graph. We used the LBP inference algorithm, to derive a novel inference scheme

where both the DOA trajectory and the separation mask are jointly obtained.

For each model, we evaluated the performance using an experimental study on both

simulated data and real-life recordings, and we demonstrated the advantage of the pro-

posed algorithm compared to reference methods.

6.2 Topics for Further Research

The present work can be extended in the following directions:

1. Improve the association model: In the proposed FG model, we used MRF model

as a prior for the association of the TF bins to the speakers. However, the improve-

ment in the performance was negligible. Future work could replace this model with

a more accurate model. One possible option is to train a neural network model on

clean speech signals to learn the probability of a speaker to be active at each fre-

quency bin, given the previous time step speech activity. This neural network can

then be used as a prior for the associations.

2. Add an option to associate the TF bins to noise: Currently we assign each TF

bin to one of the speakers, however, we observed empirically that many of the bins

do not include speech component, but are dominated by noise. Previous works (for

example [8]) proposed to add a non-speaker candidate to improve the separation

results. Applying a similar approach in our model may also improve the separation
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results. Furthermore, it can be utilized to estimate the noise covariance matrix,

which currently assumed to be known in advance.

3. Learn the hyper-parameters using the EM algorithm: In both the HMM and

the FG models, we used Markov chains to model smooth transition of the DOA

over time. The transition matrices for those chains were defined in advance, using

heuristic methods to obtain best performance for our tasks. A future direction might

be, to use the EM algorithm to learn these matrices during the algorithm application,

as done for classic HMM models [38]. The proposed inference scheme already

produces a soft associations for the hidden variables which may serve as the E-step.

In the M-step one should find the MLE of the unknown parameters given those

associations.

4. Extend the algorithm to 2D tracking: Similar to [10], several microphone arrays

can be used to obtain a full 2D tracking, rather than DOA tracking. The straight-

forward approach for this extension is to substitute the DOA candidates, by a 2D

grid of candidates, and to modify the transition matrix accordingly, which may be

intractable, due to large number of candidates. A better approach for future study

is to use same scheme for each microphone array to obtain per-array decisions,

and then optimally combine these decisions, while keeping the entire 2D trajectory

smooth.
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Factor Graphs

In this section, we briefly review the definition of factor graphs and their inference meth-

ods based on [27; 45].

A.1 Definition

Let {x1, x2, ..., xQ} be a set of Q discrete-valued random variables. We consider the joint

probability mass function P (x) = P (x1, x2, ..., xQ), which is assumed to be factored into

a product of functions:

P (x) =
1

C

∏
u∈U

fu(xu) (A.1)

where u is an index that labels the functions from a set U , where each function fu(xu)

has arguments xu ⊂ {x1, x2, ..., xQ}. We assume that the functions fu(xu) are non-

negative and finite, so that P (x) is a well-defined probability distribution. Here, C is a

normalization constant.

A factor graph is a bipartite graph that expresses the factorization structure in (A.1).

A factor graph has a variable node (which we draw as a circle) for each variable xi, and

a factor node (which we draw as a square) for each function fu, with an edge connecting

variable node xi to factor node u if and only if xi ∈ xu.
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A.2 Inference

For a given graph with given factors, one may be interested in two different goals. The

first is to find the marginals of each variable, i.e. P (xi) ∀i, and the other is to find the most

probable state, i.e. argmaxx P (x). An exact inference for factor graphs is obtained using

the belief propagation (BP) algorithm. When implemented for computing the marginal

p.d.f., the BP algorithm is also known as the sum-product algorithm, and when imple-

mented for finding the most probable state, it is called the max-product algorithm. In the

sum-product algorithm messages are sent from the factors to the variables and vice-verse,

using the following equations:

ni→u(xi) =
∏

c∈G{xi}/u

mc→i(xi) (A.2a)

mu→i(xi) =
∑
xu/xi

fu(xu)
∏

j∈G{u}/xi

nj→u(xj) (A.2b)

where ni→u(xi) is the message from the ith variable to the uth factor, mu→i(xi) is the

opposite direction message, G{xi} is the set of neighbouring factors of xi and G{u} is

the set of neighbouring variables of u. We can then obtain the marginal probability of a

particular variable xi using:

P (xi) ∝
∏

u∈G{xi}

mu→i(xi) (A.3)

where the sign ∝ means that one should normalize this expression to obtain the final

distribution. In the max-product algorithm summations are replaced by the max operator.

The max-product algorithm is out of the scope of this article.

The sum-product algorithm is proved to converge to the true marginals in tree-

structured graphs [38]. However, when the graph contains loops this algorithm is not

proved to coverage to the true marginal. The loopy belief propagation (LBP) [42] is an

extension of the BP algorithm for loopy graphs, in which messages are updated repeat-
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edly, in an arbitrary order, until a termination condition is met. In practice, it has been

observed that this algorithm often provides good estimates of the marginals.

An alternative approximate inference is the Gibbs sampling method. In this method,

we first randomly initialize all hidden variables to a value from their range. Next, we

iterate over all variables, and sample from their conditional distribution given all other

variables. Due to the factored joint distribution, this conditional distribution is given by:

P (xi|x/xi) ∝
∏

{a|xi∈xa}

fa(xa). (A.4)

After N iterations, we get sequence of [x
(1)
i . . . x

(N)
i ] values for each variable. Finally, the

marginal distribution for each variable is given by:

P (xi = a) =

∑N
n=1 1{x(n)

i =a}

N
(A.5)

For N →∞ this estimate converges to the true marginal, however, for finite N , it is com-

mon to ignore some number of samples at the beginning (the so-called burn-in period) in

order to improve the accuracy of the algorithm.
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Derivation of the Messages from the

Observation Factors

In this section, we derive the messages from the observation factors to its neighboring

variables. For general derivation, we assume here that each variable sends a message to

the observations. We denote by δt,k,j(:) and qt,k(:) the messages from the DOA and the

association variables, respectively.

B.1 The message from the observations to the association

variables

Using (A.2b) the messages to at,k are given by:

υt,k(at,k) =
∑
dt(1)

∑
dt(2)

. . .
∑
dt(J)

Υt,k(at,k, dt(1) . . . dt(J))
J∏
i=1

δt,k,i(dt(i)).

Substituting the definition of Υt,k (5.7) we obtain:

υt,k(at,k) =
∑
dt(1)

∑
dt(2)

. . .
∑
dt(J)

Tt,k(dt(at,k))
J∏
i=1

δt,k,i(dt(i)). (B.1)
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Note that the expression Tt,k(dt(at,k)) is constant for all summations except for the sum

over dt(at,k), hence we rearragne the summations as follows:

υt,k(at,k) =
∑

dt(at,k)

Tt,k(dt(at,k))
∑

dt(:)/dt(at,k)

J∏
i=1

δt,k,i(dt(i)).

Since each message δt,k,i(dt(i)) is influenced by only one summation, we can switch the

sum and product operations:

∑
dt(at,k)

Tt,k(dt(at,k)) · δt,k,at,k(dt(at,k))
∏
i 6=at,k

∑
dt(i)

δt,k,i(dt(i)).

In order to further simplify this expression, we multiply and divide it by the term∑
dt(at,k)

δt,k,at,k(dt(at,k)) to obtain

∑
dt(at,k)

Tt,k(dt(at,k)) · δt,k,at,k(dt(at,k))∑
dt(at,k)

δt,k,at,k(dt(at,k))

∏
i

∑
dt(i)

δt,k,i(dt(i))︸ ︷︷ ︸
Const

. (B.2)

Since the messages are not normalized anyway, we can ignore the constant term, and we

finally obtain:

υt,k(at,k) ∝
∑

m Tt,k(m) · δt,k,at,k(m)∑
m δt,k,at,k(m)

≡ ρt,k(at,k) (B.3)

B.2 The messages from the observations to the DOA vari-

ables

The incoming messages are coming from dt(1), . . . , dt(j − 1), dt(j + 1), . . . , dt(J) and

at,k, therefore:

υt,k(dt(j)) =
∑
at,k

∑
dt(:)/dt(j)

Tt,k(dt(at,k))qt,k(at,k)
∏
i 6=j

δt,k,i(dt(i))
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where qt,k(at,k) is uniform for the uniform distribution model (5.5) or defined by (5.23)

for the MRF model (5.19). We split the first summation over all possible values of at,k ∈

[1 . . . J ] to a sum over j and summations over all other values:

=
∑

dt(:)/dt(j)

Tt,k(dt(j))qt,k(j)
∏
i 6=j

δt,k,i(dt(i))︸ ︷︷ ︸
(*)

+
∑
at,k 6=j

qt,k(at,k)
∑

dt(:)/dt(j)

Tt,k(dt(at,k))
∏
i 6=j

δt,k,i(dt(i))︸ ︷︷ ︸
(**)

.

This expression consists of two terms. In (∗) the term Tt,k(dt(j))qt,k(j) depends on dt(j),

hence we take it out of the summation and switch the order of the sum and product oper-

ations to obtain:

(∗) = Tt,k(dt(j))qt,k(j)
∏
i 6=j

∑
dt(i)

δt,k,i(dt(i))

The term (∗∗) is same as (B.1) and similarly to (B.2) it can simplified to:

(∗∗) = ρt,k(at,k)
∏
i 6=j

∑
dt(i)

δt,k,i(dt(i)).

The overall message is now given by:

= Tt,k(dt(j))qt,k(j)
∏
i 6=j

∑
dt(i)

δt,k,i(dt(i))︸ ︷︷ ︸
const

+
∑
at,k 6=j

ρt,k(at,k)qt,k(at,k)
∏
i 6=j

∑
dt(i)

δt,k,i(dt(i))︸ ︷︷ ︸
const

.

Dividing the message by the constant qt,k(j)
∏

i 6=j
∑

dt(i)
δt,k,i(dt(i)), we finally obtain:

mt,k(dt(j)) ∝ Tt,k(dt(j)) +

∑
at,k 6=j qt,k(at,k)ρt,k(at,k)

qt,k(j)
. (B.4)
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 א

 ריצקת
 

 .םינופורקימ ךרעמב שומיש ךות םירבוד רפסמ לש הדרפהו הביקעל םימתירוגלא רפסמ םיגיצמ ונא וז הדובעב
 .רתויה לכל דחא רבוד ליעפ רדת-ןמז ביכר לכבש ךכ ,רדת-ןמזה בחרמב רובידה לש תולילד םיחינמ ונא תישאר
 ונא ,ולא תוחנהב שומיש ךות .״םידמעומ״ - םירבודה רובע םיירשפא םינוויכ לש יפוס רפסמ םיחינמ ונא ,תינש
 םינתשמה תא תודידמה תועצמאב ךרעשל םיניינועמ ונא הבש יטסיטטס ךורעש תייעבכ היעבה תא םילדממ
 לכל רדת-ןמז תכסמ )2 -ו  ,)DOA – Direction of Arrival( םירבודה ןוויכ )1 :םהש )hidden data( םייובחה
 .ליעפ היה אוה רדת-ןמז יביכר וליאב רבוד ותוא רובע הטילחמה רבוד
 םיגיצמ ונא ףוסבלו ,םיעודי םייובחה םינתשמהש החנהב תודידמל יטסיטטס לדומ םיגיצמ ונא ןכמ רחאל
 םתירוגלאב שומיש םישוע םהמ דחא לכ רובעו ,םייובחה םינתשמה רובע םינוש םייטסיטטס םילדומ השולש
 .תודידמה ךותמ םייובחה םינתשמה לש יטסיטטס ךורעשל ידוחיי
 .ןלהל םיטרופמה ,היעבה ןורתפל םינוש םימתירוגלא השולש וז הדובעב םיגצומ רבד לש ופוסב
 

 )Instantaneous model( ידיימ לדומ

-א גלפתמ הז םוקימ .יובח הנתשמכ רדת-ןמז ביכר לכב ליעפה רבודה לש םוקימל םיסחייתמ ונא הז לדומב
 ונאו ,הז גוליפ ךרעשל איה םתירוגלאה תרטמ תעכ .םיירשפאה םימוקימה ינפ לע עודי אל גוליפ םע תירוירפ
 .םתירוגלאל תואסרג יתש םיעיצמ ונא .Expectation-Maximization  (EM)םתירוגלאב ךכ ךרוצל םישמתשמ
 היינשה הסרגבו ,)Batch-EM( תינמז-וב עדימה לכ רובע םירתופ ןכלו יטטס בצמ םיחינמ ונא  הנושארה הסרגב
 .)Recursive-EM( ןמזה ינפ לע ךורעשה תא קילחמה יביסרוקר ןורתפ םיעיצמ ןכלו םיענ םירבוד םיחינמ ונא
 

 )Hidden Markov Model( יבוקרמ לדומ

 םיסחייתמ ונא רשאכ .יובח הנתשמכ רדת-ןמז ביכר לכב ליעפה רבודה לש םוקימל םיסחייתמ ונא הז לדומב םג
 ךרואל רדת ותוא רובע הנתשת ליעפה רבודה לש םוקימהש תורבתסההש ךכ ,תיבוקרמ תרשרש לאכ רדת לכל
 םע תונתשהל לוכי ליעפה רדתהש ןוויכ .רדת ותואב ליעפ תויהל ךישמי רבוד ותואש תורבתסההמ הנטק ןמזה
 ןיב רבעמ רשפאמה )Coupled Hidden Markov Model( דמוצמ יבוקרמ לדומ לש הבחרה םיעיצמ ונא ןמזה
-Forward םתירוגלאב םישמתשמ ונא ,תיטסיטטס הקסהה ךרוצל .תמיוסמ תורבתסהב ןמזה ךרואל םירדת

Backward, תויבוקרמה תוארשרשה ןיב דומיצ לש הרקמל הבחרה םע. 
 

 Factor Graph לדומ

 לכ םילדממ ונא תישאר .Factor Graph -ב שומיש ךות היעבה ןורתפל תידוחיי הטיש םיעיצמ ונא הז לדומב
 יביכר ךויש רובעו יבוקרמ לדומב םישמתשמ ונא םירבודה םוקימ רובע רשאכ ,דרפנב םייובחה םינתשמהמ דחא
-ןמזה יביכר לכ ןיב גוליפ הוושו םינושה םירבודה ינפ לע דיחא גוליפב שמתשהל םיעיצמ ונא םירבודל רדת-ןמזה
 הלפכמל קוריפל ןתינ תודידמה ןתניהב םייובחה םינתשמה לש הנתומה גוליפהש םיארמ ונא ןכמ רחאל .רדת
  .Factor Graph תארקנ וז גוליפ תרוצ .)"לאיצנטופ" תויצקנופ( תויצקנופ-תת לש
 ונחתיפ וז הטיש סיסב לע .Loopy Belief Propagation (LBP) איה הז לדומב יטסיטטס ךורעשל תוטישה תחא
 המכב שומיש ךות ,תינמז וב ןוכיאה תייעבו הדרפהה תייעב תא רתופה ,יטסיטטס הקסהל ידוחיי םתירוגלא
 .תוטושפ ןוכדע תואוושמ
 

 תואצות

 ידי לע ורצונש תוטלקה רובע םג תומייקה תוטישהמ רתוי תובוט תואצות וניארה תוטישהמ תחא לכ רובע
 .הדבעמב ונטלקהש תויתמא תוטלקה רובע םגו ,היצלומיס

  



 

 
 תונג ןורש 'פורפ לש ותכרדהב התשענ וז הדובע

 ןליא-רב תטיסרבינוא לש הסדנהל הטלוקפהמ

  



 

 
 
 

 
 שומיש ידי לע םירבוד לש הדרפהו הביקע

תיטסיטטס הקסהל תוטישב  

 
גרבסיו יבוק  

 

 ךמסומ ראות תלבק םשל תושירדהמ קלחכ תשגומ וז הדובע

ןליא -רב תטיסרבינוא לש הסדנהל הטלוקפב  
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