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Abstract

In this work, we handle two common tasks of speech processing - DOA tracking, and
speech separation - using microphone array.

Working in the short-time Fourier transform (STFT) domain and following the spar-
sity assumption, only single speaker is active at each time-frequency (TF) bin. We also
assume that the DOA is discrete, hence, the speakers’ DOA can be one of a predefined
set of candidate DOAs. The problem is then formulated as a statistical inference problem,
where we aim to infer from the time and frequency observations on both the speakers’
DOA, and on the active speaker at each TF bin. The association of each TF bin to a par-
ticular speaker, can be used in turn to build a per speaker TF mask, and to separate the
STFT signal to the different speakers.

We first determine a statistical model for the microphone array observations given
the speech signal, the DOAs and the associations of each TF bin to a speaker. Using
the maximum likelihood estimator (MLE) we estimate the speech signal, and following
several mathematical manipulations on the conditional probability we show that it can be
replaced with the minimum variance distortionless response (MVDR)-beamformer (BF)
outputs, applied on each of the candidate DOAs. We then propose three different statisti-
cal models for the DOAs and the associations, for each we derive its own inference algo-
rithm which finds those unknowns given the observations. The first is based on Mixture
of Gaussians (MoG) model, and we use two variations of the EM algorithm for inference,
Batch-EM and Recursive-EM for a static and dynamic case, respectively. The second is
either HMM or a variation called Coupled HMM, where for inference we use standard

or extended Forward-Backward (FB) algorithm, respectively. The last is a general Factor
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Graph (FG) model, where the DOAs are modeled as a Markov chain, and the speaker
associations are modeled either independently or as a Markov random field (MRF). For
this model we derive a novel inference scheme based on the LBP algorithm.

A comprehensive experimental study demonstrates the benefits of the proposed algo-
rithms in both simulated data and real-life measurements, compared to reference meth-

ods.
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Chapter 1

Introduction

Multiple-speaker separation is a well-known problem in the speech processing commu-
nity, aiming to separate the measured microphone signal to its different sources. Another
problem of substantial interest is tracking of a moving speaker, which can be used for
separation tasks, and is also required in other applications, including navigation, target
acquisition and beamforming. Both problems become challenging when multiple moving
speakers are concurrently active, as well as when additive interference signals are also

captured by the microphone array.

1.1 Literature Survey

Among the most common DOA estimation methods are the steered response power
(SRP)-phase transform (PHAT) algorithm [1] and the multiple signals classification
(MUSIC) algorithm [2]. However, these techniques are not optimal in the multiple-
speaker case, and do not address dynamic scenarios where the sources are moving during
the recording. For the separation task, existing algorithms can be roughly divided into four
groups: independent component analysis (ICA) algorithms that assume independence of
the original source signals [3]; beamforming methods based on the spatial diversity of
the speakers; algorithms based on nonnegative matrix factorization (NMF) of the speech
PSD; and methods that rely on the sparsity of speech signals in the TF domain [4]. In the

latter, the main assumption is that each TF bin is dominated by a single active speaker.
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These algorithms usually estimate a separation mask that assigns each TF bin to the active
speaker, and use it for separation by applying a mask to the PSD of the measured signal.
Comprehensive surveys of separation methods can be found in [5; 6; 7].

Several algorithms address the problem of localization and separation. In [8], the EM
algorithm is implemented for estimating both the DOAs and the separation masks of mul-
tiple static speakers with a single microphone pair. The algorithm is based on a MoG
model defining a grid of possible DOA candidates. Assuming a single dominant speaker
in each TF bin, the interaural phase differences (IPDs) from all TF bins are clustered into
groups associated with a particular speaker from a candidate DOA. The E-step in the pro-
posed EM iterations provides a soft assignment of each observation to both speaker and
DOA. By marginalizing over the DOAs, a separation mask is obtained. The weights of
the Gaussians, obtained by the M-step, define a probability distribution on the candidate
DOAs, and the DOAs of the active speakers are estimated from the candidates with the
highest probabilities. In [9], the algorithm was extended using a MRF model to promote
smoothness of the separation mask in both time and frequency, which was shown to im-
prove the separation results. In [10], a dynamic scenario was addressed by two recursive
EM (REM) variants, applied to a multichannel extension of the model in [8]: one based
on Titterington recursive EM (TREM) [11] and the second based on Cappé and Moulines
recursive EM (CREM) [12]. The separation task was not addressed in this paper.

In [13], a multichannel source separation and tracking algorithm was proposed. In
this paper, the basic model assumes static sources, and the tracking is applied as a post
processing step following the static localization procedure. Here also, the IPDs are used
as feature vectors, and are modeled using wrapped distributions. The DOA of each source
is computed using circular linear regression, which in the multiple-speaker case, is solved
by the EM algorithm. Similar to [8], the E-step is used for estimating the separation
mask, and the slopes of the IPDs are transformed to DOAs using the prior knowledge on
the inter-channel delay. A dynamic scenario is addressed by first finding the DOAs for

each time-step, and then using the estimated DOAs as observations for a factorial wrapped
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Kalman filter.

The above papers use the IPD features for the localization task, however with these
features, the presence of additive measurement noise is not directly addressed. In [14;
15; 16], the phase-related feature vectors were substituted by the raw STFT observations.
In addition, the noise (or reverberation) was explicitly modeled, resulting in improved
performance in noisy (or reverberant) scenarios. The observations at the microphone array
were modelled as a mixture of multivariate complex-Gaussians with zero-mean, and a
spatial covariance matrix consisting of both the speech and the noise PSDs. Furthermore,
it was shown in [15] that the PSDs of the candidate speakers can be estimated in advance
(prior to the application of the EM algorithm) from the outputs of a set of MVDR-BFs.

The above algorithms do not provide an explicit DOA estimate, but rather a probability
map over the candidate DOAs. While for the static localization task the actual DOA can be
found relatively easily by finding the peaks in the probability map, in a dynamic case the
peaks should be calculated for each time-step rendering the explicit trajectory inference
difficult.

Another approach to address the tracking task is to substitute the MoG model with an
HMM. In this approach, the DOAs of the speakers are also discretized to a finite set of
candidates. The model assumes that the dynamics of the sources is governed by a Markov
process, with higher probability for switching from one candidate to an adjacent candidate
at each time-step, thus allowing small changes in the DOA [17; 18].

The tasks of tracking and separation depend on each other. The reason is that when the
DOAs of the speakers are known, we can identify the dominating DOA in each TF bin and
associate it with the corresponding speaker, and thus extract it by masking. In the opposite
direction, given the association map that relates each TF bin to its dominating speaker, we
can use the set of TF bins attached with each speaker to infer its corresponding DOA.
Examples of using the outcomes of localization to perform separation can be found in
[8; 10; 15; 19], and for the other direction in [20; 21].

A simultaneous tracking and separation algorithm was proposed in [18] using a
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Bayesian approach. The definition of the hidden variables here is different from that
defined in [8]. In [8] each TF observation is associated with both a DOA and a speaker,
whereas in [18] each observation is associated only with a speaker, and the speaker is
associated with a DOA. This approach uses fewer hidden variables, hence reducing the
computational requirements, while modeling real scenarios more accurately. The contin-
uous movement of the speakers is reflected by modelling the DOAs of the speakers as
Markov processes. Since an exact inference of the hidden variables from the observations

is intractable, a variational inference was applied.

1.2 Main Contribution

In the current contribution we formulate these problems as a statistical inference prob-
lems, where the hidden data are either the DOA of each TF bin (as in [15]), or both the
association of each bin to the active speaker in this bin and the DOA of each speaker at
each time-stamp (as in [18]). In order to estimate the hidden data given the observations,
one needs to define statistical model for both the hidden data, and for the observations
given the hidden data. For the latter we use a model similar to [15], and we show that
the raw observation features can be substituted by new features, which are the likelihood
ratio test (LRT) at each candidate DOA indicating whether the MVDR-BF output at this
DOA dominated by either speech or noise. The utilization of these new features, results in
a lower computational burden that is beneficial in online and real-time applications. For
the hidden data, three different models are proposed, based on our papers [22; 23; 24],
described in the following.

The first, presented in Chapter 3, is the instantaneous model, where the hidden vari-
ables are the DOA of each TF bin, which assumed to be statistically independent with
shared prior probability. In this model the marginal distribution of the observations is
MoG and the inference is done using the EM algorithm. We further propose a tracking
procedure for dynamic scenario by applying the CREM algorithm.

In the second model, presented in Chapter 4, the hidden data is similarly defined,
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however, it is modeled using two variants of HMM. In the first, a frequency-dependent
HMM with the DOAs of the observations as the hidden Markov process, is used to ob-
tain a smooth track of the sources. Since the set of active frequencies can vary across
time-frames, we extend the model by introducing the coupled HMM paradigm [25]. In
both models the emission probabilities of the HMMs are the LRT outputs. The inference
procedure is then implemented by an extended FB algorithm [26]. The results of this pro-
cedure is a smooth DOA posterior probability per TF bin. Finally, a per-frame probability
map of the DOAs is obtained by frequency averaging.

The above algorithms provide a per-frame probability map of the speakers DOAs, and
any peak-picking method can then be applied to this map to extract a time-varying DOA
estimate for each speaker. In Chapter 5 we present a factor graph model, where in contrast
to the two previous models, the hidden variables are both the speakers DOA and the TF
bins association to speakers. By estimating those variables, both separation mask and
explicit DOA trajectory is obtained for each speaker.

Factor graph models [27] are used in many complex tasks in various signal processing
fields, such as communication [28], sonar detection [29] and robotics [30; 31]. To the best
of our knowledge, this model was not used for the task of speaker tracking and separation.
In the factor graph model, we define the hidden data as in [18] using two groups of latent
variables. The first group consists of the DOA of the sources that are modeled as sepa-
rated Markov chain for each source, where the transition probability is set to allow only
small changes in the DOAs in subsequent time steps. The second group consists of the
associations of the TF bins to the different sources, which can be modeled by an i.i.d. dis-
tribution or, following [9], using a MRF model to smoothen the associations in time and
frequency. We then show that the posterior of the latent variables given the observations
defines a factor graph, and we derive a novel inference method for simultaneously esti-
mating all latent variables, using the loopy belief propagation (LBP) inference algorithm
[32].

The algorithms proposed in this work are summarized in table 1.1.
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Model name  Graphical model Inference algorithm Chapter Where published

Instantaneous None EM/Recursive EM 3 [22]
Parrallel HMM HMM FB 4.1 [23]
Coupled HMM  Coupled HMM Extended FB 4.2 [23]
Factor graph Factor Graph LBP 5 [24]

Table 1.1: Summary of the algorithms proposed in this work.



Chapter 2

Problem Statement and Observations

Model

In this chapter we will formulate the tracking and separation tasks as a statistical inference
problem, where we aim to infer from the observations on the unobserved (“hidden”) data.
In addition, we will define the statistical model of the observations given the hidden data,
which is identical for all of our proposed algorithms, described later in this work. The
difference between our proposed methods lies in the statistical model of the hidden data,

as will be explained in details in Chapters 3, 4 and 5.

2.1 Problem Formulation

Consider an array of /N microphones, receiving signals of J moving speakers. At each
time step, each speaker is located at a specific DOA on a grid of M possible DOAs
[¥1,...,Un]. Due to the dynamic nature of the problem, the DOAs may vary from one
time step to the other. The proposed method is applied in the STFT domain with t =
1,...,T denoting the time index and £ = 1,..., K denoting the frequency index. Let
dy(7) be a categorical random variable denoting the DOA index of the jth speaker at time
index t,i.e. d;(j) € [1,..., M]. Relying on the W-disjoint orthogonality (WDO) property

of speech signals in the STFT domain [4], it can be assumed that each TF bin is dominated

7
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by a single active speaker. Let a;j be a categorical random variable denoting the active
speaker at the (¢, k)th bin, i.e. a;, € [1,...,J]. Following these definitions, the nth

microphone signal is given by:
2 = 0" () soe(defans)) + v} @.1)

where di(a:r) € [1,..., M] is the DOA index of the active speaker at the (¢, k)th bin,
g,i")(m) is the relative transfer function (RTF) associated with the mth candidate DOA
and defined between the nth microphone and the reference microphone, s;x(m) is the
speech signal from the mth candidate as measured by the reference microphone, and vg,?
denotes a stationary ambient noise at microphone n € [1,..., N|.

In low-reverberation environments, the RTF approximately corresponds to the direct

path between the source and the microphone:

n 21k Toym
g (m) = exp (—L— ’ ) (2.2)

where T denotes the sampling period, and 7,,,, denotes the known time difference of
arrival (TDOA) between the nth microphone and the reference microphone, associated
with the mth candidate DOA.

The measured signals (2.1) can be written in a vector form as:

Ze g = Gr(di(ak))ser(di(ary)) + Vi (2.3)
where
- T
o = [0, 2, Y]

ge(m) = [1.02(m), ..o ()]

- T
@ .2 (N)
Vik = [Upps V- Upg | -
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assuming, without loss of generality, that the first microphone is chosen as the reference
microphone. The generation of the observation by the defined model is illustrated in
Figure 2.1.

In the following we will denote a = vec; y{a.;} and d = vec; ;{d,(j)} as the hidden
data, and z = vec; {2}, as the observations. In some cases, it is more convenient to
define the DOA association of each TF bin, namely b, = di(a:) € [1,..., M] as the
hidden data, and we will define accordingly b = vec; ;{b: 1 }. Our goal is to estimate the
hidden data given the observations. To this end, we need to define a statistical model and

to present an inference scheme that estimates the hidden data.

Selection Stage LTI System
i System E
i Selection ]
i gr(1)~> i
i g (2)-] gr(di(ask)) 1
i DOA . g :
i Selection . i
WA Y mGn> .

Selection

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
LTI Zi 1
1 -
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

M

Figure 2.1: An illustration of the generation of the observations by the presented model.
The first part is the selection stage. The variable a,; representing the active speaker, is
used for selecting the DOA associated with the active speaker. The chosen DOA candidate
is used for selecting both the RTF and the input speech signal that are associated with this
candidate. The second part describes the actual generation of the observations by an LTI
system model, in which the chosen speech signal is filtered by the chosen RTF and noise
is added.
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2.2 The observations model

The statistical model of the hidden variables, either P(a,d) or P(b) will be discussed
latter in Chapters 3, 4 and 5. We will now define the statistical model of the observa-
tions given the hidden variables P(z|a, d). The speech signal is modeled as a zero-mean

complex-Gaussian random variable with a time-varying PSD:

P(St,k(dt(@t,k))) :N<3t,k(dt(at,k));oa ¢s,t,k(dt(@t,k))) (2.4)

where N/ (+; -, ) denotes the complex-Gaussian probability and ¢, x(di(asx)) is the un-
known PSD of the speech signal received from the DOA of the active speaker at the
(t, k)th bin. The noise is modeled as a zero-mean complex-Gaussian random vector with

a time-invariant covariance matrix ®y ;:

P(vir) =N (v 0, Dy ) - (2.5)

It is assumed that the noise covariance matrix is known in advance, or can be estimated
during speech-absent segments, due to the noise stationarity.

Following equations (2.3), (2.4) and (2.5), the conditional probability density function
(p.d.f.) of the (¢, k)th observation given the DOA of the active speaker at this bin can be

expressed as

P(Zt,k’dt(at,k)) = N(Zt,k; 0, q)z,t,k(dt(at,k)))a (2.6)

with:

D, . 1(m) = gr(m)gh (m)gs s i(m) + Py, Q2.7)

where the speech and noise signals are assumed to be statistically independent.

10
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2.3 Likelihood simplification

We will now simplify the conditional probability of the observations given the hidden
variables (2.6). We first factorize the probability, then we estimate the speech PSD using
the maximum likelihood estimator (MLE) and finally we substitute the estimated PSD in

the factorized probability to obtain the final simple expression.

2.3.1 Likelihood factorization

We factorize the likelihood of the observation to obtain a simpler expression. We first
define the a priori signal to noise ratio (SNR) of the signal impinging the array from the

mth candidate position as:

¢s,t,k (m)

D = 2.8
Ct,k (mﬂ ¢ bk (m)) (ﬁv,k (m) ( )
and the a posteriori SNR as:
[yt (m) [
m) = 1k 2.9)
77t,k( ) ¢v,k<m)
where Sy, ¢ (M) is the output of an MVDR-BF directed towards the mth candidate:
Swan(m) = wi (m)z, . (2.10)
where the MVDR-BF is defined by:
@ gr(m)
wi(m) = - : (2.11)
gt (m)@_ i gr(m)

and ¢, ,(m) is the PSD of the residual noise at the output of the MVDR-BF, and is given

by:

1
v = — . 2.12
Pokm) = e g () @12)
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According to (2.6), the conditional distribution of a single observation given the hidden

data is given by:

1
N det(P@, ¢ 1 (m

N (24,0, Dy (M) D exp(—z" (@, (m)) " 2). (2.13)

Using the definition of ®,, ;(m) (2.7) and Sylvester’s determinant theorem, the determi-

nant can be written as:

det(®@g(m)) = det(Pyr) - det(1 + durr(m)gy (m) D) ge(m))

= det(®y 1) - (1 + Ci(m; dsrn(m))).

In addition, using the Woodbury identity, the inversion of @, ,(m) can be written as:

O L g (m)gh (m)d !
q)z,t,k(m)_l _ q)‘—,}g . v,kglk( )I%k ( )7v,k ' (2.14)
T dspr(m) T+ gy (M) gk (m)
By substituting these relations into the p.d.f., we can factorize it as following:
N(z4 e, 0, Ppy k(M) = Ty (m; ds (M) - G (2.15)
where G ;, aggregates all terms which do not depend on m:
Gip = exp (—zHCIDJ}Cz) =N (2,0, Dy 1) (2.16)

N ’/TN det(q)v,k)
and T} ,(m; ¢+, (m)) aggregates the other terms:

1
1+ Cee(m; ds (M)
oxp [ Peaelmgl ()2, 2
Gsan(m) '+ gl (m)®, | gr(m) |

Tt,k(m; Os bk (m))

12
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Using (2.10),(2.12), (2.9) and (2.8) we can write 7} ;. (m; ¢s . x(m)) in a simple way:

Ti k(M s p.i(m))

1 b (Ctk (m; ¢s,t,k(m))77t,k(m)

e Gt (15 s,k () - L+ Grr(m; s e n(m)) ) - @17

Note that T3 (m; ¢s¢r(m)) is the likelihood ratio test (LRT), as presented in [33,
Eq. (14)]. The LRT tests whether z; j, is either associated with a speaker located in the mth

candidate DOA or with noise only. The computation of 7} ,(m) is described in Algorithm
1.

Finally we obtain for the conditional probability for each TF bin observation:

P(zyg|di(arr) = Typ(di(ank)) - G (2.18)

and assuming independence between the different TF bins observations given the latent

variables, the likelihood of the entire set of the observations is given by:
P(zla,d) = [ [ Tik(di(ar)) - Gox- (2.19)
tk

2.3.2 Speech PSD estimation

In this section we substitute the hidden variables a; and d,(j) with b, ), = d;(a. ) for
simplicity. Since ¢ x(m) does not directly depend on the identity of the active speaker
but on its DOA, we can estimate it prior to the algorithm application using the maxi-
mum likelihood estimator (MLE). To this end, we write the marginal distribution of the

observations, by marginalizing out the hidden variables:

P(z;¢s) = Y [ [ P(zeslbii) P(b) (2.20)
b tk

where P(b) is the prior probability of b which depends on the priors P(a) and P(d).
The MLE for ¢, ;;(m) is obtained by maximizing (2.20) w.r.t. ¢, ;z(m). We first

rearrange the marginal distribution by excluding the (, l;:)th observation from the product

13
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and summation:

P(z;¢s) = Y | Plzzlbzi) Y [ [ P(zeslbir)P(b)]. (2.21)
b; ; b\ tk\
" b; ¢ (ik)

Substituting (2.6) into (2.21), and explicitly writing the first summation over all candi-

dates, we have:
M

P(z;¢s) = Y N(271,0,®,;:(w)) - C (2.22)

w=1
where C' = Zb\b{,fc [T sy P(Zexbei) P(b) denotes a positive term, independent of

the parameter of interest ¢, ; (). Then, taking the derivative w.r.t ¢, ;z(m) we get:

6P(z; ¢s) _ aN(Zt,k707q)z,t,k(m))
¢, ;p(m) 90, ;i (m)

By setting this derivative to zero we get the MLE for ¢, ,(m) [34]:

-C. (2.23)

Gsp k(M) = |8u s (m)]> — P i(m). (2.24)

where 3y, ; (m) is the MVDR-BF output defined in (2.10), and ¢, ;(m) is the PSD of the
residual noise at the output of the MVDR-BF defined in (2.12).
Using the estimator of ¢ ¢ ,(m) we can further simplify 73 ;. (m; ¢ (m)). Dividing

(2.24) by ¢, x(m) and using the definitions in (2.9) and (2.8), we obtain:

Con(m; G pp(m)) = nep(m) — 1. (2.25)

By substituting this relation into (2.17), we finally obtain:

1
Nk (m)

Tyx(m) = Ty o(m; e g i () = exp (Nee(m) —1). (2.26)

14



CHAPTER 2. PROBLEM STATEMENT AND OBSERVATIONS MODEL

Algorithm 1 Likelihood calculation

e Calculate the MVDR-BF wy(m) Yk, m using (2.11)

Calculate the output of the MVDR-BF $,, ; .(m) Vt, k, m using (2.10)

Calculate the PSD of the residual noise Vk, m:

1

Puilm) = oo (m)®, }g(m)

Calculate the SNR at the output of the MVDR-BF V¢, k, m:

_ Bwaa(m)?

) = g om)

Calculate the LRT Vi, k, m:

1
nt,k(m)

Ty i (m; éstk(m» = exp (ner(m) — 1)
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Chapter 3

Instantaneous Hidden Data Model

The material presented in this chapter is based on [22]:

K. Weisberg, S. Gannot, and O. Schwartz, “An online multiple-speaker doa
tracking using the Cappé-Moulines recursive expectation-maximization
algorithm,” in IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), 2019, pp. 656-660.

In this section we will present the instantaneous hidden data model. The hidden data
is defined to be the DOA of the active speaker at each TF bin, while in-dependency is
assumed along time and frequency. In this model we aim to solve only the tracking

problem, using either batch EM or recursive EM algorithm.

3.1 The hidden data model

In order to simplify the inference procedure, the hidden data is defined as the DOA asso-
ciations of each TF bin 0, j, and it assumed that those variables are independent along the

TF bins with:

P(by =m) =t (3.1

where 1,,, is the a priori probability of the activity of a speaker at the mth position, and

Z%Zl Y, = 1. Because the actual number of speakers is usually lower than the number
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CHAPTER 3. INSTANTANEOUS HIDDEN DATA MODEL

of candidates, most of 1, will be close to zero [35]. A graphical representation of this
model is shown in Fig. 3.1 (top). Following this definition the marginal distribution of

the observations is MoG, and we can write the p.d.f. of the entire set of observations as:

M

P(20) = [[ D tnTin(m; dsen(m)) - Gii (3.2)

t,k m=1

where @ is the set of unknown parameters, namely 6 = [¢", ¢," | " with ¢ = vec,, {4}
and ¢s = vectjm {Psx(m)}, and we used the factorized likelihood from 2.15. The
maximum likelihood (ML) problem can readily be stated as: 0 = argmaxg log f(z; 0).
Note that although the parameters ¢, can be estimated in advance, as described in Sec.
2.3.2, we write them here as unknown parameters. This will facilitate the derivation of

recursive algorithm, as detailed in Chapter. 3.3.

3.2 Localization using Batch EM

In the batch-EM, we assume that ¢, ; () is changing independently over time, and there-
fore can be calculated in advance as derived above Sec. 2.3.2. An alternative approach
is to apply the EM algorithm to infer this parameter as in [22], however, both approaches
obtain the same estimator.

The auxiliary function of the EM algorithm is given by:
Q16 V) =E {1og (P(z,b;6)) |z 0“‘”} (3.3)

where the joint p.d.f. of the observations and the hidden data (the complete data) is given
by:
P(z,b;0) = P(z|b)P(b; ). (3.4)
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CHAPTER 3. INSTANTANEOUS HIDDEN DATA MODEL

The E-step is then given by:

(e-1) ’
ap_ B m Ly (m; ds i (m)) - G
bgék 1)(m) _E {bt’k(m)‘zmk(m);e(@ 1)} __ (0 (zlt),k( ¢ tAk< ) - G ’
Zm wm irt,k (m7 gbs,t,k(m)) : Gt7k
3.5)

and the M-step by:
p(=1)
7(0) _ Zt,kz bt,k (m)

o = = (3.6)

Since G, is not depend on m, it can cancelled out in the E-step, and therefore we

obtain simpler expression:

(€-1) 2
S (0—1 U T (m; ds e p(m))
bi(ﬁ,k )(m) =

_ > 3.7
D om %0%_1)77:,1@(7”; Ps (M)

where T, . (m; ¢s 1. (m)) is defined in (2.26).

3.3 Recursive EM

In this section, we will apply the CREM algorithm, presented in [12], to the problem at
hand. To allow for a smooth estimate of the speech PSD, we introduce time-dependency
between frames, i.e. ngS&t’k(m) depends on a set of frames. The (smooth) time-variations
of the speech PSD will be naturally obtained by the recursive nature of the algorithm.
In the CREM scheme, the iteration index ¢ is substituted by the time index ¢, and the
recursive auxiliary function is based on smoothing of the instantaneous auxiliary function

over time:

Qr(t;0) = (1 —7)Qr(t;0) +7Q(0|6(t — 1)) (3.8)

where Qr(t;0) is the recursive auxiliary function, and Q(0|0(¢t — 1)) is the instanta-
neous auxiliary function given only the current observations. The M-step is obtained by

maximizing Qg(t; @) w.r.t 8. Using (3.3) and (3.4) the recursion in (3.8) boils down to:

Mr(m) = (1= 7)1 k(m) + vbx(m), (3.9a)
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CHAPTER 3. INSTANTANEOUS HIDDEN DATA MODEL

En(m) = (1 — )& 1x(m) 4+ by () |3y e 1 (m)]* (3.9b)

Maximizing Qg (t; @) with respect to v,,, and ¢ yields the M-step:

hi(m) = W (3.10)
Boon(m) = ST m). (3.11)
v e (M) '

A recursive estimator of Btk(m) can be obtained from the CREM by substituting @@%)
with 2[152) in (3.7) and by using the original LRT expression from (2.17) with the smoothed

estimator of ¢ ; 1 (m):

T, 1 (m; g557t_17k(m)) 1 exp (Ct,k(m; Gs—1,6(m)) N 1 (m)

B 1+ G (m; qgs,t,m(m)) L+ Ger(m; dsiu(m))
(3.12)

Note the significant differences between (2.26) and (3.12). While the former does not
take into account the smoothness of the speech PSD, and hence uses only an instanta-
neous SNR estimate; the latter takes the smoothness of the PSD into account through the
recursively estimated a priori SNR estimate. We also note that the a priori SNR estimate
obtained here by the CREM procedure is very different from the estimators presnted in
[33]. An illustration of the difference between the batch and the recursive algorithms is

presented in 3.2.

3.4 Practical considerations

The original CREM uses one smoothing parameter v. We note that in our problem, the
two parameters exhibit different time behaviors: while 1/, which is related to the source

position, is slowly time-varying, the speech PSD ¢ ;(m) is rapidly changing. There-
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CHAPTER 3. INSTANTANEOUS HIDDEN DATA MODEL

fore, in our experiments, we used two different smoothing parameters: v, and 4, . Ac-
cordingly, for estimating & (m), we always used 74, ~ 1. For 7 ;(m), we used two
estimators: the first one used 7,, ~ 1 to obtain an estimate for ¢, ; (m) in (3.11), and the

second used 7y, < 1 to obtain an estimate of ¥ in (3.10).

3.5 Experimental study

The proposed algorithm was evaluated using two data-sets: simulated time-varying
scenes generated by a signal generator' and real multichannel audio recordings from the

LOCATA challenge [36].

3.5.1 Algorithm settings and baseline methods

The parameters used in the implementation of our algorithm are as follows: 1) signals
re-sampled to 16 kHz; 2) STFT frame-length 64 ms with no overlap; 3) frequency band
used for localization 1 — 6 KHz; 4) smoothing parameters v, = 0.1, 74, = 0.8; 5) grid of
possible azimuth angle between —90° and 90°, with resolution 2° and 5° for the simulated
data and LOCATA data-set, respectively; and 6) the probabilities were uniformly initial-
ized to Q@t(m) = %,Vm. The noise PSD matrix was estimated using speech absence
segment at the beginning of the recording, annotated manually for the LOCATA data-set.

The proposed method provides a probability map as a function of time and not directly
the DOA estimates. For estimating the actual trajectory of the speakers, one should use
a peak-selection method. To circumvent the effects of the peak-selection algorithm, we
have chosen to calculate instead the receiver operating characteristic (ROC) curve for
each frame and to use the area under the curve (AUC) as a measure. For calculating the
ROC curve, all detections in the range around the true DOA, specifically DOA, & 3°, are
considered true positive. The final score is obtained by time-averaging of the per-frame

AUC, excluding noise-only frames. For baseline methods, we used both the MUSIC

"www.audiolabs-erlangen.de/fau/professor/habets

/software/signal—-generator
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algorithm [2], as provided by the challenge, and the PRP-REM algorithm [10] with the
same smoothing parameter, and with fixed variance for all the Gaussians, o = 0.1. For a
fair comparison, the MUSIC results were similarly smoothed and normalized to obtain a

pseudo-distribution.

3.5.2 Evaluation using simulated data

In the simulated scenario, clean anechoic speech signals were drawn from the TIMIT
database [37], where speech utterances of the same speaker were concatenated to obtain a
5 s long speech signal. The speakers were randomly selected from 26 different speakers.
To simulate moving sources, we used the signal generator, as mentioned above. The
room dimensions were set to 6 X 6 x 6.1 m with reverberation time Ty ~ 200 ms.
The signals were captured by an eight-microphone linear array with inter-distances of
3,3,3,8,3,3,3] cm from one another, together with an additive spatially-white noise
with various SNR values.

Thirty Monte-Carlo trials, simulating two moving sources scenarios, were examined.
In each scenario, the initial DOAs of the speakers were set to 60° and 100°, respectively.
The sources moved from their initial positions in a circle with a radius of 1 m around the
array center and with angular velocity randomly selected from a uniform distribution in
the range [—15 : 15] d% to obtain random trajectories. We first examined the influence of
74, on the obtained localization score. We have noticed that the scores are insensitive to
the smoothing parameter value in the range 0.6 < 7,, < 0.9. We have therefore selected
Y4, = 0.8 for all experiments.

The results of the simulation study are depicted in Fig. 3.3. It is evident from
Fig. 3.3(a) that the proposed algorithm outperforms the PRP-REM algorithm [10] by ap-
proximately 5% for O dB SNR, and that their performance converges as the SNR level
increases. It is also demonstrated that the proposed method significantly outperforms the
MUSIC algorithm. Moreover, we note that the proposed method is computationally more

efficient than the PRP-REM, and that it additionally provides the speech PSD estimate
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that may be useful for further processing, e.g. in separation tasks [15]. In Fig. 3.3(b)
we depict the probability map 1/3m of one the trials, clearly demonstrating the tracking

capabilities of the proposed method.

3.5.3 Evaluation on LOCATA data-set

The data for the LOCATA challenge [36] were recorded in a room of size 7.1 X 9.8 X 3 m
with a reverberation time 760 ~ 0.55s. We tested our algorithm on Task #3, which
is a recording of a single moving speaker, and Task #4, which is a recording of two
moving speakers. We used the data recorded by the linear array (DICIT). We used the
first recording (Recording #1) of each task. As a reference method, an implementation of
the MUSIC algorithm was provided, as well as ground-truth location of the speakers. We
evaluate our algorithm on the azimuth estimation only. The results of the LOCATA test
are shown for the single source tracking task in Fig. 3.4 and for the two source tracking
task in Fig. 3.5. The proposed method clearly outperforms MUSIC in both tasks, as
can be deduced from the inspection of the probability maps and from the score values.
The differences are more pronounced in the two speakers case, for which the MUSIC

algorithm performs poorly.
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Figure 3.1: Graphical representation of the Instantaneous model (top) Parallel HMM
(middle) and the Coupled HMM (bottom).
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Recursive EM

Batch EM

¢):)

Figure 3.2: Batch and recursive EM illustration.
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(a) AUC vs. SNR for the instantaneous model and for the reference methods.
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(b) An example probability map for SNR = 25 dB and sources velocities ilSd%g. The
dashed line is the ground truth DOA. The obtained AUC ~ 0.96.

Figure 3.3: Experimental results of the instantaneous model for simulated data.
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(a) Proposed instantaneous model.
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(b) PRP-REM algorithm [10]

Figure 3.4: Probability maps for the LOCATA challenge (Task #3 - single moving
speaker). The dashed line is the ground truth azimuth, as provided with the LOCATA
database. AUC ~ (.95 for both methods.
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DOA [Deg]

Time [s]

Time [s]
(b) MUSIC.

Figure 3.5: Probability maps for the LOCATA challenge (Task #4 - two moving speakers).
The dashed line is the ground truth azimuth, as provided with the LOCATA database.
AUC= 0.82,0.69 for the Proposed instantaneous model and for the MUSIC algorithm,

respectively.
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Chapter 4

Parallel and Coupled HMM

The material presented in this chapter is based on [23]:

K. Weisberg and S. Gannot, “Multiple speaker tracking using coupled HMM
in the STFT domain,” in /[EEE International Workshop on Computational
Advances in Multi-Sensor Adaptive Processing (CAMSAP), Le Gosier in

Guadeloupe, French West Indies, Dec. 2019.

In this section we will present the parallel and coupled HMM models. In these mod-
els the hidden data is defined similarly to the instantaneous model (Chapter 3), while

introducing dependency between the hidden variables.

4.1 Hidden Markov Model

In this model we formulate the observations per frequency as a HMM process. The
HMM is defined by three probabilities. The first is the emission probability P(z;|b; )
which, following (2.18), is proportional to 7} ;. (b; ). The second is the transition proba-
bility P(b;x|bi—1x), commonly described by a M x M transition matrix with elements
A ms = P(bix = malbi_1x = my), which is the probability of the (¢, k)th observa-
tion to be associated with candidate DOA my, given that the (¢ — 1, k)th observation was

associated with the DOA candidate m;. In the single speaker case, the values A,,, ..,
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are set to allow only small changes (or no change) in the DOA readings. In the multi-
ple speaker case, larger changes are also allowed to enable speaker switching. The third
probability is the initial-state probability P(b; x), which is set as a uniform distribution
for all frequencies.

Under this model, the joint probability of the observations and the hidden data for the

kth frequency bin is given by [38]:

P(z1 g, 204, - 214, 01, bay - -, ) =

T
) | T P (bl 1k]

t=2

T

11 P(zt,k]btk)] . (4.1)

t=1

P(bix)

Standard HMM inference addresses two questions: 1) what is the most probable state
sequence given the observations? 2) what is the marginal posterior of the hidden process
given the entire set of observations? While for answering the first, the Viterbi algorithm
is applied, providing hard estimation of the hidden variables, for answering the second,
the FB algorithm is applied, providing a soft estimation. In this work, we prefer the latter,
which is better suited for aggregating the estimates from all frequencies into a frame-wise
DOA estimate.

The FB inference algorithm [38] is based on two terms which are calculated induc-
tively: 1) a(byy), the forward term, and 2) [5(b; ), the backward term. The marginal

posterior of the hidden data is then given by:

P(bt,k|Z) X Oé(bt,k)ﬁ(bmk), 4.2)

where z = vec; ;{2 }. Note that since the forward and backward terms are not nor-
malized, we can use 7} (b, ;) as the emission probability, rather than the full conditional

probability, see (2.18). The forward term is therefore given by:

a(bir) = P(b1r)T1x(br) (4.3a)
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alber) = Tor(ber) Y o(bro1 i) P(byglbio ) (4.3b)
b1,k
and the backward term by:
ﬁ(bﬂk) = 1VbT,k (443)
Bbirn) = Y Blbrs) Lok (b)) P (e lbi—1.)- (4.4b)
btk

This inference is applied independently to each frequency. The model, denoted parallel

HMM, is depicted in Fig. 3.1 (middle).

4.2 Coupled Hidden Markov Model

The coupled HMM is an extension of the parallel HMM, with the state of each process
depending also on the states of the other processes from the previous time-step. In order to
simplify the inference, specific structure is commonly assumed in which the conditional

distribution is a linear combination of the marginal dependencies [25]:

K
P(bylbiry - bim1i) = Y Biop Por (bilbioap), (4.5)

k'=1

where B is a coupling matrix between frequency pairs, and Py s (bt x|bs—1 /) is the tran-
sition probability between the states at time-step ¢ — 1 and time-step ¢, which in general,
also depends on the frequencies k' and & at time-steps ¢ — 1 and ¢, respectively. How-
ever, in this work we simplify the transition to a frequency-independent matrix, namely
Pijr (b = ma|bi_y = my) = P(byx = mo|bi_1pr = m1) = A,y m,. The coupled
HMM is depicted in Fig. 3.1 (bottom).

In order to find the posterior of each of the hidden variables given the entire set of ob-
servations P(b; x|z), one should use the FB algorithm. An exact inference of this model

may be obtained by constructing a M*-dimension compound state comprising all fre-
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quencies. The forward and backward variables will also comprise all frequencies, namely
a(bey, ..., b)) and B(bey, ..., by k). To simplify the inference procedure, we will use
decomposed variables: a(b; 1), ..., a(b; k) and B(bi1), ..., B(bt k). This decomposition
may be implemented in several ways [39; 40]. In the current contribution, we preferred
to use the simple approximation, which was shown to yield a satisfactory posterior [26].
This was also verified in our experimental study. In this method, the initialization of the
forward and backward variables is similar to (4.3a) and (4.4a) and the recursive inference

of the forward variable is given by:

K
a(by) = Thk(beg) Z B i Z a(bi—147) P (bt e|br—1.1) (4.6)

k=1 bt—l,k’

and, similarly, for the backward variable:

K
Bbe—1k) = > Brw Y Blbiw)Tow (br) P(brp|bi—rvr). 4.7
k'=1 by
Note that if the entries of the coupling matrix are set to By = (K, k), with d(-,-)
the Kronecker delta function, the coupled HMM collapses to the parallel HMM. On the
contrary, we observed that coupling all frequencies together (e.g. by setting By, iy = %
Vk, k') tends also to couple all DOA estimates across frequencies. While this is a desir-
able property in the single-speaker case, it falls short in modelling the multiple-speaker
case, where different sets of frequencies may be associated with different speakers. We
therefore propose to couple only the processes related to neighboring frequencies, namely
the DOA of the (¢, k)th bin depends on the (¢ — 1, k)th and (¢ — 1, £ &+ 1)th bins, and to set
all other coupling coefficients to zero. Coupling more frequencies did not result in further
improvement.
As a result of the application of the FB algorithm, the posterior of the hidden data

is obtained. As this is a frequency-wise soft decision, it should be aggregated along the

frequency-index to obtain a single decision per frame. An intuitive approach is to average
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the soft associations of the frequencies to each time frame, namely:

K

where /b\t,k(m) = P(b.x = m|z). Then, any peak-picking method can be applied to find

the actual DOA of all speakers.

4.3 Experimental study

The proposed algorithm was evaluated using two datasets: simulated time-varying
scenes, generated by a signal generator, and real multichannel audio recordings from the

LOCATA challenge [36].

4.3.1 Algorithm settings and baseline methods

The signals were resampled to 16 kHz and transformed into the STFT domain with frame-
length of 64 ms and 75% overlap. The frequency band used for localization was 300 —
4500 Hz. For applying the algorithm, a grid of possible azimuth angles is required. We
used a grid between —90° and 90°, with a resolution of 2°.

The entries of the transition matrix A were set to:

20if my € [mg — 1,mg, mo + 1]
log Ay my X (4.9)

0 otherwise

and the coupling matrix B, were set to:

(

103 lf kl == kg
Bk17k2 X §1lifk € [k’g —1, ko + 1] (4.10)

0 otherwise

\
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35dB  25dB 15dB

MUSIC [2] 0.8728 0.8535 0.8114
Instantaneous model 0.9374 0.9303 0.9081
Parallel HMM 0.9440 0.9327 0.9265
Coupled HMM 0.9443 0.9361 0.9288

Table 4.1: The AUC score results for the simulation study of two moving speakers. Best
value for AUC is 1 and the lowest value 0.5.

where the sign o stands for proportion.

Similar to the instantaneous model, the proposed method provides a probability map
as a function of the time-step rather than a direct estimate of the DOAs. For estimating the
actual trajectory of the speakers, one can use any peak-picking method. To circumvent
the effects of the specific method selected, we will report instead the AUC figures. For
establishing the ROC curve, DOA estimates in the range of +3° around the true value are
considered true positive and otherwise considered false positive.

For baseline methods, we used both the MUSIC algorithm [2], as provided by the
LOCATA challenge, as well as instantaneous model (chapter 3) with smoothing parame-
ters v, = 0.1 and -4, = 0.8. For a fair comparison, the proposed results and the MUSIC

results were smoothed and normalized to obtain a pseudo-distribution similar to [22].

4.3.2 Evaluation using Simulations

In the simulated scenario, clean anechoic speech signals were drawn from the TIMIT
database [37], where speech utterances of the same speaker were concatenated to obtain a
4 s long speech signal. The speakers were randomly selected from 26 different speakers.
The simulated signals were generated using a signal generator [41]. The room dimensions
were set to 6 X 4 X 3 m with reverberation time 7y = 650 ms. The signals were captured
by an eight-microphone linear array with inter-distances of [3, 3, 3, 8, 3, 3, 3] cm from one
another, together with an additive spatially-diffuse speech-like noise with various SNR
values. The noise covariance matrix ®, ; was estimated using the long speech-absent

segments.
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Task #3 Task #4

MUSIC [2] 0.8844  0.7756
Instantaneous model  0.9455 0.8608
Parallel HMM 0.9589 0.8622
Coupled HMM 09547  0.8601

Table 4.2: The AUC results for the LOCATA experiment. Task #3 is single moving
speaker and task #4 is two moving speaker.

Twenty Monte-Carlo trials, simulating two moving sources scenarios, were examined.
In each scenario, the initial DOAs of the speakers were set to 40° and 100°, respectively.
The sources moved from their initial positions in a circle with a radius of 1 m around the
array center and with angular velocity [15, —15] d%, respectively. An example probability
map from this experiment is shown in Fig. 4.1 (top). The results of this experiment are

depicted in Table 4.1.

4.3.3 Evaluation on LOCATA dataset

The data for the LOCATA challenge [36] were recorded in a room of size 7.1 X 9.8 X 3 m
with a reverberation time 7Tgy ~ 0.55s. We tested our algorithm on Task #3, which
is a recording of a single moving speaker, and Task #4, which is a recording of two
moving speakers. We used the data recorded by the linear array (DICIT). We used the
first recording (Recording #1) of each task. In order to estimate the noise covariance
matrix, we used noise-only frames ~ 2 s long from the beginning of each utterance.
For the multiple speakers case, we used A and B as in Sec. 4.3.1, while for the single
speaker case we kept the same coupling matrix B but modified the transition matrix A to
log Ay, o 20 if my € [mg — 1, mg, ma + 1] and —oo otherwise. For calculating the
AUC, we used the ground-truth location of the speakers, as provided by the challenge.
We evaluated our algorithm on the azimuth estimation only. The LOCATA experiment
results are shown in Fig. 4.1 (middle and bottom). Comparative study for the proposed

methods and the baseline methods can be found in Table 4.2.
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Figure 4.1: Probability maps for the simulation experiment (top) and the LOCATA chal-
lenge - Task #3 (Single Speaker, middle), and Task #4 (Two Speakers, bottom).

34



Chapter 5

Factor Graph Model

The material presented in this chapter is based on [24]:

K. Weisberg, B. Laufer-Goldshtein, and S. Gannot, “Simultaneous tracking
and separation of multiple sources using factor graph model,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 28, pp.

2848-2864, 2020.

In this chapter we present the factor graph model. In this model, the hidden data is
defined to be both the DOAs of the speakers and the associations of the TF bins to the

speakers. For inference we derive novel inference algorithm based on the LBP algorithm.

5.1 The model

In this model, we consider the speaker associations a;; and the DOAs d,(j) as latent
variables that we would like to infer from the observations z; . Applying Bayes rule, the
posterior of the latent variables is given by:

zla,d)P(a)P(d)
P(z)

P(d,alz) = il (5.1

where a = vec, g{a;x}, d = vec, ;{di(j)}, z = vec, {2z}, and we assume indepen-

dence between the DOAs d and the associations a.
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The main task is to find the marginal posterior of the variables, namely P(a, x|z) Vt, k,
and P(d.(j)|z) Vt,j. However, an exact computation of these marginal distributions is
intractable. In [18] this posterior was approximated by a product of probabilities from
known families, and the variational inference was used for estimating the parameters of
these probabilities. In the current work, we present a statistical model in which the pos-
terior is given in a form of a factor graph. We then propose to use the LBP inference
algorithm in order to find the marginal posterior for each variable.

In this section, we define the prior probabilities of the hidden variables P(a) and P(d),
as well as the probability of the observations given the hidden variables P(z|a, d), and use
them to form the factor graph of the posterior probability (5.1). The inference algorithm
that is applied to this factor graph model is described in Section 5.2. A brief general

review on factor graph models and their inference methods is given in Appendix A.

5.1.1 The DOA model

Following [17; 18] the prior probabilities of the DOAs of each of the speakers are modeled
as separated and independent Markov chains. The state of the Markov process associated
with each speaker is the DOA index of the corresponding speaker at each-time step. The
transition probabilities are set in a way that allows the DOA of each speaker to vary

smoothly overtime. Accordingly, the joint probability of d is given by:

T
= H d1 H‘I’ dt 1 )) (5'2)
t=2

J=1

where we have defined the following potential functions:

U(my,mg) = P(di(j) = maldi_1(j4) = mq) (5.3a)

Q;(m) = P(di(j) = m) (5.3b)
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where P(d;(j) = ma|di—1(j) = my) is the probability to switch from one DOA to another
in subsequent time steps, and P(d;(j) = m) is the initial probability of the jth speaker at

time ¢ = 1. In order to achieve a continuous trajectory, the transition probability is set as:

;

Lif di(j) = di—1(J)
P(di(j)]di-1(7)) o § exp(—a) if dy(j) = di_1(j) £ 1 (5.4)

0 otherwise

\

where o > 0 is a hyper-parameter which controls the smoothness of the trajectory. The
initial DOA probability is assumed to be known. However, we observed in our experi-
ments (see Sec. 5.3.3) for a case with three speakers) that it may also be randomly initial-

ized, hence a prior knowledge on the initial DOA is in practice unnecessary.

5.1.2 The association model

For the prior probability of the association variables a, we propose two alternative models.
The simple model is an i.i.d. distribution where an independence between the associations

in different TF bins is assumed, and each of them is uniformly distributed, namely:

1 1
t,k

which is a constant expression. In the following, we derive the inference algorithm for
this model.

An alternative model is described in Section 5.2.6 following [9]. This model takes
into account the speech activity pattern across time and frequency, and represents the
relation between adjacent TF bins using a Markov random field (MRF). The MRF model
provides a more accurate description of the behavior of the association variables across
time and frequency compared to the uniform model (5.5), at the cost of slightly increasing
the complexity of the inference scheme. In the experimental part in Section 5.3, we

show that the MRF model has a slight advantage over the uniform model in terms of the
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actual performance. By describing both models, we would like to further demonstrate the
flexibility of the proposed statistical framework that facilitates the use of various models

for the associations with only small adjustments to the proposed inference algorithm.

5.1.3 The observation factor

For the factor graph model, we need to explicitly define a factor for each observation as a

function of all the associated latent variables. Thus, we rewrite (2.19) as:
P(z|a,d) =& HTM (arn, di(1) ... dy(J)) (5.6)
where Ci =11 ik G' i, 1s a constant normalization and:

Tt’k(atk, dt(l) .. dt<<])) = ﬂ,k(dt(atyk)). (57)

We denote this function as the observation factor. Note that while 7} x(-) is a function of
a single variable d;(a; ) € [1... M], the potential function Y, (-, ...,-) is a function of
J + 1 variables, namely, a; ; and d;(1) . ..d;(.J). The definition of Y (-, ..., -) is neces-
sary as the factor graph model requires that the factors are presented as direct functions of
each of the individual hidden variables separately. Note also that in contrast to the DOA
factor W (5.4), which is fixed along time, the observation factor varies across time and

frequency, since it is determined by the specific observation in each TF bin.

5.1.4 The Factor Graph

We can now express the posterior P(a,d|z) as a factor graph. Substituting (5.2), (5.5)

and (5.6) into (5.1), we obtain:

T
P(d, a|z) HTtkatk,dt . dy(J)) H (i (7)) [T 2 (dier (), di(5)) (5.8)
t=2
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Figure 5.1: The proposed factor graph. Here, J = 2 speakers, K = 3 frequencies, and
T' = 3 time-frames, for simplicity. Only three out of 7" x K observation factors are drawn.
The gray dashed lines and the factors ® correspond to the modified factor graph presented
in Section 5.2.6, which is based on the MRF model for the associations. For the uniform
distribution model of the associations (5.5) these connections and factors are ignored.

where the factors W(-,-), €2;(-) and Y¢(-,...,-) are defined in (5.3a),(5.3b) and (5.7)
respectively, and C' = C, - J'X . P(z) is a normalization constant. The factor graph

model is illustrated in Fig. 5.1.

5.2 Inference using the LBP

The obtained factor graph contains loops, as can be seen in the illustrative example in
Fig. 5.1, and therefore the loopy belief propagation (LBP) [42] can be used for its infer-
ence. In this section, we derive the LBP algorithm to approximate the marginal posteriors
of the latent variables given the observations. The final DOA trajectory and the separated
signals are then obtained based on the computed marginals. In the LBP, messages are
sent from the factors to the variables and vice versa (see Appendix A). In the proposed
model there are three groups of factors: i) {2 (connected to d;(1),...,dy(J)); ii) ¥ (con-
nected to d); and iii) T (connected to all variables). The messages are functions of the

corresponding variable (either source or destination), and are calculated using the general
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Figure 5.2: The messages in the proposed LBP algorithm. The arrows are pointing from
the sending variable/factor to the receiving variable/factor, and the notation of the associ-
ated message is written above/below the arrow.

equations (A.2a) and (A.2b). However, these general equations can be simplified in our

case to achieve more efficient formulas, as shown in the sequel.

5.2.1 Notation

In the following derivations we use a simplified set of notations. The messages from ¥
to d;(j) are denoted by ?(dt (7)) and <E(dt (7)) for the forward and backward messages,
respectively. For the completeness of the notation we use this notation also for ¢ = 1
and t = T, where for ¢ = 1 the forward message of the factor ¥ is replaced with the
corresponding {2 factor, and for ¢ = 7" the backward message is fixed to uniform, as there
is no backward message to the last variable. For the observation factor, we use vy x(-) for
the outgoing messages from the observation factor to each of the variables connected to
it, where the destination variable is deduced from the term in the brackets, i.e. vy x(d:(7))
refers to messages to the DOA variables and v, , (a; ) refers to messages to the association
variables. The messages from d;(j) to the observations are denoted by 0, ;(d:(j)). The

different types of messages are illustrated in Fig. 5.2.
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5.2.2 Messages from the DOA factors

In general the factors send messages to their neighbor variables (the outgoing messages),
where these messages depend on the incoming messages from variables to the factors (the
incoming messages). However, for U and 2, the factor is a function of only a single or two
variables and it has only a single incoming message. Therefore, we do not explicitly define
the incoming messages for these factors. Instead, we substitute the incoming message
with its definition (A.2a). As a result, each of the outgoing messages is expressed in
terms of the outgoing messages of its neighbor factors to the corresponding variable.

The forward messages of W for ¢ > 1 are given by:

$(dj)) = >, U(dior (1), (7)) & (s (1) (dia (5)) (5.9)

di—1(7)

where

o(di(7) = [ [ ven(di(d)) (5.10)

is the message of all K observations to d;(j). For ¢t = 1 the message is given by:

D (di(5)) = (). 5.11)

%
The backward message v (d;(7)) is symmetric, where for ¢ = 7' it is set to uniform for

completeness.

5.2.3 Message from and to the observation factors

The incoming messages from the DOA variables d;(j) to the observations T are given by

the multiplication of the incoming messages of each DOA variable (A.2a), namely:

Sug (7)) = & (7)) 0 (d(5) T vur(d(5)). (5.12)

k#k
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Figure 5.3: Illustration of the calculation of p; x (7). The vectors represent the probabilities
over the candidate DOAs, where darker elements correspond to more probable candidates.
The case of two speakers is illustrated by blue and orange vectors representing the current
DOA estimate of the each of the speakers. The observation-based DOA likelihood vec-
tors (in gray) are correlated with the estimated DOA of the speakers, resulting in p; x(j),
which represents the association of the (¢, k)th bin to either of the speakers based on the
observation.

The full derivation of the outgoing messages from the observation factors to their neighbor
variables can be found in Appendix B. In order to simplify the messages, we first define

the correlation between 7} ;,(:) and the normalized incoming message d; 5, ;(:) as:

pe(] ZTtk m)ds () (5.13)

where 0, ;(m) = % is the normalized message. The correlation measures the

similarity between 0,4 ;(:), which is the current estimate of the jth speaker DOA, and
T} (:), which is the (¢, k)th bin DOA likelihood based on the observation. The obtained
pr.k(7) is therefore a non-normalized association of the (¢, k)th bin to a speaker based on
the similarity between the observed DOA and the estimated DOA of each of the speakers,
namely, a higher value is given to the speaker whose estimated DOA matches the observed
DOA, and vice versa. This process is illustrated in Fig. 5.3.

Using the definition of p; ;(j), the message from the observation factor to the associ-
ation variable is given by:

Ut k (at,k) = Ptk (Clt,k) (5.14)
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and the message from the observation factor to the DOA variables is given by:

k() = Tor(de(5) + D pen(0). (5.15)
t#j

The meaning of the message conveyed by T to the jth speaker DOA is as follows.
The message consists of two terms: T3 (d;(j)) that depends on the DOA value d,(j), and
>_ez; P (€), which is independent of d;(j). If one of the other speakers is active with
high probability at this TF bin, then the value of the second term is high, and the message
is close to uniform with respect to d,(j), i.e. does not indicate any preference to a certain
DOA. Otherwise, the jth speaker is probably active at this TF bin, and the message is
dominated by the first term 7} ;- (d;(j)), which is the DOA likelihood based on the (¢, k)th
bin observation.

In the next step, the messages from all frequencies are integrated together for each
speaker in T;(d;(7)) (5.10) to determine its new DOA. In this integration, uniform mes-
sages do not add any information. Therefore the integrated message for the jth speaker,
contains only the information from the relevant frequencies where the jth speaker is ac-
tive. The calculation of the messages T;(d,(j)) is illustrated in Fig. 5.4.

Note that while the message to the variable a; ;, depends on the incoming messages
from all other variables p; (1), ..., pre(J), the message to the DOA variable d;(j) of
the jth speaker depends on the message from all other variables p; (1), ..., pre(j —
1), pee(j+1),...,pex(J) except for the jth speaker message p; (7)., since by the defini-
tion of the LBP algorithm, the message to a particular variable depends on all incoming
messages except for the message from this variable itself.

Three additional notes on the differences between the general formulation of the
message (A.2b) in Appendix A and the simplified message (5.15) are in place. 1) In-
stead of the raw incoming messages ;4 1(:), ..., 0. s(:), the outgoing messages use
pexk(1), ..., prx(J) defined by the correlation between the incoming messages and the

observations (5.13); 2) The message from the association variable a does not appear here
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Figure 5.4: Tllustration of the calculation of T;(d;(j)). Darker elements correspond to
higher values. For each speaker the association to the other speakers (colored in orange
or blue) is added to the DOA likelihood (colored in gray). The result is the per-frequency
non-normalized probability for each speaker vy ;(d;(j)). Multiplication along the fre-
quencies, results in the non-normalized DOA distribution.

since this variable has no connected factor except the observation; and 3) The obtained
messages involve only 7} ;(:), and not the entire factor T, j, since this is all the informa-

tion that the factor contains (5.7).

5.2.4 The inference algorithm

The full inference algorithm is as follows. We first initialize all messages to be uniform,
then we iterate over all the variables and update their incoming messages from their as-
sociated factors using equations (5.9, 5.11, 5.12, 5.14, 5.15). The iterations of the LBP
algorithm are stopped when the following stopping criterion is satisfied: the maximum
change in the log messages between subsequent iterations is smaller than € or when the
number of iterations reaches N,,,, which is defined as the maximum number of iterations.

The final stage is to compute the marginals, using the following equations:

Pdy(j)]z) o 0 (di(3)) 0 (ds(3))Tu(de () (5.16a)
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P(ayk|z) o< vy (ar) (5.16b)

where T, (d;(7)) is defined in (5.10) and the sign o< implies that an additional normaliza-

tion step is required. The inference algorithm is summarized in Algorithm 2.

Algorithm 2 Loopy belief propagation (LBP) for simultaneous tracking and separation
Initialize all messages to uniform

while Stopping criterion not satisfied do

for t=1:T do
update W messages Vj using (5.9 or 5.11)

compute &, 5 ;(dy(7)) V7, k using (5.12)

compute vy i (arx) and vy (di(j)) V7, k using (5.14,5.15)

end

end

compute the marginals using (5.16a,5.16b)

5.2.5 Tracking and separation

Applying the inference procedure, the marginals of all the hidden variables are computed.
The trajectory of each speaker is obtained by selecting the most probable value for each
di(j):

di(7) = argmax P(di(j) = m|z). (5.17)

The association variables provide the separation mask, which can be used in order to
separate the signal to its different sources. Following [15, Eq. (15)], the individual speech
signal can be estimated by spatial multichannel filtering followed by single channel post-

filtering (see e.g. [43]):

~ ~

Ser(d) = Plack = 712)3w,e.1(de(7)) (5.18)
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where P(a;; = j|z) is responsible for enhancing the jth speaker and attenuating the
other speakers and §w,t7k(dt (7)) defined in (2.10) is the output of the MVDR-BF directed
towards the estimated DOA of the jth speaker, and is responsible for reducing the ambient

noise.

5.2.6 MRF model for the associations

In this section, we replace the uniform model of the association variables (5.5) by a more
complex statistical model as suggested in [9], and describe the corresponding modifica-
tions to the factor graph and the inference algorithm. It was shown in [9] that in order
to smooth the associations, and to reduce musical noise, it is more reasonable to model
the dependency between the association variables in adjacent time and frequency indexes
using the Markov random field (MRF) model. For this model, the joint probability of the

association variables is given by:

1
P(a) = roh H H P(ak, azz) (5.19)

“ tk Ekeg{tk}

where G{t,k} = {(t — 1,k),(t + 1,k),(t,k — 1), (t, k + 1)} is the group of the indexes

couples, C, is a normalization constant, and ®(j;, j») is usually defined as:

q’(jb]é) = eXP(ﬁ(SK(jl,jQ)) (5.20)

where dg (-, -) is the discrete Kronecker delta function, and 5 > 0 is a hyper-parameter of
the algorithm. This model encourages nearby TF bins to be associated to the same source,
and makes the association map smoother. The parameter 5 controls this smoothness,

where the map becomes smoother as /3 increases.
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Incorporating this model, the factor graph is given by:
1
P(d,alz) = 1;[ Tiplanp, di(1) ... di(J))

H Q;(dr (7)) [ [ U (dir(5), de())

t=2

II II ®aaz) (5.21)
tk {keg{t,k}
— —
In the LBP we add ¢ ;(a.x) and ¢ ¢(as ), for the backward and forward messages of

— —
the MRF factors @ in the time dimension and ¢ ¢(a. ;) and ¢ f(a. ), for the messages in

the frequency dimension. The outgoing messages of the factor ¢ are given by:

_>

¢t(at,k) = Z (D(at—l,kaat,k)

at—1k

gt(at—l,k)gf(at—l,k)?f(at—l,k)vt,k(at—l,w- (5.22)

The other three messages are defined similarly, and the edge messages are set to uniform.

We also define the incoming message from the association variables to the observation:

gtk (at,k) = gt(at,k)%t(at,k)gf(at,k)%f<at,k>- (5.23)

This modifies the incoming message (5.15) from the observation factor to the DOA vari-

able d;(j) as follows:

ZZ;&j Gtk (0) pe.i(£)
Gtk (J)

Ut,k(dt(j)) = T;;k(dt(j)) + (5.24)

Compared to (5.15), the second constant additive term now measures the activity of the
other speakers in the current TF bin based on both p; x(j) that measures the association
based on the current speaker DOA estimation, and ¢; x(j) that measures the association
based on the information from neighbor TF bins. The final inference of the DOA vari-

ables remains unchanged (5.16a), and the inference of the associations variable (5.16b) is
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modified to include also the MRF messages:

P(at,k‘z> X ?t(at,k)?t(at,k)gf(at,kz)?f(at,k)vt,k(at,t)- (5.25)

5.2.7 Complexity and computation time

The complexity of the proposed algorithm depends on the number of microphones (/N),
number of DOA candidates (M), number of frequencies (/), number of time-frames
(T"), number of speakers (/) and number of the LBP iterations (denoted as Nje;). The
algorithm is implemented in two stages. In the first, we calculate the likelihood ratio
test (LRT) function T} ;(m) as described in Algorithm 1. Then, we run LBP inference
procedure from Algorithm 2.

The calculation of T} ;(m) consist of:

1. Calculate the MVDR-BF: K times N x N matrix inversion and K - M multiplication
of N x N matrix with N x 1 vector, multiply the results with N x 1 vector, and K

scalar divisions - O(K - N> + K - M - N? + K).

2. Apply the MVDR-BF on the signal: 7" - K - M dot products of two N x 1 vectors -
O(T-K-M-N).

3. Calculate the residual noise: Already calculated for the MVDR-BF.

4. Calculate the LRT: O(T - K - M) operations.

In total the order of magnitude of the required operations:
OK-N+K-M-N*+T-K-M-N). (5.26)

For each iteration in the LBP and for each time-step we have the following computa-

tions:

1. Compute the messages W: J - (K + 1) times element-wise multiplication of M x 1

vectors. Multiply the results with M x M matrix - O(J - K - M + J - M?).

48



CHAPTER 5. FACTOR GRAPH MODEL

2. Compute 0y 4 ;(-): J - (K + 1) times element-wise multiplication of M x 1 vectors

-O(J-K-M).
3. Compute p; 4 (-): K - J dot product of two M x 1 vectors - O(K - J - M)
4. Compute vy x(-) for associations: Simple assignment. No computations required.

5. Compute v (-) for DOAs: (J — 1) x K operations for the sum computation and

then K - J additions of this sum to an M x 1 vector - O(K - J - M).

In total the order of magnitude of the required operations:
O(Nier - T+ (J- K - M+ J-M?)). (5.27)

The final inference algorithm consists of M - J - T' for (5.17) and K - J - T for (5.18),
which is included in the complexity of (5.27). The actual computation time for typical

parameters, is reported in the experimental section 5.3.4.

5.3 Experimental Study

The proposed algorithm was evaluated using both simulated time-varying scenes and real

recordings carried out at the Bar-Ilan university (BIU) acoustic lab.

5.3.1 Parameters, evaluation methods and baseline algorithm

In our experiments we used a linear array, therefore the TDOA in (2.2) can be calculated
in advance from the predefined grid of DOA candidates and the array constellation. As-
suming that the sources are located far from the array (far-field condition), the TDOA in
(2.2) is given by 7,,,,, = Ci - (rpcos (U,,)), where 9, is the mth candidate DOA, ¢ is
the sound velocity and 7, is the distance between the nth microphone and the first mi-
crophone. Note that we use the far-field assumption to analytically specify the RTF of

the candidates, however, in the experiments we show that the proposed algorithm is not
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restricted to the reverberation-free far-field case, but can rather be applied in reverberant
environments.

The parameters used in the implementation of our algorithm are as follows. The
signals are sampled at 16 kHz. The STFT frame-length is set to 64 ms with 75% overlap.
The grid of possible azimuth angles ranges between —90° and 90°, with resolution of 2°.
The noise PSD matrix was estimated in advance using a clean noise recording.

In our experiments, we observed that the optimal HMM parameter o highly depends
on the SNR of the experiment. We therefore select the value of « in each experiment to

be in the same order of magnitude of 7; ;,, namely:

Zt,k (max,, log T} ,(m) — min,, log T} x(m))
o = .

T K (5.28)

The parameter of the MRF model was set to 8 = 0.5, which was selected using a
grid search. The LBP algorithm was stopped either after /V,,, iterations, or when the
maximum change in the log messages between subsequent iterations was smaller than
e = 1073, where N« = 20 or 50, for the simulation and lab experiments, respectively.

We have two options of how to define the initial DOA message €2;(m). The first
option is to assume that the initial DOA is known, so in €2;(m) the known initial DOA
is assigned with probability one and the other DOAs are assigned with zero probabilities.
The second option is to assume that the initial DOA is unknown, to randomly generate
the values of €2;(m), and to normalize them so they sum to one. In this option, we avoid
using a uniform message since it may cause the estimates to collapse to one track.

In order to assess the performance of the algorithm, we evaluated both the track-
ing accuracy and the separation results. The tracking estimation error was first eval-

uated for each speaker using the root mean square error (RMSE) measure, namely

eq(j) = \/ T S°F (dy(5) — dy(5))2. The final score is obtained by averaging this value
for all speakers. For the separation performance, we used the source to distortion ra-

tio (SDR), source to interference ratio (SIR) and source to artifacts ratio (SAR) scores,
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evaluated by the BSS-Eval Toolbox [44].

As a baseline method we used the variational-based tracking algorithm proposed in
[18]. In this algorithm the covariance matrix of the RTF is a priori defined, and we set
it to 3, = 10I. The transition matrix was defined as in (5.4) with « = 0. This algo-
rithm requires the oracle initial DOA of the speakers for the RTF initialization. For fair
comparison, we initialized both algorithms with the true DOA, and separately examined
the performance of the proposed algorithm also with random initialization. For the same
reason, we implemented the same separation procedure using (5.18) for both methods.

In addition, we report the separation results obtained using the oracle DOA in the
construction of the MVDR-BF as well as the oracle separation mask, which was computed
using the known separated speech signals. It is the best performance that may be achieved
with the separation procedure defined in (5.18), and can therefore serve as an upper bound
for the performance of the proposed algorithm.

Note that a comparison to the former models from this work is not possible since
those models estimate the DOA distribution for each time frame rather than the actual

trajectories, and also do not handle the separation task.

5.3.2 Simulation experiment

For the simulated data, clean anechoic speech signals were drawn from the TIMIT
database [37]. The speakers were randomly selected from a subset of 26 speakers. Speech
utterances of the same speaker were concatenated to obtain a 5 s long speech signal. Note
that the proposed method cannot perform well when long silence periods exist, since it
stops tracking the speaker whenever he is inactive. However, the proposed method can
tolerate small natural silence periods. Therefore, long silence segments were removed, so
that all the speakers are almost simultaneously active during the entire signal.

To simulate moving sources, we used the signal generator.! The room dimensions

'www.audiolabs-erlangen.de/fau/professor/habets/software/

signal—-generator
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Figure 5.5: An illustration of the simulation setup.

were set to 6 x4 x 3 m with reverberation time 759 ~ 200 ms. The signals were captured by
an eight-microphone linear array with inter-distances of [3, 3, 3,8, 3,3, 3] cm. The array
center was positioned in the center of the room, in coordinates (3,2, 1) m. The measured
signals were contaminated by an additive babble diffuse noise with various SNR levels.
The diffuse noise sound-field was generated using the noise generator software.?

Three moving speakers were simulated, with initial DOAs set to 36°, 90° and 144°,
respectively. The speakers moved from their initial positions along an arc of a circle with
aradius of 1 m from the array center. Their time-varying DOA has a sinusoidal form, with
time period randomly selected between 1 — 2.5s, and amplitude also randomly selected
between 5° — 8°. The simulated setup is depicted in Fig. 5.5.

An example of the estimated TF associations as compared with the true associations
of one of the speakers is given in Fig. 5.6. For the clarity of the demonstration we focus

on a short segment of 2 s. We observe a good match between the true and the estimated

associations, indicating that the proposed algorithm successfully recovers the TF activity

2www.audiolabs—-erlangen.de/fau/professor/habets/software/

noise-generators
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Figure 5.6: Comparison of TF associations of the first speaker in the simulation experi-
ment. The ground truth (left) and the estimated associations (right) are depicted.

of the speakers.

An example of the DOA estimation and the separation results obtained by the pro-
posed algorithm is illustrated in Fig. 5.7. It can be seen that the proposed algorithm
successfully recovers the trajectory of all speakers. True and estimated spectrograms of
all the speakers are also depicted, demonstrating good separation performance.

The tracking and separation results were evaluated on 200 Monte-Carlo (MC) trials
with different speakers and different trajectories for 3 SNR levels: 5 dB, 10 dB and 25 dB.
The statistics of the obtained scores are reported in boxplots in the left column of Fig. 5.8
with outliers omitted for clarity. It can be seen that for the proposed algorithm the re-
sults of the uniform and the MRF models are comparable, and that they outperform the
reference algorithm [18] on both tracking and separation tasks.

In addition, we examined the performance of the proposed method with respect to
different room environments. Here, we fixed the SNR to 25 dB, and examined three
reverberation times: 200 ms, 400 ms and 600 ms, and two source distances with respect to
the center of the array: 1 m and 1.5 m. The tracking and separation results were averaged

over 100 MC trials with different speakers and different trajectories. The results of this
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Figure 5.7: An example of the simulation results. True DOA in dashed line and estimated
DOA in solid line (a), first microphone mixed signal spectrogram (b), clean and estimated
spectrogram of the first speaker (c+d), the second speaker (e+f) and the third speaker

(g+h).

experiment are reported in Fig. 5.9. We observe a decrease in the separation scores and an
increase in the DOA RMSE for higher reverberation levels or larger source-microphone
distance. The difference in the performance between 1 m and 1.5 m distance becomes
more significant for higher reverberation levels, apparently due to the fact that in high
reverberation the direct-to-reverberant power ratio becomes much lower as the source-

microphone distance increases.

5.3.3 Laboratory experiment

In addition to the simulated experiment, we evaluated the proposed algorithm using real
recordings carried out at the BIU acoustic lab. We first defined two limited arcs on a
circle with radius of ~ 2 m: the first arc between 20°-75° and the other between 120°-
165°. Seven speakers participated in our experiment, five males and two females. Each
speaker moved back and forth while speaking with a natural random trajectory on each of
the defined arcs. The length of each recording was approximately 30s. The signals were

captured by an eight-microphone linear array with inter-distances of [3, 3, 3, 6, 3, 3, 3] cm.
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Figure 5.8: Simulation and lab experiment: separation and tracking performance mea-
sures for various SNRs for simulation (left) and lab experiments (right). The results are
reported for the reference variational method [18] and for the two versions of the proposed
method, with the simple uniform prior of the associations (Prop.) and with the more com-
plex MRF-model as described in Section 5.2.6 (Prop.-MRF). In addition, we report the
separation results obtained using the oracle DOA in the construction of the MVDR-BF
as well as the oracle separation mask, which was computed using the known separated

speech signals.
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Figure 5.9: Separation and tracking performance measures for three reverberation times:
200 ms, 400 ms and 600 ms, and two source distances with respect to the center of the
array: 1 m and 1.5 m, averaged over 100 MC trials, with SNR= 25 dB.
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Figure 5.10: A photo of the experimental setup at the BIU lab.

The array was located in the center of the designated circle, in a distance of approximately
1.5 meters from one of the walls. A photograph of the room configuration is given in
Fig. 5.10. The reverberation time was set to 7g9 ~ 450ms by adjusting the controllable
room panels. A diffuse babble noise was also separately recorded by the same array using
4 loudspeakers facing the room corners. Finally, after discarding few utterances due to
technical problems in the recordings, we generated 29 combinations of different pairs of
speakers with noise added with different SNR levels.

In order to evaluate the results we need both the clean speech for the separation eval-
uation, and the ground-truth trajectory for the tracking evaluation. For the separation
evaluation we used the separately recorded speech signals in the first microphone as a ref-
erence. For the ground-truth DOA of the speakers we used Marvelmind indoor navigation
system.? This system consists of a single mobile device and four stationary devices. The
coordinates of the mobile device are reported w.r.t. the stationary devices with reported
measurement error of +2 cm. In practice, we observed that occasionally this device intro-

duces small glitches, apparently due to noise or measurement instability. In the beginning

Shttps://marvelmind. com/product/starter-set—hw-v4-9/
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of our experiment, we measured the microphone locations, and then each participant held
the mobile device during his recording session. The ground-truth DOA is computed as
the angle between the microphone array and the line connecting the center of the array
and the speaker location.

An example of the DOA estimation obtained by the proposed method with random
DOA initialization is shown in Fig. 5.11 (a). The estimated trajectory is close to the
ground truth trajectory as measured by the indoor navigation system. Note that although
the estimated DOAs of one of the speakers deviates from the true trajectory around
t = 25s, the algorithm successfully traces back the true trajectory after few seconds.
Figure 5.11 (b) shows an example of the DOA estimation obtained with random DOA
initialization for a case with three speakers that two of them have close trajectories. It can
be seen that the proposed algorithm successfully tracks the three speakers for almost the
entire signal duration. The estimated trajectories deviate from the ground truth at the end

of the signal when two speakers get closer to each other.

180 1801

0 1‘0 20 36 0 1 2 3 4 5
t[s] t[s]
(a) (b)

Figure 5.11: Examples of the tracking results in the lab experiment: two distant speakers
in a full 30 s recording (left) and three speakers, two of them very close to each other,
in a segment of 5 s recording (right). Dashed and solid lines correspond to ground truth
(obtained by the indoor navigation system) and estimated trajectories, respectively. The
initial DOAs were set randomly. In the three speakers case the estimated trajectories
deviate from the ground truth at the end of the signal when two speakers get closer to
each other.
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The statistics of the 29 different 2-speakers scenarios are reported in boxplots in the
right column of Fig. 5.8. While the proposed algorithm outperforms the reference al-
gorithm in the separation task for all SNR values, in the tracking task it obtains higher
errors. Comparing the uniform and the MRF models in the proposed algorithm, we ob-
serve a slight advantage to the latter in terms of the SIR measure as reflected from the
median and the 75 percentile. This advantage is more pronounced in the 5 dB SNR case.
Note that the DOA-RMSE might be biased due to measurement errors in the ground-truth
DOA, as mentioned above. Note also that the ground-truth separated speech signals, taken
as the measurements of the first microphone, cannot serve as a perfect reference as well,
which may explain the relatively low separation scores. For subjective evaluation, the
reader is referred to our website.*

We also examined the sensitivity of the proposed algorithm to the DOA initialization.
A comparison of the DOA RMSE obtained by the proposed algorithm with either ground
truth or random initialization is given in Fig. 5.12. It is observed that the error is increased
by approximately 1 degree for most of the readings. This small increase in the error
indicates that the proposed algorithm can track the speakers without prior knowledge on
their initial position.

We also examined the dependency of separation quality measures on the gender of
the speakers. We compared mixtures of same gender speakers, i.e. male and female, with
mixtures of male and female speakers. Analyzing the results, did not show any significant
differences. This conclusion might need further investigations, as the number of examples

is small.

5.3.4 Computation time

In this section, we report the average computation time of each iteration and the perfor-
mance of the proposed algorithm and the baseline algorithm as a function of the number

of iterations for the simulation experiment. The computation time was calculated using

*http://www.eng.biu.ac.il/gannot/speech-enhancement/
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Figure 5.12: Comparing DOA estimation performance with random and oracle initializa-
tion.

2.3 GHz Intel Core 19 single CPU, with 16 GB 2400 MHz DDR4 memory. The algo-
rithm was implemented using Matlab(C), without using the parallel computing utility. In
our experiments, the recording length was 30 seconds. The parameters were: N = §,
K =513,J =3, M =91, T = 309 and Ny,.x = 50. The average computation time
was roughly 3.8 s per iteration per second of input signal, compared to an average of 6.6 s
for the reference algorithm. Note also that the total computation time linearly depends on
the number of iterations. In Fig. 5.13, we report the tracking and separation performance
measures as a function of the number of iterations. It is demonstrated that in terms of the
separation performance, the proposed algorithm converges within 5 iterations, compared
to 15 iterations required by the reference algorithm, and also obtains better SIR scores
after convergence. For the DOA estimation, the proposed algorithm converges after 35
iterations to a lower RMSE compared to that achieved by the reference algorithm, which
converges after 20 iterations. Note also that the DOA RMSE obtained by the proposed
algorithm decreases to 3° — 4°, already within 5 iterations. Therefore, when the available
computation time is limited, we can run only 5 iterations of the proposed algorithm to

obtain maximal separation performance and low DOA RMSE of less than 5°.
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Chapter 6

Conclusions

In this chapter we summarize our work and outline some future research directions.

6.1 Research summary

We have presented three algorithms for simultaneous tracking, separation and noise re-
duction of multiple speakers.

First we stated a statistical model for the observations given both the DOA trajectories
and the TF bin associations and simplify the obtained conditional distribution. Then we
used statistical inference method to infer on the hidden data which is defined to be the
DOA trajectories and the TF bin associations. We used three different models for the
hidden data.

The first model is the instantaneous model, where the hidden data is defined to be the
DOA association of each TF bin, which is actually the DOA of the active speaker in this
bin. We modeled the hidden data independently over time, with shared prior distribution
over the candidates DOA. For static scenario, this prior is constant and therefore we
proposed to use batch-EM algorithm for inference. We further derived a recursive-EM
algorithm for the dynamic case, where those priors are changing over time smoothly.

The second model has two variations, the parallel-HMM and the coupled-HMM. In

the the parallel-HMM, the hidden data was defined similarly to the first model, however,
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a time dependence was introduced, by modeling each frequency band as a Markov chain,
with transition matrix that allows for small changes in the DOA. The inference is done
using standard FB algorithm. In the second variation, per-frequency dependence was also
introduced, and we used an extended FB algorithm for inference.

In the third model the hidden dat defined to be both the DOA trajectories and the
associations. The posterior of the hidden data given the observations was modeled as a
factor graph. We used the LBP inference algorithm, to derive a novel inference scheme
where both the DOA trajectory and the separation mask are jointly obtained.

For each model, we evaluated the performance using an experimental study on both
simulated data and real-life recordings, and we demonstrated the advantage of the pro-

posed algorithm compared to reference methods.

6.2 Topics for Further Research

The present work can be extended in the following directions:

1. Improve the association model: In the proposed FG model, we used MRF model
as a prior for the association of the TF bins to the speakers. However, the improve-
ment in the performance was negligible. Future work could replace this model with
a more accurate model. One possible option is to train a neural network model on
clean speech signals to learn the probability of a speaker to be active at each fre-
quency bin, given the previous time step speech activity. This neural network can

then be used as a prior for the associations.

2. Add an option to associate the TF bins to noise: Currently we assign each TF
bin to one of the speakers, however, we observed empirically that many of the bins
do not include speech component, but are dominated by noise. Previous works (for
example [8]) proposed to add a non-speaker candidate to improve the separation

results. Applying a similar approach in our model may also improve the separation
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results. Furthermore, it can be utilized to estimate the noise covariance matrix,

which currently assumed to be known in advance.

3. Learn the hyper-parameters using the EM algorithm: In both the HMM and
the FG models, we used Markov chains to model smooth transition of the DOA
over time. The transition matrices for those chains were defined in advance, using
heuristic methods to obtain best performance for our tasks. A future direction might
be, to use the EM algorithm to learn these matrices during the algorithm application,
as done for classic HMM models [38]. The proposed inference scheme already
produces a soft associations for the hidden variables which may serve as the E-step.
In the M-step one should find the MLE of the unknown parameters given those

associations.

4. Extend the algorithm to 2D tracking: Similar to [10], several microphone arrays
can be used to obtain a full 2D tracking, rather than DOA tracking. The straight-
forward approach for this extension is to substitute the DOA candidates, by a 2D
grid of candidates, and to modify the transition matrix accordingly, which may be
intractable, due to large number of candidates. A better approach for future study
is to use same scheme for each microphone array to obtain per-array decisions,
and then optimally combine these decisions, while keeping the entire 2D trajectory

smooth.
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Appendix A

Factor Graphs

In this section, we briefly review the definition of factor graphs and their inference meth-

ods based on [27; 45].

A.1 Definition

Let {x1, 2o, ..., x¢} be a set of () discrete-valued random variables. We consider the joint
probability mass function P(x) = P(xy, s, ..., xg), which is assumed to be factored into

a product of functions:

P(x) = % [T fu(x) (A1)

where u is an index that labels the functions from a set I/, where each function f,(x,)
has arguments x,, C {x1,%2,...,2o}. We assume that the functions f,(x,) are non-
negative and finite, so that P(x) is a well-defined probability distribution. Here, C' is a
normalization constant.

A factor graph is a bipartite graph that expresses the factorization structure in (A.1).
A factor graph has a variable node (which we draw as a circle) for each variable z;, and
a factor node (which we draw as a square) for each function f,, with an edge connecting

variable node z; to factor node w if and only if z; € x,,.
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A.2 Inference

For a given graph with given factors, one may be interested in two different goals. The
first is to find the marginals of each variable, i.e. P(x;) Vi, and the other is to find the most
probable state, i.e. argmax, P(x). An exact inference for factor graphs is obtained using
the belief propagation (BP) algorithm. When implemented for computing the marginal
p.d.f., the BP algorithm is also known as the sum-product algorithm, and when imple-
mented for finding the most probable state, it is called the max-product algorithm. In the
sum-product algorithm messages are sent from the factors to the variables and vice-verse,

using the following equations:

nisu(@) = [ mesilz:) (A.2a)
ceG{z;}/u

muﬂ(ﬂiz) = Z fu(xu) H nj%u@jj) (A.2b)

Xu/Ti jEG{u}/z;

where n;_,,(x;) is the message from the ith variable to the uth factor, m,_,;(z;) is the
opposite direction message, G{x;} is the set of neighbouring factors of x; and G{u} is
the set of neighbouring variables of u. We can then obtain the marginal probability of a

particular variable z; using:

P(z;) H Ma—yi(T;) (A.3)
ueG{z;}

where the sign o< means that one should normalize this expression to obtain the final
distribution. In the max-product algorithm summations are replaced by the max operator.

The max-product algorithm is out of the scope of this article.
The sum-product algorithm is proved to converge to the true marginals in tree-
structured graphs [38]. However, when the graph contains loops this algorithm is not
proved to coverage to the true marginal. The loopy belief propagation (LBP) [42] is an

extension of the BP algorithm for loopy graphs, in which messages are updated repeat-
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edly, in an arbitrary order, until a termination condition is met. In practice, it has been
observed that this algorithm often provides good estimates of the marginals.

An alternative approximate inference is the Gibbs sampling method. In this method,
we first randomly initialize all hidden variables to a value from their range. Next, we
iterate over all variables, and sample from their conditional distribution given all other

variables. Due to the factored joint distribution, this conditional distribution is given by:
P(zilx/z) o< [ falza). (A.4)

(1) (N)]

After N iterations, we get sequence of [x; ' ...x; '] values for each variable. Finally, the

marginal distribution for each variable is given by:

N
_ 2 Ly
N

(AS)

For N — oo this estimate converges to the true marginal, however, for finite /N, it is com-
mon to ignore some number of samples at the beginning (the so-called burn-in period) in

order to improve the accuracy of the algorithm.
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Derivation of the Messages from the

Observation Factors

In this section, we derive the messages from the observation factors to its neighboring
variables. For general derivation, we assume here that each variable sends a message to
the observations. We denote by ;5 ;(:) and ¢ ;(:) the messages from the DOA and the

association variables, respectively.

B.1 The message from the observations to the association
variables

Using (A.2b) the messages to a, ;, are given by:

Utk atk ZZ ZTtk atkadt Hatkz dt

de(1) di(2) de(J

Substituting the definition of T, 5, (5.7) we obtain:

Utk atk; ZZ ZTtk dt atk H5tkz dt (B.1)

1) di(2) di(J)
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Note that the expression T} ;(d;(as)) is constant for all summations except for the sum

over d;(a ), hence we rearragne the summations as follows:
J

Utk (lt k Z T; k dt Clt k)) Z H 5t,k,i(dt(i))
di(a,k) de(:)/di(ag,p) i=1

Since each message ¢ ;. ;(d;(i)) is influenced by only one summation, we can switch the

sum and product operations:

Z Tt,k(dt(at,kz 6tkatk dt atk H Zétkz dt

di(atk) i#ag ) di(3)

In order to further simplify this expression, we multiply and divide it by the term

Zdt(%k) Ot k,aq 5 (di(ayx)) to obtain

Zd (a k)Ttk(dt(atk)) '5tkatk (k)
) Th #)) Ok, 5y ps(dy(i (B.2)
Zdt(at,k) 6t’kuat,k (dt(at k H Z t.k t

zd,

~
Const

Since the messages are not normalized anyway, we can ignore the constant term, and we

finally obtain:

T, Otk g
V(@) X 2o Ztk(;rjl . :? ) (m) = pri(ans) (B.3)

B.2 The messages from the observations to the DOA vari-
ables

The incoming messages are coming from d;(1),...,d;(j — 1),di(j + 1),...,ds(J) and

ay i, therefore:

Utk(dt Z Z Ttk dt atk th Qg k; H(Stkz dt

ag ke di(:)/de(j i#]
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where ¢; ;(at ) is uniform for the uniform distribution model (5.5) or defined by (5.23)
for the MRF model (5.19). We split the first summation over all possible values of a; , €

[1...J]toasum over j and summations over all other values:

Z Ttk dt th H(Stkz dt

(:)/d:(4) i#]

+ Z Gtk (@ 1) Z T;f,k(dt(at,k))H(St,lc,i(dt(i))‘

™
ag, K #J di(:)/de(5) i#]
(%)

S/

This expression consists of two terms. In (x) the term T} 4 (d;(5))q:x(j) depends on dy(5),
hence we take it out of the summation and switch the order of the sum and product oper-

ations to obtain:

() Ttk(dt th Hzfstkz dt

i#5 dg (i)

The term () is same as (B.1) and similarly to (B.2) it can simplified to:

(**) —ptk Qg k Hzfstlm dt

177 de (i)

The overall message is now given by:

—Ttk(dt qt/c Hzétkz dt Z ptk atkz qtk atk Hzatkz dt
\l?é] dy () | ag k#J i#£7 dg(i)

~~ ~~
const const

Dividing the message by the constant ¢; (j) [ 1,..; >4, ;) O¢.1,(de (i), we finally obtain:

Z%k# 4tk (at,k)/ot,k(at,k)

mar(di(5)) o< Toi(di(5)) + 4x )

(B.4)
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