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Abstract

The concept of distributed sensor networks is becoming more realistic as technology ad-

vances in the fields of nano-technology, micro electro-mechanic systems (MEMS) and com-

munication. A distributed sensor network comprises scattered nodes which are autonomous,

self-powered modules consisting of sensors, actuators and communication capabilities. Their

layout and connectivity graph are usually random and dynamic. Distributed sensor networks

have a broad range of applications which can be categorized in ecology, environment mon-

itoring, medical, security and surveillance. In this dissertation we develop algorithms for

distributed sensor networks with applications to speech processing. Such wireless acoustic

sensor networks (WASNs) can be found useful in the following scenarios for example: 1)

Ambient immersive communications: nowadays, almost everyone carries ‘his/her personal

microphones’ as part of the cellular phone, laptop computer or tablet, these spatially dis-

tributed sensors allow exploitation of spatial information in addition to spectro-temporal

information. These sensors make the establishment of an ad hoc (distributed) microphone

network feasible and allow the application of sophisticated signal extraction algorithms with-

out the need to pre-install expensive audio systems; 2) Smart homes: intelligent networks

of microphones are crucial components for control and monitoring systems as well as for

communication in emergency cases; 3) Law Enforcement: Law enforcement authorities, e.g.,

police and homeland security, use eavesdropping and acoustic surveillance of public spaces

as part of their regular procedure. This is usually done under adverse conditions.

The availability of only partial information in the nodes, the dynamics of the network, and

the limited communication, connectivity and power capabilities call upon developing novel

algorithms that address these challenges. The latter challenges are typical to distributed

algorithms and cannot be found in classical array processing algorithms.

The contribution of the dissertation is threefold. First, distributed versions of classical

beamforming algorithms are developed. Specifically, the LCMV beamformer with multiple



speakers scenario is considered, and a time-recursive distributed version of it is derived. Sec-

ond, a novel framework for evaluating beamformers in WASN is derived. In classical array

processing the layout of the array is usually pre-determined to fit the problem at hand,

contrary to WASN where the layout can be random and dynamic. The performance of data-

dependent beamformers (BFs) with randomly located microphones is analyzed. The analysis

may serve as a design guideline for determining the number of nodes/microphones required

in order to meet a desired performance level. Third, we address the problem of reducing

the complexity of applying distributed BFs, without sacrificing performance. The dynamic

nature of the sources, the environment and the network connectivity, require frequent modi-

fication to the applied BF. Efficient methods for modifying the BF in accordance with this

dynamics are developed.



Chapter 1

Introduction

Speech enhancement techniques, utilizing microphone arrays, have attracted the attention

of many researchers for the last thirty years, especially in hands-free communication tasks.

Typical problems in this field are: noise reduction, echo cancelation, speaker extraction and

de-reverberation. Beamforming algorithms extend the dimension of the solutions and intro-

duces spatial filtering in addition to the classical temporal-spectral filtering. Usually, the

received speech signals are contaminated by interfering sources, such as competing speakers

and noise sources, and also distorted by the reverberating environment. Whereas single mi-

crophone algorithms might show satisfactory results in noise reduction, they are not very-well

suited in competing speaker mitigation task, as they lack the spatial information, or the sta-

tistical diversity used by multi-microphone algorithms. Despite the obvious advantages over

single-microphone systems, traditional microphone arrays still suffer from severe performance

limitations.

The relatively small aperture of conventional arrays is a limiting factor in the performance

of spatial processing algorithms, since they only sample the sound field locally, typically at

a relatively large distance from the target source(s). In these scenarios, low signal to noise

ratio (SNR) and low direct to reverberant ratio (DRR) are expected, resulting in deteriorated

performance of regular ‘condensed’ small-aperture microphone arrays. Consequently, classical

condensed microphone-arrays cannot serve as a complete solution in the following example

scenarios: 1) Immersive communications- state of the art telecommunication systems attempt

not only to faithfully convey the semantics of a conversation, but also to enable natural

experiences and interactions among physically separated people, as if they shared the same

room. Many telephone conversations, especially those held in hands-free mode, are corrupted

11
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with background noise, interfering signals and room reverberation; 2) Smart houses denotes a

unified system for controlling all systems of the house (lights, air-condition, electronic devices

such as television, sound system etc.). In this aspect, intelligent networks of microphones

are crucial components for control and monitor systems as well as for communication in

emergency cases. 3) Law enforcement authorities, e.g., police and homeland security, use

eavesdropping and acoustic surveillance of public spaces as part of their regular procedure.

This is usually done under adverse conditions. The microphones should be deployed in a

large area to ensure proper reception of the desired speakers.

A straightforward centralized approach is to place sensors in the vast environment and

to convey all available data from them to a fusion centre where the processing is performed.

Though optimal, this simple method requires transmission of huge amounts of data. More-

over, the aforementioned simple algorithm is sensitive to a failure of the fusion centre, ren-

dering the sensor network useless. Another disadvantage caused by the structure of the

centralized solution, is the long communication link between sensors and the fusion centre,

which might be comprised of several hops (when the fusion centre and the sensor cannot

communicate directly) manifested as slow adaptation to the dynamically changing network

or environment [1, 2].

Recent technological advances in the fields of nano-technology, MEMS, together with

improved communication capabilities, have made the vision of a distributed sensor network

feasible. A wireless sensor network (WSN) comprises several nodes (WSN modules) intercon-

nected in some manner via a wireless medium. Each node consists of one or more sensors, a

processing unit and a wireless communication module allowing them to exchange data. The

goal of the system is to perceive some physical phenomenon, to process it, and to yield a

required result. In classical array processing systems, the sensing and the processing of the

acquired data are concentrated in a single location denoted a fusion center. A phenomenon

originating in the enclosure, results in a disturbance that propagates in space. The closer the

sensors are to the origin of the phenomenon, the higher is the SNR of the acquired signal,

resulting in lower estimation errors and better quality at the output of the signal processing

procedure.

The concept of the WSN is to divide the system resources (sensors, processing units and

actuators) among the nodes and to provide a scalable, fully covering the environment, easy

to deploy, and robust structure. The wireless interface allows for the extension of the sensing

range beyond the limits of the wired fusion center systems. The distribution of the sensors
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in a larger volume enables better coverage with higher SNR, higher DRR and less sensitivity

to sources locations. For a survey on the topic of WSN please refer to [1, 3, 4, 5].

The emerging technology introduces new challenges. 1) Communication constraints:

Dynamic network topology with limited connectivity and short battery life requires further

research in developing efficient, robust and scalable wireless communication methods and

protocols (will not be addressed in this work). 2) Algorithmic: classical signal processing

algorithms are usually designed for the centralized scenarios, where all the sensors’ data

are available for processing in one centre. Novel distributed algorithms, that involve new

optimization criteria, taking the limitations of the problem at hand into consideration, are

therefore essential.

This work focuses on the second challenge, namely it aims at developing distributed

signal processing algorithms. The derived algorithms should maintain low complexity and

communication bandwidth. However, performance issues should not be sacrificed (although,

sub-optimal algorithms can be applied). Another requirement introduced by the nature of

the problem at hand is the need for robust algorithms, which are not sensitive to failure of few

nodes, and which can handle a dynamically changing connectivity of the network. Naturally,

most applications require algorithms which also adapt to changes in the environment, or the

objects under observation.

Communication (especially in wireless networks) is by far the most energy consuming op-

eration of a node. An alternative signal processing paradigm to the centralized processing is

the local processing in which each node utilizes only its own measurement data, independent

of other nodes, rendering communication unnecessary. Although minimizing communica-

tion load, this method obviously imposes performance limitations, as only small subset of

the data is used in each processing unit. Common systems utilize compression schemes for

reducing the required bandwidth for conveying sensor data to the fusion centre. Though

straightforward, these methods do not consider the signal processing algorithm that takes

place in the fusion centre. Compression might destroy coherence between sensor signals,

rendering all beamforming methods useless. Distributed algorithms aim at achieving the

performance of the fusion centre paradigm, while considerably reducing the required com-

munication bandwidth. Each node performs a local calculation/filtering and distributes the

results in the network. By iteratively merging the local sensors signals with the distributed

data, distributed algorithms converge to their centralized version counterparts. Note that,

iterations can be performed on a batch of recorded samples, or time-recursively.
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In classical beamforming the geometry of the microphone array is usually pre-determined

to fit the problem at hand. However, in some distributed sensor network scenarios it is not

possible to determine the array’s layout. Since, beamformer performance measures depend

on geometrical properties of the microphone array, standard performance analysis is inap-

propriate in WSN. Lo [6] propose to incorporating statistical models into the sensors’ spatial

distribution. Consequently, he derived a statistical model for the beamformer performance,

and obtained better understanding of the array properties (e.g. directivity, beam-width and

sidelobe level) of a simple delay and sum (DS) beamformer. However, the analysis was lim-

ited to narrow-band sources in non-reflecting environment, and for simple data-independent

BFs.

Designing distributed algorithms for WSN necessitates the application of additional con-

siderations. The computational power available at the nodes is limited. Consequently, the

amount of calculations for constructing the BF as well as its application should be limited.

Furthermore, as each node uses independent clock sources, sampling frequency offsets be-

tween nodes are inevitable. The latter results in non-equal sampling rates in the network,

and eventually performance degradation.

The contribution of this dissertation is threefold: First, we propose distributed speech

processing algorithms based on the LCMV criterion. Second, we analyze beamformer per-

formance in a reverberant environment with a probabilistic nodes layout. Third, we propose

methods for coping with the limitation of computational power. Explicitly, we derive an

efficient implementation for the blocking matrix (BM) (a computationally demanding part

of the BF that will be explained later), and procedures for adjusting the BF to changes in

the environment.

The structure of the introduction follows. In Sec. 1.1 classical beamforming concepts

are presented. Sec. 1.2 is dedicated to survey of distributed beamforming algorithms. The

expected performance of beamforming with randomly located sensors is explored in Sec. 1.3.

The computational complexity of applying beamforming algorithms in WSN is discussed in

Sec. 1.4.

1.1 Centralized beamformers for Speech processing

Speech enhancement techniques, utilizing microphone arrays, have attracted the attention of

many researchers for the last quarter century, especially in hands-free communication tasks.



1.1. CENTRALIZED BEAMFORMERS FOR SPEECH PROCESSING 15

Usually, the received speech signals are contaminated by interfering sources, such as compet-

ing speakers and noise sources, and also distorted by the reverberating environment. Whereas

single microphone algorithms might show satisfactory results in noise reduction, they are less

suitable in competing speaker mitigation task, as they lack the spatial information, or the

statistical diversity used by multi-microphone algorithms.

In this dissertation we address the problem of extracting several desired sources in a rever-

berant environment comprising of both non-stationary (competing speakers) and stationary

interferences. In some cases we will consider the more simple scenario of a single desired

speaker.

Two families of microphone array algorithms can be defined, namely, the blind source

separation (BSS) family and the beamforming family. BSS aims at separating all the in-

volved sources, regardless of their attribution to the desired or interfering sources [7]. On the

other hand, the beamforming family of algorithms, focus on enhancing the sum of the desired

sources while treating all other signals as interfering sources. The BSS family of algorithms

exploit the independence of the involved sources. ICA algorithms [8, 9] are commonly ap-

plied for solving the BSS problem. Independent component analysis (ICA) [10] algorithms

are distinguished by the way the source independence is imposed. Commonly used techniques

include second-order statistics [11], high-order statistics [12], and Information theoretic based

measures [13]. BSS methods can also be used in reverberant environments, but they tend to

get very complicated (for time domain approaches [14]) or have an inherent problem of per-

mutation and gain ambiguity [15] (for frequency domain algorithms [9]). Souden and Liu [16]

propose an interesting combined BSS and linear echo cancellation scheme. They utilized a

BSS algorithm, based on higher order statistics, in order to reject non-linear components of

the echo, resulting from the speaker. BSS separation problems can be categorized as either

over-determined, where the number of sources is less then or equal the number of micro-

phones, or under-determined, where there are more sources than microphones. Thus far,

we discussed solutions for the over-determined problem. Considering the under-determined

problem and utilizing the frequency sparsity of speech signals, Kameoka et al. [17] propose

a method for separating speech signals in the frequency domain. Assuming non-reverberant

environment they resolved the permutation ambiguity based on estimation of the sources’

direction of arrival (DOA). BSS methods of acoustic signals can be also utilized for separating

musical instruments from a monaural recording [18].

Buchner et al., in a series of contributions, propose the triple-N ICA for convolutive
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mixtures (TRINICON), a generic framework for broadband adaptive multiple input multiple

output (MIMO) filtering [19, 20, 21, 22, 23]. Specifically, the TRINICON framework is

applied successfully in array processing for speech capture. They consider the determined

or overdetermined problem of extracting P sources received as a summation of convulative

mixtures by M sensors, where P ≤ M . The TRINICON brings together various blind

and supervised MIMO adaptation techniques that were treated largely independent in the

literature. A solution for the problem at hand is comprised of the following general signal

processing stages: 1) signal separation: obtain convulative mixtures of each of the sources

separately; 2) deconvolution/derverberation: obtain the sources up to a delay and a scaling

factor; 3) identification of the mixing system. The proposed solution utilizes fundamental

source signal properties: 1) nongaussianity is exploited by using higher-order statistics for

ICA; 2) nonwhiteness is exploited by simultaneous minimization of output cross-relations over

multiple time-lags; 3) nonstationarity is exploited by simultaneous minimization of output

cross-relations at different time-instants. TRINICON provides a versatile tool to the design

of adaptive systems, and with its “top-down approach”, it has led to various recent advances

in the field.

Our research focuses on beamforming algorithms. The term beamforming refers to the

design of a spatial-temporal filter. Broadband arrays comprise a set of filters, applied to each

received microphone signal, followed by a summation operation. The main objective of the

beamformer is to extract a desired signal, impinging on the array from a specific position,

from noisy measurements thereof. The simplest structure is the delay-and-sum beamformer,

which first compensates for the relative delay between distinct microphone signals and then

sums the steered signal to form a single output. This beamformer, which is still widely used,

can be very effective in mitigating noncoherent, i.e., spatially white noise sources, provided

that the number of microphones is relatively high. However, if the noise source is coherent,

the noise reduction (NR) is strongly dependent on the direction of arrival of the noise signal.

Consequently, the performance of the delay-and-sum beamformer in reverberant environ-

ments is often insufficient. Jan and Flanagan [24] extended the delay-and-sum concept by

introducing the so called filter-and-sum beamformer. This structure, designed for multipath

environments, namely reverberant enclosures, replaces the simpler delay compensator with

a matched filter. The array beam-pattern can generally be designed to have a specified re-

sponse. This can be done by properly setting the values of the multi-channel filters weights.

Statistically optimal beamformers are designed based on the statistical properties of the de-
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sired and interference signals. In general, they aim at enhancing the desired signals, while

rejecting the interfering signals. Several criteria can be applied in the design of the beam-

former, e.g., maximum signal to noise ratio (MSNR), minimum mean square error (MMSE),

minimum variance distortionless response (MVDR) and LCMV. A summary of several design

criteria can be found in [25, 26]. Cox et al. [27] introduced an improved adaptive beamformer

that maintains a set of linear constraints as well as a quadratic inequality constraint.

In [28, 29] a multichannel Wiener filter (MWF) technique has been proposed that produces

an MMSE estimate of the desired speech component in one of the microphone signals. The

speech distortion weighted multichannel Wiener filter (SDW-MWF) [30][31], generalizes both

MMSE and MVDR criteria. By identifying the two terms of error as distortion and residual

noise, and weighting the residual noise component in the MMSE minimization by a factor µ, it

is possible to control the tradeoff between the two error sources. By setting µ = 1 or µ = 0,

the MWF and the MVDR are obtained as special cases of the SDW-MWF, respectively.

Doclo et al. [32] show that the SDW-MWF is equivalent to the MVDR followed by a single

channel SDW-MWF post-filter.

In an MVDR beamformer [33, 34], the power of the output signal is minimized under

the constraint that signals arriving from the assumed direction of the desired speech source

are processed without distortion. A widely studied adaptive implementation of this beam-

former is the GSC [35]. The standard GSC consists of a spatial pre-processor, i.e. a fixed

beamformer (FBF), also known as the quiescent filter, and a BM, combined with a mul-

tichannel adaptive noise canceler (ANC). The FBF provides a spatial focus on the speech

source, creating a so-called speech reference; the BM steers nulls in the direction of the speech

source, creating so-called noise references; and the multichannel ANC eliminates the noise

components in the speech reference that are correlated with the noise references. Several

researchers (e.g. Er and Cantoni [36]) have proposed modifications to the MVDR for dealing

with multiple linear constraints, denoted LCMV. Their work was motivated by the desire

to obtain further control of the array/beamformer beam-pattern, beyond that of a steer-

direction gain constraint. Hence, the LCMV can be applied for constructing a beam-pattern

satisfying certain constraints for a set of directions, while minimizing the array response in

other directions. Breed and Strauss [37] proved that the LCMV has an equivalent GSC struc-

ture, which decouples the constraining and the minimization operations. The GSC structure

was reformulated in the frequency domain, and extended to deal with the more complicated

general ATFs case by Affes and Grenier [38] and later by Gannot et al. [39]. The latter
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frequency-domain version, which takes into account the reverberant nature of the enclosure,

was nicknamed the transfer function generalized sidelobe canceler (TF-GSC).

Several beamforming algorithms based on subspace methods were developed. Ephraim

and Van Trees [40] considered the single microphone scenario. The eigenvalue decomposi-

tion (EVD) of the noisy speech correlation matrix is used to determine the signal and noise

subspaces. Each of the eigenvalues of the signal subspaces is then processed to obtain the

minimum distorted speech signal under a permissible level of residual noise at the output.

Hu and Loizou [41] extended this method to deal with the colored noise case by using the

generalized eigenvalue decomposition (GEVD) rather than the EVD as in the white noise

case. Gazor et al. [42] proposed to use a beamformer based on the MVDR criterion and

implemented as a GSC to enhance a narrowband signal contaminated by additive noise and

received by multiple sensors. Under the assumption that the DOA entirely determines the

transfer function relating the source and the microphones, it was shown that determining

the signal subspace suffices for the construction of the algorithm. An efficient DOA tracking

system, based on the projection approximation subspace tracking deflation (PASTd) algo-

rithm [43] was derived. An extension to the wide-band case was presented by the same

authors [44]. However the requirement for a delay-only impulse response is still not relaxed.

Affes and Grenier [38] applied the PASTd algorithm to enhance speech signal contaminated

by spatially white noise, where arbitrary ATFs relate the speaker and the microphone array.

The algorithm was proved to be efficient in a simplified trading-room scenario, where the

DRR is relatively high and the reverberation time relatively low. Doclo and Moonen [28]

extended the structure to deal with the more complicated colored noise case by using the

generalized singular value decomposition (GSVD) of the received data matrix. Warsitz et

al. [45] proposed to replace the BM in [39]. They used a new BM based on the GEVD of the

received microphone data, providing an indirect estimation of the ATFs relating the desired

speaker and the microphones.

Affes et al. [46] extended the structure presented in [42] to deal with the multi-source

case. Asano et al. [47] addressed the problem of enhancing multiple speech sources in a

non-reverberant environment. The multiple signal classification (MUSIC) method, proposed

by Schmidt [48], is utilized to estimate the number of sources and their respective steering

vectors. The noise components are reduced by manipulating the generalized eigenvalues of the

data matrix. Based on the subspace estimator, an LCMV beamformer is constructed. The

LCMV constraints set consists of two subsets: one for maintaining the desired sources and the
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second for mitigating the interference sources. Benesty et al. [49] also addressed beamforming

structures for multiple input signals. In their contribution, derived in the time-domain, the

microphone array is treated as a MIMO system. In their experimental study, it is assumed

that the filters relating the sources and the microphones are a priori known, or alternatively,

that the sources are not active simultaneously. Reuven et al. [50] dealt with the scenario in

which one desired source and one competing speech source coexist in noisy and reverberant

environment. The resulting algorithm, denoted dual source transfer function generalized

sidelobe canceler (DTF-GSC) is tailored to the specific problem of two sources and cannot be

easily generalized to the multiple desired and interference sources. Markovich-Golan et al. [51]

considered the multiple speakers case and proposed to use an LCMV-BF in a GSC-form.

The multichannel eigen-spaces BF for multiple sources in a reverberant scenario is briefly

presented in Sec. 2.1. This LCMV beamformer satisfies two sets of linear constraints. One

set is dedicated to maintaining the desired signals, while the other set is chosen to mitigate

both the stationary and non-stationary interferences. The speakers are assumed static and

the noise statistics is assumed slowly time-varying. Unlike classical beamformers, which

approximate the room impulse response (RIR)s as delay-only filters, we take into account

the entire RIR [or its respective ATF]. The LCMV beamformer is then reformulated in a

GSC structure, consisting of a FBF, BM and ANC. We show that two sets of basis vectors,

one spanning the desired speakers subspace and a second spanning the interference subspace

suffice for constructing the beamformer. The basis estimations are performed by collecting

eigenvectors, calculated in segments where desired or competing speakers are exclusively

active. The rank of the two basis is then reduced by the applying the orthogonal triangular

decomposition (QRD). This procedure relaxes the common requirement for non-overlapping

activity periods of the interference sources.

Whereas satisfactory results are obtained with multiple static speakers, moving speak-

ers enhancement remains a cumbersome and unsolved task. In chapter 2, we present an

LCMV-BF which we developed in previous work. This BF serves as a starting point for

a subspace tracking algorithm for dynamic scenarios. Subsequently, a novel beamforming

criterion extending the SDW-MWF to multiple constraints is derived.
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1.2 Distributed beamformers for Speech processing

The subject of distributed signal processing in sensor networks has been the focus of ongoing

research in recent years. Distributed signal processing techniques aim at efficiently and accu-

rately extracting information out of multiple sensors data, utilizing both temporal and spatial

diversity of the network, and relying on nodes cooperation. Research fields include parameter

estimation, tracking, localization and signal enhancement. Surveys on signal processing in

WSNs can be found in [1, 2, 52, 53, 54, 55].

Although many contributions can be found on distributed signal processing algorithms,

most of them focus on parameter estimation [56, 57, 58, 59] and localization and only few

contributions consider signal enhancement applications, and even fewer deal with speech

signals. In recent years, some contributions to the field of WASN have been introduced,

circumventing the severe network constraints [60, 61, 62, 63, 64, 65, 66]. A trivial solution

is obtained by utilizing only microphones local to the node without any communication

link. However this solution fails to utilize the entire information from the network and

hence is sub-optimal. Signals and parameters at a node, obtained by processing self-owned

microphone signals, are denoted “local” to the node. Other signals and parameters shared

by the nodes of the WASN are denoted “global”. A common scheme for distributed signal

processing algorithms in WASNs comprises the following steps. First, local processing of

microphone signals results in intermediate signals or estimates at each node, requiring less

communication-bandwidth. Second, the results of the first step are broadcast in the WASN.

Finally, a global estimate or an enhanced signal is obtained by merging all intermediate

signals or estimates. Since the data available at each node is incomplete, an iterative (or

time-recursive) solution becomes a necessity.

An interesting application of distributed signal processing algorithms is binaural hearing

aids. In regular hearing aids the right and left apparatuses operate independently, performing

single/multi-channel noise reduction. We refer to this scheme as the bilateral hearing aids.

On the contrary, binaural hearing aids share information between left and right laterals and

obviously hold more potential for better speech understanding. A survey on binaural hearing

aids can be found in [67].

A dual channel SDW-MWF has been proposed and analyzed as a binaural hearing scheme

in [68, 69, 70, 71, 72]. Both SDW-MWFs beamformers are applied to microphone data from

both sides and the scheme is denoted as the binaural multichannel Wiener filter (B-MWF).
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The desired signals are chosen from a reference signal at each side. This scheme not only

controls the tradeoff between noise reduction and signal distortion, it also controls the distor-

tions of the interaural time difference (ITD) and the interaural level difference (ILD). Lower

signal distortion results in lower distortion of the localization cues and higher noise levels.

Data sharing among two sides requires bi-directional transmission in both hearing aids

as they are not connected by wires for convenience reasons. As advanced hearing aids are

comprised of several microphones in each side, and as power limitations prevent transmission

of all data, reduced bandwidth algorithms are called upon. Doclo et al. [62] proposed an

iterative distributed SDW-MWF (DB-MWF) algorithm which reduces the required band-

width of the binaural link to one channel per side regardless of the number of microphones.

The authors proved that their scheme converges to the optimal B-MWF for the rank-1 spa-

tial desired signal covariance matrix. Roy and Vetterli [73] analyzed the rate-distortion curve

for the noise reduction problem in binaural hearing aids. They considered the performance

bound for the case where the correlation between the lateral hearing aids is known, and for

the more practical case where the correlation is unknown.

Bertrand and Moonen [63] considered the more general case of an N node WASN and P

desired sources. They allowed each node to define individual desired signals by using different

weighting of the spatial components of the speech. They proposed a DANSE-P algorithm

which necessitates transmission of P channels from each node and proved the convergence

of the algorithm to the global SDW-MWF BF. In complicated scenarios where multiple

speakers exist and more control over the beampattern is desired, the LCMV-BF is a more

suitable option. The linear constraints set can be designed to maintain undistorted desired

speakers while mitigating competing speakers. Bertrand and Moonen [74] also proposed

a distributed LCMV algorithm, denoted linearly constrained DANSE (LC-DANSE). They

considered the case of P speakers and noise picked up by microphones of an N node WASN.

Assuming that each node may define the set of desired speakers differently, they proposed

that the constraints matrix will be common to all nodes, whereas the desired response will

be node-specific. Their proposed algorithm constructs P node-specific constraints LCMV-

BFs that require each node to transmit P audio channels. A total of N × P transmission

channels (the output signals of all local BFs) are required. At each iteration, each node has

to re-estimate two sets of basis vectors spanning the ATFs of the desired and the interfering

speakers.

Special considerations for applying BSS in WASNs have been considered. Dmochowski
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et al. [75] propose a method for alleviating the speakers overlap problem in teleconferenc-

ing. Their algorithm is based on frequency domain BSS, followed by a post-filter utilizing

time segments in which only a subset of the speakers is active. Ono et al. [76] also apply

frequency domain BSS algorithms in WASN. They use pairs of proximately located micro-

phones in order to resolve permutation ambiguity. Assuming that there is no spatial aliasing

in those pairs, the estimated phases between microphones are used for correctly combining

the frequency components of each of the speakers.

As each node relies on its own clock source, synchronization offsets are inevitable. Elson

and Kay [77] considered the time synchronization problem in WSNs. They defined several

aspects of the problem, namely phase and frequency synchronization problems of the nodes’

clock sources. They proposed an algorithm, denoted reference-broadcast synchronization

(RBS), for synchronizing the clocks in the WSN. Ando and Ono [78] discussed the importance

of synchronizing the time origin in WASNs. Ono et al. [79] considered such unsynchronized

nodes (with a fixed delay uncertainty). They proposed a blind estimation method for these

delays based on localizing the speakers and the microphones.

Wehr et al. [60] considered the synchronization problem in distributed beamforming for

BSS. They proposed an algorithm for estimating the sampling rate offsets based on a modu-

lated reference signal which is broadcast in the WASN. The estimated sampling rate offsets

are then compensated for by resampling at the nodes. Pawig et al. [80] considered the prob-

lem of a sampling rate offset between the analog to digital converter (ADC) and the digital

to analog converter (DAC) in a single channel echo cancelation system. They utilized the

reference data to estimate the sampling rate offset, and proposed a combined time-recursive

algorithm for tracking both the RIR and the sampling rate offset. Subsequently, the refer-

ence signal is resampled using the Lagrange polynomials interpolation method [81]. Liu [82]

examined the performance degradation of BSS due to sampling rate offsets. Applying an

ICA algorithm for the separation, he found a relation between the correlation of sources’

energies (at the output of the BSS) and sampling rate offset. Based on the latter relation,

an estimation procedure for the sampling rate offset was derived.

Liu and Chen et al. [83, 84] propose a method for localizing speakers and microphones

based on energy in a distributed ad hoc WASN. Their method is less accurate than time

difference of arrival (TDOA) methods, however it is more robust to synchronization errors

between microphones.

Most distributed BFs adopt the MMSE criterion or perform data-independent DS-BF.
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Still, only few consider the LCMV criterion and recursive algorithms. In chapter 3 a novel

distributed GSC-BF for multiple speakers is derived. We also propose a synchronization

method for estimating and compensating for sampling rate offsets.

1.3 Beamforming Properties in Random Sensor Net-

works

In classical beamforming applications the sensor array constellation is pre-determined to

meet the required performance of the scenario at hand. Important attributes of array design

include sensors spacing, directivity pattern, and of course number of sensors. Improper array

design might lead to performance degradation due to small spatial diversity or grating lobes.

The design parameters as well as the exact sensor locations are usually unknown to the

signal processing algorithms. Van Veen and Buckley [25] discussed the beamformer design,

and analyzeed its properties (such as directivity, gain and sidelobe level) with relation to the

above physical parameters. In many distributed sensor network scenarios, pre-determining

the array design is impossible. Nodes containing sensors are randomly distributed in many

scenarios (for example scattered from an airplane), limited energy results in nodes shutdown,

and in some cases nodes can move (for example in the sea and when attached to animals).

These scenarios lead to uncontrollable layout of the sensor array. It is therefore important to

replace classical array design with a different framework suitable to distributed sensor network

in order to assure required performance. Treating sensor locations as random variables and

assuming a dynamic network connectivity enable the analysis of beamforming performance

in a statistic framework.

Lo [6] proposed to adopt a statistical model for the sensors positions and to explore the

incurred distribution of beampattern properties. He treated the beamformer properties as

functions of the random sensors locations and modeled their statistics. He examined the prop-

erties of beam-width, sidelobe level and gain. Yao et al. [85] proposed a blind beamformer,

with unknown sensors positions based on maximizing the output power while constraining

the norm of the weights. Ochiai et al. [4] extended the one dimensional analysis, and con-

sidered the scenario of distributed clusters of nodes (a cluster is a group of nodes closely

located). They dealt with a closely related problem of steering the beampattern of a certain

cluster towards another cluster. They assume that the antennas in each cluster are uniformly
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distributed on a disk in a two dimensional plane, and analyze the properties of the beam-

pattern. Kerby and Bernhard [86] considered a compound two dimensional array comprising

of rotated replications of a smaller sub-array consisting of uniformly distributed antennas,

arranged in a two dimensional matrix. They analyzed the statistics of the sidelobe level and

the wideband behavior of the array. Ahmad and Vorobyov [87] analyzed the characteristics

of a three dimensional cloud of Normally distributed sensors. All past analysis considered a

simple DS beamformer in a non-reflective environment, where the desired source is in the far

field regime. Kodrasi et al. [88] showed that the array performance depends significantly on

the microphone locations and compared various heuristic array design optimization methods.

They considered the superdirective BF, which maximizes the directivity index.

A performance analysis for data-dependent BFs with randomly located microphones in a

reverberant environment has not been examined yet. In chapter 4 we analyze the performance

of the SDW-MWF BF, utilizing randomly located microphones, in a reverberant environment.

1.4 Computational complexity of distributed beam-

forming

WASN applications introduce conflicting requirements for computational power, battery life,

and price. On the one hand, vast sensor networks with numerous nodes and sensors require

significantly increased computations. Furthermore, the dynamics of the network and the

environment necessitates updating the BF frequently. The computational burden is empha-

sized in wideband signal applications such as speech processing in reverberant environments.

Dealing with such long RIRs requires calculating BFs with respectively long impulse re-

sponses and involves many computations. On the other hand, strict constraints on power

consumption and on node price limit the complexity of algorithms and the amount of data

shared by nodes via wireless communication. Complex algorithms require stronger processing

units resulting in more expensive nodes, and might prevent deployment of large quantities.

Straightforward, centralized beamforming algorithms lack scalability, and do not meet these

constraints. Hence, developing distributed algorithms to alleviate these contradicting re-

quirements is called upon.

As mentioned earlier, constructing a BF utilizing all sensor data requires large band-

width. The contribution of each of the nodes to the noise reduction task is not equal. Given
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a bandwidth limitation, a subset of the nodes could be chosen to maximize the noise reduc-

tion. Bertrand and Moonen [89] proposed an efficient method for updating the MWF-BF

corresponding to removal or addition of sensors. They derived equations for efficiently re-

calculating the MWF-BF based on the previous BF by applying the block-matrix inversion

formula [90].

Next, we examine the structure of the commonly used GSC-BF and identify the main

procedure contributing to its complexity. Assuming that M microphones are used, and K

constraints are defined, the complexity per frame and frequency bin of the GSC in the short

time Fourier transform (STFT) domain is attributed to: 1) M complex multiplications at

the FBF; 2) the complexity of applying the BM; 3) M −K complex multiplications at the

noise canceler (NC). Note that the BM is the main contributor to the complexity, yet there

is no unique design for it. For the single constraint scenario, Gannot et al. [39] proposed a

sparse M × (M − 1) BM which requires only M − 1 complex multiplications per frequency.

Herbordt and Kellerman [91] provided an efficient adaptive BM utilizing also only M − 1

complex multiplications. A commonly used M × (M − K) BM is comprised of the basis

vectors spanning the null-subspace of the constraints columns-space. The basis vectors can

be obtained by applying the singular value decomposition (SVD) to the constraints matrix.

Applying the SVD based BM involves M × (M −K) complex multiplications. Markovich-

Golan et al. [51] used an M ×M projection matrix to the null-subspace of the constraints

matrix as the BM. The latter scheme requires M2 complex multiplications. Reuven et al. [50]

and Krueger et al. [92] proposed a 2-stage projection procedure for designing a BM for the

case of a single desired speaker and a single interfering speaker. The resulting BM is an

M ×M matrix, and its application requires 2 ×M and M2 complex multiplications in [50]

and [92], respectively. Clearly, the complexity of the GSC is mainly dominated by the BM

(in the general K constraints case). Tseng and Griffiths [93] proposed to construct the BM

by recursively projecting the received signals to the null-space of the constraints, one by one.

The resulting procedure requires MK complex multiplications (provided that K < M
2

).

In chapter 5 efficient methods for implementing and updating distributed BFs are de-

veloped. We consider changes in the available microphones and in the sources activity. A

substantial saving in computation is obtained by making use of previously calculated BFs.

Additionally, an efficient implementation of a BM is proposed.
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1.5 Dissertation structure

The structure of the dissertation follows next. We briefly introduce the chapter topics and

their sections. We give references to our publications on each of the subjects.

In Chapter 2 we survey our previous work on beamforming criteria for speech processing

which is a basis for the current work. The multichannel eigen-spaces BF for multiple sources

in a reverberant scenario is briefly presented in Sec. 2.1. This beamforming algorithm is

based on [51] (S. Markovich-Golan, S. Gannot, and I. Cohen, “Multichannel eigenspace

beamforming in a reverberant noisy environment with multiple interfering speech signals”,

IEEE Trans. Audio, Speech and Language Processing, vol. 17, no. 6, pp. 1071-1086, Aug.

2009). This method constitutes the basic building block of the algorithms presented in this

dissertation.

In Sec. 2.2, an extension to the SDW-MWF for the case of multiple sources is derived.

We identify the various error components at the output of the BF as residual noise and signal

distortion. For each source, the distortion is defined as the variance of the error between the

desired and actual responses. We propose to apply individual weights to each of the distortion

components. We prove that the LCMV-BF is a special case of the proposed beamformer,

denoted as multiple speech distortions weighted multichannel Wiener filter (MSDW-MWF).

Although the derived algorithm is centralized, its flexibility in treating multiple sources makes

it a good candidate for implementation as a distributed BF. This section is based on [94]

(S. Markovich-Golan, S. Gannot, and I. Cohen, “A weighted multichannel Wiener filter for

multiple sources scenarios” in the 27th convention of the Israeli Chapter of IEEE, Eilat,

Israel, Nov. 2012).

In practice, the ATFs of the sources vary over time in WSN, corresponding to their move-

ments, or to dynamics of the reflectors in the enclosure. In Sec. 2.3, we propose an extension

to the LCMV-BF in [51] for dynamic scenarios. The proposed BF adopts the PASTd algo-

rithm for tracking non-static scenarios, presented in [51], in which multiple speakers coexist

in a reverberant environment. The proposed algorithm is capable of extracting a desired

conversation out of many conversations in time-varying and reverberant scenarios, where the

expected DRR can be low. This section is based on [95] (S. Markovich-Golan, S. Gannot, and

I. Cohen, “Subspace tracking of multiple sources and its application to speakers extraction”,

Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP), pp. 201–204,

Mar. 2010).
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In Chapter 3, we develop distributed beamforming algorithms for various scenarios and

applications. In Sec. 3.1 a novel reduced-bandwidth iterative binaural MVDR beamformer

is proposed. The proposed method reduces the bandwidth requirement for communication

between hearing aids to a single channel, regardless of the number of microphones. The

algorithm is proven to converge to the optimal binaural MVDR in the case of a rank-1

desired source correlation matrix. This section is based on [64] (S. Markovich-Golan, S.

Gannot, and I. Cohen, “A reduced bandwidth binaural MVDR beamformer”, in Proc. Int.

Workshop on Acoustic Echo and Noise Control (IWAENC), Tel Aviv, Israel, Aug. 2010). In

the following contributions, time-recursive rather than iterative distributed BFs are developed

which operate on a batch of the received data. The time-recursion procedure is inherently

more suitable for dynamic scenarios.

Sec. 3.2 is dedicated for presenting a distributed beamforming algorithm for the case of

multiple speakers scenario. We consider the case where the nodes agree on the classification

of desired and competing speakers and share a common constraints set as well as desired

responses. A distributed time-recursive version of the centralized GSC, denoted distributed

GSC (DGSC), is proposed. We prove that the proposed algorithm converges to the central-

ized GSC. The proposed algorithm requires the transmission of only N + P audio channels.

In static scenarios, the relative transfer functions (RTFs) of the sources need to be esti-

mated only once at the initialization stage. The estimation procedure of the RTFs may

require non-overlapping activity patterns of the speakers. This section is based on [96] (S.

Markovich-Golan, S. Gannot, and I. Cohen, “Distributed multiple constraints generalized

sidelobe canceler for fully connected wireless acoustic sensor networks”, IEEE Trans. Audio,

Speech and Language Processing, 2012).

In Sec. 3.3, a distributed BF for the special case of a single desired speaker is developed.

The efficient GSC-form implementation of the MVDR, rather than its closed-form, is consid-

ered. The GSC-form relaxes the requirement of the LC-DANSE algorithm to re-estimate the

speech and noise spectra at each iteration. Both iterative and time recursive procedures are

derived. The proposed algorithm, denoted distributed single-constraint generalized sidelobe

canceler (DS-GSC), is based on a two-stage GSC. In the first stage, N local GSC-BFs are

applied only to the local microphones at each node, yielding N signals which are broadcast

in the WASN (instead of N + 1 in the DGSC for this case). The second stage, comprises a

global GSC BF which processes the N output signals of the first stage. A replica of the global

filtering stage is applied simultaneously and independently in all the nodes of the WASN.
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The main advantages of the proposed scheme are its ability to adapt in speech-absent seg-

ments, and that it relaxes the requirement of closed-form MVDR algorithms to estimate the

speech spectrum repeatedly in static environments. We prove that the proposed algorithm

converges to the centralized TF-GSC. This section is based on [97] (S. Markovich-Golan, S.

Gannot, and I. Cohen, “Distributed GSC beamforming using the relative transfer function”,

in Proc. European Signal Processing Conf. (EUSIPCO), Aug. 2012, pp. 1274–1278).

The proposed distributed algorithms thus far assumed that all microphone signals are

sampled at an accurate and equal sampling rate at all nodes. In Sec. 3.4, relax this require-

ment and a blind procedure for estimating the sampling frequency offsets and compensating

for them is derived. The procedure is applicable to scenarios with slowly time-varying noise

signals during speech-absent time segments. The proposed procedure is based on the phase

drift of the coherence between two signals sampled at different sampling rates. Resampling

the signals with Lagrange polynomials interpolation method compensates for the sampling

rate offsets. This section is based on [98] (S. Markovich-Golan, S. Gannot, and I. Cohen,

“Blind sampling rate offset estimation and compensation in wireless acoustic sensor net-

works with application to beamforming”, in Proc. Int. Workshop on Acoustic Echo and

Noise Control (IWAENC), Aachen, Germany, Sep. 2012).

In Chapter 4 the topic of statistical BFs is considered. The performance of data-dependent

BFs with randomly located microphone is analyzed in two important scenarios. Sec. 4.1, is

dedicated to derivation of a novel statistical model for performance analysis of the MWF

beamformer. We consider the scenario of one desired source and one interfering source

arriving from the far-field and impinging on a uniformly distributed linear array, in a non-

reverberant environment. A theoretical model for the MMSE is developed and verified by

simulations. The applicability of the proposed statistical model for speech signals is discussed.

This section is based on [99] (S. Markovich-Golan, S. Gannot, and I. Cohen, “Performance

analysis of a randomly spaced wireless microphone array”, in Proc. IEEE Int. Conf. Acous-

tics, Speech, and Signal Processing (ICASSP), May 2011, pp. 121–124).

In Sec. 4.2, we further consider applying the SDW-MWF (which generalized the MVDR)

to enhance a desired source propagating in a reverberant enclosure where the microphones

are randomly located with a uniform distribution. Two noise fields are considered, namely,

multiple coherent interference signals and a diffuse noise. Utilizing the statistics of the ATF,

we derive a statistical model for two important criteria of the BF: the SIR, and the white

noise gain. Moreover, we propose reliability functions, which determine the probability of the
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SIR and sensitivity to exceed a desired level. This section is based on [100] (S. Markovich-

Golan, S. Gannot, and I. Cohen, “Performance of the SDW-MWF with randomly located

microphones in a reverberant enclosure” submitted for publication in IEEE Trans. Audio,

Speech and Language Processing, Aug. 2012).

The computational complexity of beamforming algorithms can be quite high, as presented

in previous sections. Due to the strict limitations in WASN it is desired to reduce this

complexity. In Chapter 5 we propose procedures for reducing the computational complexity

of applying beamforming in WASNs. In Sec. 5.1, a novel systematic scheme for constructing

a multiple constraints sparse BM is presented. The sparsity of the proposed BM substantially

reduces the complexity to K × (M − K) complex multiplications, where K is the number

of constraints. A theoretical analysis of the signal leakage and of the blocking ability of the

proposed sparse BM and of the eigen-space BM is derived. It is proven analytically, and

tested for narrowband signals and for speech signals, that the blocking abilities of the sparse

and of the eigen-space BMs are equivalent. This section is based on [101] (S. Markovich-

Golan, S. Gannot, and I. Cohen, “A sparse blocking matrix for multiple constraints GSC

beamformer”, Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP),

Mar. 2012).

In Sec. 5.2, we consider sub-optimal LCMV beamformers utilizing only a subset of the

available sensors for signal enhancement applications. Multiple desired and interfering sources

scenarios in multi-path environments are considered. We assume that an oracle entity deter-

mines the group of sensors participating in the spatial filtering, denoted as the active sensors.

The oracle is also responsible for updating the constraints set according to either sensors or

sources activity or dynamics. Any update of the active sensors or of the constraints set ne-

cessitates re-calculation of the beamformer and increases the power consumption. As power

consumption is one of the most valuable resources in sensor networks, it is important to

derive efficient update schemes. In this section we derive procedures for adding or removing

either an active sensor or a constraint from an existing LCMV beamformer. Closed-form as

well as GSC-form implementations are derived. These procedures use the previous beam-

former to save calculations in the updating process. We analyze the computational burden

of the proposed procedures and show that it is much lower than the computational burden of

the straightforward calculation of their corresponding beamformers. This section is based on

[102] (S. Markovich-Golan, S. Gannot, and I. Cohen, “Low-complexity addition or removal of

sensors/constraints in LCMV beamformers”, IEEE Transactions on Signal Processing, vol.
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60, no. 3, pp. 1205–1214, Mar. 2012).
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Chapter 2

Beamforming algorithms for speech

processing

The problem of extracting several desired speech signals, contaminated by non-stationary and

stationary interfering signals is considered. We survey a BF for multiple speakers scenario

which was developed in our previous work [51]. This BF serves a common basis for other con-

tributions derived in this dissertation. The BF is based on the LCMV criterion and suggests

to associate a constraint with a desired response to each of the speakers (both desired and

intefering). A novel estimation method relaxes the requirement for non-concurrent speakers’

activity patterns in RTFs estimation. We proposed a procedure of estimating a basis which

spans the RTFs, for a more general activity patterns. This previous work is briefly reviewed

in Sec. 2.1.

In Sec. 2.2, an extension of the SDW-MWF BF to the case of multiple speakers is pro-

posed. We derive a procedure that enables control of the distortion of each of the sources at

the output of the BF. It is further shown that the proposed design generalizes the LCMV-BF.

Both BF design assume static speakers. In Sec. 2.3, an algorithm for tracking the basis

of the desired speakers’ ATF, and the basis of the interfering speakers’ ATFs is presented.

The algorithm is incorporated in the LCMV-BF resulting in an adaptive version.

2.1 Eigen-spaces LCMV-BF

In this section, we review an LCMV beamformer designed for extracting desired speech signals

from multi-microphone measurements, first presented in [51]. The BF satisfies two sets of

linear constraints. One set is dedicated to maintaining the desired signals, while the other set

33
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is chosen to mitigate both the stationary and non-stationary interferences. Unlike classical

BFs, which approximate the RIRs as delay-only filters, we take into account the entire RIR

[or its respective ATF]. The LCMV-BF is then reformulated in a GSC structure, consisting

of a FBF, BM and ANC. For spatially-white noise field, the BF reduces to a FBF, satisfying

the constraint sets, without power minimization. The application of the ANC contributes

to interference reduction, only when the constraint sets are not completely satisfied. We

show that two basis, one spanning the desired speech sources’ ATFs and second spanning

the interfering sources’ ATFs, suffice for constructing the BF. A basis for the interference

subspace is estimated by collecting eigenvectors, calculated in time segments where non-

stationary interfering sources are active (with arbitrary activity) and the desired sources are

inactive. The rank of the basis is then reduced by the application the QRD. Similarly, the

basis of the desired ATFs is estimated by collecting generalized eigenvectors during time-

segments in which only desired speakers are active (with arbitrary activity). By applying the

GEVD procedure to the power spectral density (PSD) matrices the noise covariance matrix is

whitened and we obtain a basis which spans the ATFs of the desired sources. This procedure

relaxes the common requirement for non-overlapping activity periods of the various sources.

This BF is denoted as the eigen-spaces LCMV-BF due to its estimation procedure of the

constraints matrix.

This section is organized as follows. In Sec. 2.1.1 we introduce the mathematical formu-

lation, describing the problem and in Sec. 2.1.2 we introduce the eigen-spaces LCMV-BF.

2.1.1 Problem Formulation

Consider a scenario with multiple simultaneous conversations. Nd desired speakers

sd,1(n), . . . , sd,Nd(n) and Ni competing speakers si,1(n), . . . , si,Ni(n) are received in a noisy

and reverberant environment by an M microphones array. The received signals are formu-

lated in a vector notation in the STFT domain:

z(`, k) ,Hd(`, k)sd(`, k) +H i(`, k)si(`, k) + v(`, k) (2.1)

where sd(`, k) ,
[
sd,1(`, k) · · · sd,Nd(`, k)

]T
and si(`, k) ,

[
si,1(`, k) · · · si,Ni(`, k)

]T

are vectors comprising the desired and interfering speakers, respectively. v(`, k) denotes

the noise component, consisting of a mixture of spatially white, directional and diffuse

noise sources. We further assume that the statistics of this noise component is slowly
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time-varying. k denotes the frequency-bin index and ` the frame index. Hd(`, k) ,[
hd,1(`, k) · · · hd,Nd(`, k)

]
and H i(`, k) ,

[
hi,1(`, k) · · · hi,Ni(`, k)

]
are M × Nd

and M ×Ni matrices, respectively, comprised of the time-varying ATFs relating desired and

competing speakers with the microphone array. Henceforth, we assume that the speakers and

the enclosure are static, and omit the index ` from the ATFs and the second order moments.

Furthermore, the formulas are derived for a specific frequency-bin index k, and are similar

for all other frequencies, hence the frequency-bin index is also omitted for brevity.

Assuming that the sources and the various interference signals are uncorrelated, the spa-

tial correlation matrix of the received signals is formulated as:

Φzz ,HdΛdH
H
d +H iΛiH

H
i + Φvv (2.2)

where Λd , diag
([

σ2
d,1 . . . σ2

d,Nd

])
and Λi , diag

([
σ2
i,1 . . . σ2

i,Ni

])
are diagonal

matrices with the spectral variances of the desired and interfering speakers on their main

diagonal, respectively, and Φvv is the noise spatial correlation matrix.

Denote the BF by w, its output is defined as:

y(`) , wHz(`). (2.3)

2.1.2 BF structure

The eigen-spaces LCMV-BF is designed to reproduce the desired speakers components as

received by a reference microphone, while canceling the competing speakers components

and minimizing the overall residual noise power. Define the LCMV criterion with multiple

constraints on both the desired and competing speakers:

w = argmin
w
{wHΦvvw}; s.t. CHw = g. (2.4)

Define the linear constraints set:

C ,
[
Hd H i

]
(2.5a)

g ,
[

11×Nd 01×Ni

]T
(2.5b)

CHw = g (2.5c)
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where g is the desired response vector and C is the constrains matrix. The closed-form

solution for the minimization in (2.4) is given by:

w = Φ−1
vvC

(
CHΦ−1

vvC
)−1

g. (2.6)

In practice, the ATFs are not available, and estimating them is a cumbersome task.

Extending the work of Gannot et al. [39] to the multiple speakers scenario, we propose to

construct the BF based on the RTFs, thus sacrificing dereverberation capability of the derived

BF.

The RTF of a source, is defined as the ratio between the ATFs relating the source and the

microphones and the ATF relating the source and a reference microphone (arbitrarily chosen

here to be the microphone #1). Denote the RTF matrices of the desired and competing

speakers as H̃d, H̃ i where:

H̃d ,
[
h̃d,1 · · · h̃d,Nd

]
(2.7a)

H̃ i ,
[
h̃i,1 · · · h̃i,Ni

]
(2.7b)

where

h̃d,p ,
hd,p
hd,p(1)

; p = 1, . . . , Nd (2.8a)

h̃i,p ,
hi,p
hi,p(1)

; p = 1, . . . , Ni. (2.8b)

are the corresponding RTFs relating each of the sources and the microphone array.

Define the modified constraints set, based on the RTFs:

C̃ ,
[
H̃d H̃ i

]
(2.9a)

C̃
H
w̃ = g. (2.9b)

Similarly to (2.6), the modified LCMV-BF equals:

w̃ = Φ−1
vv C̃

(
C̃
H

Φ−1
vv C̃

)−1

g. (2.10)

Practical estimation procedures for the RTFs exist [51, 39], however they require time-

segments in which each of the speakers is exclusively active. The eigen-spaces based LCMV-
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BF relaxes the latter requirement, and replaces it with a requirement for time-segments in

which the desired group and the competing group of speakers are exclusively active.

We propose a procedure for estimating a basis of the desired speakers ATFs based on the

following steps: 1) estimate the noise covariance matrix during noise-only time segments; 2)

estimate the covariance matrices during time-segments in which only the desired speakers

and noise are active; 3) calculate the GEVD of each of the covariance matrices, and collect

the vectors which correspond to the desired speakers subspace; 4) reduce the collected basis

over multiple time-segments by applying the QRD. Estimating a basis for the competing

speakers ATFs subspace is based on similar steps, only replacing the GEVD with an EVD.

These procedures are discussed in further detail in Sec. 2.3.

Denote by Qd ,
[
qd,1 . . . qd,Nd

]
a basis spanning the desired speakers subspace and

by Qi ,
[
qi,1 . . . qi,Ni

]
a basis spanning the competing speakers subspace. It can be

shown (see Sec. 2.3) that the eigen-spaces based LCMV-BF, defined as:

ẇ = Φ−1
vv Ċ

(
Ċ
H

Φ−1
vv Ċ

)−1

ġ (2.11)

is equivalent to the RTF-based LCMV-BF (2.10), where the eigen-spaces based constraints

set is:

Ċ ,
[
Qd Qi

]
(2.12a)

ġ ,
[
qd,1(1) · · · qd,Nd(1) 01×Ni

]T
(2.12b)

Ċ
H
ẇ = ġ. (2.12c)

2.2 A weighted multichannel Wiener filter for multiple

sources scenarios

In this section, the same scenario as in Sec. 2.1 is considered (P speakers received by an M

microphone array in a reverberant enclosure). We extend the single source SDW-MWF to

deal with multiple speakers. The mean squared error (MSE) is extended by introducing P

weights, each controlling the distortion of one of the sources. Opposed to LCMV criterion,

the proposed method allows for controlled deviation from the desired responses. Thus, the

proposed criterion leads to a more flexible BF design. Two special cases of the proposed BF
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are the SDW-MWF [30],[70] and the LCMV-BF. We provide a theoretical analysis for the

performance of the proposed BF. Finally, we exemplify the ability of the proposed method to

control the tradeoff between NR and distortion levels of various speakers in an experimental

study.

2.2.1 Problem formulation

The problem is formulated in the STFT domain, where ` and k are time-frame and frequency

bin indices, respectively. Consider a microphone array located in a reverberant enclosure.

The signals received by the microphone array are categorized in two groups. The first group

comprises sources for which a desired response is designated. A source belonging to this

group is denoted signal of interest (SOI). The second group comprises interferences that

we wish to mitigate. Consider P coherent SOIs, denoted s1 (`, k) , . . . , sP (`, k). Denote by

hp (`, k), for p = 1, . . . , P , the ATF relating the pth SOI and the microphone signals. The

received microphone signals are given by:

z (`, k) ,H (`, k) s (`, k) + v (`, k) (2.13)

where s (`, k) ,
[
s1 (`, k) · · · sP (`, k)

]T
is a vector comprising all the SOIs, H (`, k) ,

[
h1 (`, k) · · · hP (`, k)

]
is an M × P matrix of the ATFs relating the SOIs and the

microphones and v (`, k) denotes the received interferences. Next, we define the covari-

ance matrices of the SOIs and interfering signals as Φss (`, k) , E
{
s (`, k) sH (`, k)

}
and

Φvv (`, k) , E
{
v (`, k)vH (`, k)

}
, respectively. For brevity, hereafter the frequency bin index

k is omitted and all derivations are valid for all k = 1, . . . , K frequency bins. Moreover, we

omit the frame index from H , Φss and Φvv. The covariance matrix of the received signals is

given by:

Φzz ,HΦssH
H + Φvv. (2.14)

The desired response vector is denoted by g and the desired signal at the output of the BF

is defined as:

d (`) , gHs (`) . (2.15)
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The output of a BF w is denoted by:

y (`) = wHz (`) (2.16)

and the MSE between the desired signal (2.15) and the BF’s output (2.16) is:

Jw , E
{
|d (`)− y (`) |2

}
. (2.17)

In the following section, we present the proposed algorithm.

2.2.2 Multiple speech distortions weighted multichannel Wiener

filter

Substituting (2.13),(2.15),(2.16) in (2.17) and noting that s (`) and v (`) are statistically

independent signals yields:

Jw =
(
g −HHw

)H
Φss

(
g −HHw

)
+wHΦvvw. (2.18)

We denote the component
(
g −HHw

)H
Φss

(
g −HHw

)
as the total distortion and the com-

ponent wHΦvvw as the residual noise. The SDW-MWF criterion introduces the parameter

µ which controls the tradeoff between the total distortion and the noise reduction:

JSDW-MWF , min
w′

(
g −HHw′

)H
Φss

(
g −HHw′

)

+ µ (w′)
H

Φvvw
′. (2.19)

In this section, we propose to utilize individual parameters, one for each source, for

controlling the distortion of each of the sources separately. Explicitly, the proposed MSE

criterion is given by extending (2.19):

JMSDW-MWF , min
w′

(
g −HHw′

)H
ΛΦss

(
g −HHw′

)

+ (w′)
H

Φvvw
′ (2.20)

where Λ , diag {λ1, .., λP}, a diagonal matrix with the parameters λp for p = 1, .., P on

its diagonal, and the BF which minimizes (2.20) is denoted wMSDW-MWF, the MSDW-MWF.
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The closed-form solution of (2.20) is given by:

w =
(
HΛΦssH

H + Φvv

)−1
HΛΦssg. (2.21)

Note, that for a single desired speaker scenario the SDW-MWF can be obtained as special

case of the MSDW-MWF by setting:

Λ = µ−1IP×P (2.22)

where IP×P is a P × P identity matrix. In the following sections we analyze the distortion

of the SOIs and the noise level at the output of the proposed BF. In Sec. 2.2.2.3 we show

that the well-known LCMV-BF is also a special case of the MSDW-MWF.

2.2.2.1 Distortion analysis

Two distortion figures of merit are analyzed. The first is the total distortion, defined as:

DT ,E
{
|d(`)− y(`)|2

}

=
(
g −HHw

)H
Φss

(
g −HHw

)

=‖Φ1/2
ss

(
g −HHw

)
‖2 (2.23)

where Φss =
(
Φ1/2
ss

)H
Φ1/2
ss is the Cholesky decomposition. The second is the individual

distortion of the pth source for p = 1, .., P :

Dp ,E
{
|g∗psp(`)−wHhpsp(`)|2

}

=|gp − hHp w|2φss,p (2.24)

where φss,p is the variance of the pth source, and Φss , diag {φss,1, .., φss,P}. Note, that since

Φss is diagonal, Φ1/2
ss is also diagonal and therefore Dp =

∣∣∣∣
(
Φ1/2
ss

(
g −HHw

))
p

∣∣∣∣
2

, where (•)p
denotes the pth element of a vector.

Let

H = USV H (2.25)
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be the SVD of H . Substituting (2.25) in (2.21) yields:

w = U
(
SV HΛΦssV S

H +UHΦvvU
)−1

SV HΛΦssg. (2.26)

Note that S is an M × P matrix of the form:

S ,

[
S1

0(M−P )×P

]
(2.27)

where S1 is a P × P diagonal real matrix. Hence, the expression SV HΛΦssV S
H in (2.26)

equals:

SV HΛΦssV S
H =

[
S1V

HΛΦssV S1 0P×(M−P )

0(M−P )×P 0(M−P )×(M−P )

]
. (2.28)

Let U 1 be an M×P matrix comprising the first P columns of U which span the column-space

of H , and let U 0 be an M × (M − P ) matrix comprising of the last M − P columns of U

which span the null-space of H . I.e.,

U =
[
U 1 U 0

]
. (2.29)

By substituting (2.29) in the expression UHΦvvU in (2.26), we obtain the following block-

matrix structure:

UHΦvvU =

[
ΓA ΓB

ΓH
B ΓC

]
(2.30)

where we define:

ΓA ,U
H
1 ΦvvU 1 (2.31a)

ΓB ,U
H
1 ΦvvU 0 (2.31b)

ΓC ,U
H
0 ΦvvU 0. (2.31c)

Now, applying the block-matrix inversion formula to the sum of (2.28) and (2.30) and sub-

stituting in (2.26) yields the following simplified expression:

w = Ψ
(
I + Λ−1Φ−1

ss Θ
)−1

g (2.32)
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where

Ψ ,
(
U 1 −U 0Γ

−1
C ΓH

B

)
S−1

1 V
H (2.33a)

Θ ,V S−1
1

(
ΓA − ΓBΓ−1

C ΓH
B

)
S−1

1 V
H . (2.33b)

A more simplified expression can be obtained for cases in which low distortion is required.

In these cases ‖Λ‖ � 1, hence, we can assume that ‖Λ−1Φ−1
ss Θ‖ � 1, and replace

(
I + Λ−1Φ−1

ss Θ
)−1

in (2.32) with its first order Taylor series approximation:

w ≈ Ψ
(
I −Λ−1Φ−1

ss Θ
)
g. (2.34)

Finally, the total distortion is obtained by substituting (2.32) in (2.23):

DT = ‖Φ1/2
ss

(
I −

(
I + Λ−1Φ−1

ss Θ
)−1
)
g‖2. (2.35)

Applying to (2.35) a similar approximation as in (2.34) yields an approximated expression

for low distortion:

DT ≈ ‖Λ−1Φ−1/2
ss Θg‖2. (2.36)

Considering (2.36) and the relation between Dp and DT , the following approximation holds:

Dp ≈
|θHp g|2
λ2
pφss,p

(2.37)

where θp is the pth column of the matrix Θ. Next, we define the various sources distortion

measures. Define dp as the distortion level of the pth source normalized by its power:

dp ,
Dp

φss,p
. (2.38)

Define the set of desired distortion levels as ḋp for p = 1, . . . , P . Given such a set of desired

distortion levels, a BF which satisfies them and minimizes the noise level can be obtained by

using the proposed MSDW-MWF (2.21) with a proper Λ matrix whose diagonal elements
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are given by:

λp =
|θHp g|√
ḋpφss,p

; p = 1, ..P. (2.39)

2.2.2.2 Noise analysis

The noise level at the output of the MSDW-MWF is defined as:

N ,wHΦvvw

=‖Φ1/2
vv w‖2 (2.40)

where Φvv =
(
Φ1/2
vv

)H
Φ1/2
vv is the Cholesky decomposition of the noise correlation matrix.

Substituting (2.32) in (2.40) yields:

N = ‖Φ1/2
vv Ψ

(
I + Λ−1Φ−1

ss Θ
)−1

g‖2. (2.41)

In case that a low distortion of the SOIs is required, the following approximation can be

obtained, by substituting (2.34) in (2.40):

N ≈ ‖Φ1/2
vv Ψ

(
I −Λ−1Φ−1

ss Θ
)
g‖2. (2.42)

2.2.2.3 The LCMV-BF special case

In this section, we show that the LCMV-BF is a special case of the MSDW-MWF. Consider

the MSDW-MWF formula in (2.21), and the following choice of Λ , µ−1Φ−1
ss . Substituting

the latter choice of Λ in (2.21) yields:

w =
(
µ−1HHH + Φvv

)−1
µ−1Hg

=
(
HHH + µΦvv

)−1
Hg. (2.43)

By applying the Woodbury identity to (2.43) and after some manipulation we obtain:

w =

(
µ−1Φ−1

vvH − µ−1Φ−1
vvH

×
(
I + µ

(
HHΦ−1

vvH
)−1
)−1

)
g. (2.44)
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Assuming that µ is “small” such that ‖µ
(
HHΦ−1

vvH
)−1 ‖ � 1, we can replace(

I + µ
(
HHΦ−1

vvH
)−1
)−1

by its first order Taylor series expansion I − µ
(
HHΦ−1

vvH
)−1

.

Finally, by substituting the latter approximation in (2.44), the LCMV-BF which satisfies the

constraint set HHw = g is obtained:

w ≈ Φ−1
vvH

(
HHΦ−1

vvH
)−1

g. (2.45)

2.2.2.4 A modified MSDW-MWF

In practice, it is a cumbersome task to estimate the ATFs, H , and the covariance matrix of

the SOIs, Φss. In this section, we obtain a modified MSDW-MWF which makes use of the

RTFs and the covariance matrix of SOIs as received by some reference microphone. Without

loss of generality let us define the RTFs of the SOIs with respect to the first microphone.

Define the RTF of the pth source by h̃p = hp
hp,1

, and the RTF matrix by:

H̃ ,
[
h̃1 · · · h̃P

]
. (2.46)

Next, we redefine the SOIs as their respective components in the first microphone, i.e., the

pth modified SOI is given by s̃p (`) = hp,1sp (`), for p = 1, . . . , P . The corresponding modified

SOIs covariance matrix equals

Φ̃ss , diag
{
|h1,1|2φss,1, . . . , |hP,1|2φss,P

}
. (2.47)

Finally, substituting (2.46) and (2.47) in (2.21) yields the modified MSDW-MWF:

w̃ =
(
H̃ΛΦ̃ssH̃

H
+ Φvv

)−1

H̃ΛΦ̃ssg. (2.48)

For estimating the RTFs we use a similar subspace based procedure as in [51], and for the

estimation the SOIs covariance matrix, we use a spectral substraction technique as in [30].

2.2.3 Experimental study

Here, we examine the MSDW-MWF in the case of a wideband stationary noise and two

speech SOIs, a desired speaker and an interfering speaker. The dimensions of the simulated

room are 4m× 3m× 3m, the reverberation time is set to 0.3s, an array of 8 microphones is

located next to one of the walls and the sampling rate is set to 8kHz. The input SIR and SNR
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levels are set to 0dB and 13dB, respectively, and the measured performance criteria are the

output SIR, the NR, defined as the ratio N
Φvv(1,1)

and the distortion levels of the SOIs d1 and

d2. Note that the second SOI is an interfering source, which we would like to suppress. The

distortion criterion (2.38) is suitable also for interfering sources. We would like to emphasize

its meaning for this case. Usually, the desired response of an interfering SOI is zero, therefore

the distortion is actually the power ratio of the interference at the output and the input.

Explicitly, lower distortion means higher suppression. The performance is measured for

various values of desired distortion levels, ḋ1 and ḋ2, in the range [−25dB,−20dB, . . . , 0dB].

For each pair of ḋ1, ḋ2, the performance figures of merit are averaged over 20 Monte-Carlo

experiments, in which the locations of sources are randomly selected. We use a window size

of 4096 samples with 75% overlap. The distortions of the desired and interfering sources are

depicted in Figs. 2.1,2.2, respectively. Clearly, from these figures, the MSDW-MWF allows

for controlling individual distortion levels of the various SOIs. Note that the distortion level

of the desired source, d1 is lower bounded by −15dB, due to estimation errors of the RTF. As

the approximated distortion levels (2.37) are valid for low distortion, the measured distortion

on the interfering source in Fig. 2.2 differs from the desired one for higher levels of distortion

ḋ1. The NR versus the SOIs desired distortions is depicted in Fig. 2.3. This figure exemplifies

that the NR can be controlled by sacrificing the distortion of just a sub-group of the SOIs.

The average output SIR versus the desired SOIs distortion levels is depicted in Fig. 2.4. Note,

that since the desired response of the desired source is 1, the variation in its output power is

small for desired distortion levels ḋ1 � 0dB. Therefore, as evidently seen in this figure, the

output SIR is mainly determined by the desired distortion level of the interfering source.

2.2.4 Conclusion

We have considered the multiple SOIs in a noisy and reverberant environment scenario and

extended the SDW-MWF for this case. The proposed method, denoted MSDW-MWF, allows

for a better control of the tradeoff between NR and distortion levels of SOIs. We derive the

SDW-MWF and the LCMV-BF as two special cases of the proposed method. We analyze

the distortion levels of the various SOIs as well as the NR, and derive a more compact and

simple approximation for the latter figures of merit, in the case of designing a low distortion

MSDW-MWF. Finally, we exemplify the extended control over the NR versus distortion

tradeoff in an experimental study.
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Figure 2.1: The distortion of the desired source, d1, versus the ḋ1, ḋ2.
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Figure 2.2: The distortion of the interfering source, d2, versus ḋ1, ḋ2.
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Figure 2.3: The NR versus the desired distortion levels ḋ1, ḋ2.
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Figure 2.4: The output SIR versus the desired distortion levels ḋ1, ḋ2.
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2.3 Subspace tracking of multiple sources and its ap-

plication to speakers extraction

In Sec. 2.1 we introduced the eigen-space LCMV. BF for extracting the desired signals from

multi-microphone measurements in a static scenario. The BF satisfies two sets of linear

constraints. One set is dedicated to maintaining the desired signals, while the other set is

chosen to mitigate both the stationary and non-stationary interferences.

The proposed algorithm however is inappropriate for dynamic scenarios. In practice, the

ATFs of the speakers are constantly changing, due to slight movements of the sources or

the reflectors. Affes et al. [46] constructed a GSC beamformer for the multi-source dynamic

scenario. The proposed algorithm is based on the PASTd algorithm [43] for tracking the

signals’ subspace and on the MUSIC algorithm for estimating the steering vectors of the

sources. The far-field regime and reverberation free environment allow tracking of the steering

vectors during multi-speaker scenarios. However, its performance in reverberant scenarios is

limited. Warsitz and Haeb-Umbach [103] used an alternative tracking procedure, based on

the gradient ascent method, applied directly to the beamformer filters.

In this section, a novel algorithm for extracting desired speech signals uttered by moving

speakers contaminated by competing speakers and stationary noise in a reverberant environ-

ment is presented. The proposed BF uses eigenvectors spanning the desired and interference

signals subspaces. It relaxes the common requirement on the activity patterns of the various

sources. A novel mechanism for tracking the desired and interferences subspaces is proposed,

based on the PASTd procedure and on a union of subspaces procedure. This contribution

extends previously proposed methods to deal with multiple speakers in dynamic scenarios.

The structure of this section is as follows. In Sec. 2.3.1 we formulate the speakers extrac-

tion problem. In Sec. 2.3.2 we extend the estimation algorithm described in Sec. 2.1 and in

[51], and use an arbitrary subspace spanning the desired ATFs (instead of the RTFs). This

relaxes the common requirement for non overlapping activity patterns of the desired sources.

In Sec. 2.3.3 we introduce a novel mechanism for tracking the desired and interferences sub-

spaces in a reverberant environment. The proposed speakers extraction algorithm is tested

in both simulated and real environments in Sec. 2.3.4.
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2.3.1 Problem Formulation

Consider the problem of extracting Nd desired speech signals sd1(n), . . . , sdNd(n) uttered by

moving speakers contaminated by Ni competing moving speakers si1(n), . . . , siNi(n) as well as

stationary interferences in a reverberant environment. Each of the involved signals undergo

filtering before being picked up by M microphones arranged in an arbitrary array. The

reverberation effect can be modeled by a finite impulse response (FIR) time-varying filtering.

The received signals can be formulated in a vector notation, in the STFT domain as z(`, k) =

Hd(`, k)sd(`, k) +H i(`, k)si(`, k) +v(`, k) where sd(`, k) =
[
sd1(`, k) · · · sdNd(`, k)

]T
and

si(`, k) =
[
si1(`, k) · · · siNi(`, k)

]T
are vectors comprising the desired and interfering

speech signals, respectively. k denotes the frequency index and ` the frame index. Hd(`, k) =[
hd1(`, k) · · · hdNd(`, k)

]
and H i(`, k) =

[
hi1(`, k) · · · hiNi(`, k)

]
are M × Nd and

M ×Ni matrices that involve time-varying ATFs relating the desired and interfering sources

and the microphone array. v(`, k) denotes stationary noise components of the received signals,

consisting of directional as well as spatially white signals.

Assuming the sources and the noise signals are uncorrelated, the correlation matrix of

the received signals can be written as:

Φzz(`, k) = Hd(`, k)Λd(`, k)
(
Hd(`, k)

)H

+H i(`, k)Λi(`, k)
(
H i(`, k)

)H
+ Φvv(`, k) (2.49)

where Λd(`, k) , diag
([

(σd1(`, k))2 . . . (σdNd(`, k))2
])

and Λi(`, k) ,

diag
([

(σi1(`, k))2 . . . (σiNi(`, k))2
])

are diagonal matrices with the spectral vari-

ances of the desired and interfering sources on their main diagonal respectively. Φvv(`, k)

is the stationary noise correlation matrix. (•)H is the conjugate-transpose operation, and

diag (•) is a square matrix with the vector in brackets on its main diagonal. In the following

section we derive an algorithm for extracting the desired sources while mitigating the

interferences in dynamic environments.

2.3.2 Speakers Extraction in a Dynamic Environment

Markovich-Golan et al. [51] propose a novel eigenspace based LCMV beamformer, designed

for extracting static desired sources. Rather than using the sources’ ATFs for constructing

the constraints set, they use an arbitrary basis for the interferences subspace and the RTFs
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of the desired sources. They also derive an algorithm for estimating the subspace, that spans

the non-stationary interference signals, having an arbitrary activity pattern.

Following [51], define a modified constraints set Ċ
H

(`, k)w(`, k) = g(`, k) where Ċ(`, k) =
[
H̃

d
(`, k) Qi(`, k)

]
is the constraints matrix and g(`, k) ,

[
1 . . . 1︸ ︷︷ ︸

Nd

0 . . . 0︸ ︷︷ ︸
Ni

]T
is the

desired response vector. Qi(`, k) denotes an orthonormal basis which spans the interferences

subspace, i.e. H i(`, k) = Qi(`, k)Θi(`, k) where Θi(`, k) is the projection coefficients matrix.

H̃
d
(`, k) =

[
h̃
d

1(`, k) · · · h̃
d

Nd
(`, k)

]
denotes a matrix of the desired sources’ RTFs with

respect to reference microphone #1. The RTF of the ith desired source is defined as h̃
d

i (`, k) =

1
hdi1(`,k)

hdi (`, k). The closed form beamformer solving this problem is given by:

w(`, k) =Φ−1
zz (`, k)Ċ(`, k)

×
(
Ċ
H

(`, k)Φ−1
zz (`, k)Ċ(`, k)

)−1

g(`, k). (2.50)

They further propose the use of the QRD procedure to perform the union of basis vectors

obtained from several time segments. Estimating the constraint matrix utilizes segments of

simultaneously active interference sources, but discards segments of desired signals’ double-

talk. In the sequel, we further relax the latter requirement, allowing simultaneously active

desired sources in the estimation procedure.

Denote by Qd(`, k) an orthonormal basis spanning the desired subspace Hd(`, k) =

Qd(`, k)Θd(`, k) where Θd(`, k) is the projection coefficients matrix. We propose to use

the following modified constraints set

C̃(`, k) =
[
Qd(`, k) Qi(`, k)

]
(2.51a)

g̃(`, k) =

[ (
Qd

11(`, k)
)∗

. . .
(
Qd
Nd1(`, k)

)∗
︸ ︷︷ ︸

Nd

0 . . . 0︸ ︷︷ ︸
Ni

]T
(2.51b)

where we substitute the desired sources’ RTFs in the constraints matrix Ċ(`, k) by the basis

Qd(`, k), and
[

1 · · · 1
]

1×Nd
in the desired response vector g(`, k) by the first row of

Qd(`, k).

Let w̃(`, k) be the solution of the LCMV with the modified constraints set. The output
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of the modified beamformer is given by:

ỹ(`, k) = w̃H(`, k)z(`, k) =

Nd∑

j=1

hdj1(`, k)sdj (`, k)

+g̃H(`, k)
(
C̃
H

(`, k)Φ−1
vv (`, k)C̃(`, k)

)−1
C̃
H

(`, k)v(`, k). (2.52)

Hence, the desired sources as received by the reference microphone are extracted, the non-

stationary interferences are mitigated, and the power of the remaining stationary noise is

minimized. Although the union based subspace estimation method obtains good performance

with static sources, it is rendered useless when they are allowed to move, since the rank

of the estimated subspace may excessively grow. Without prior knowledge of the rank,

source movement, manifested as ATF change, results in a birth of a new basis vector. We

circumvent this phenomenon by incorporating a death mechanism for the obsolete basis

vectors in the estimation procedure. A novel subspace tracking algorithm utilizing birth and

death mechanism is introduced in the following section.

2.3.3 Proposed Subspace Tracking Algorithm

The proposed tracking algorithm is based on the classic PASTd procedure introduced by

Yang [43]. The PASTd procedure is a recursive algorithm incorporating a forgetting factor

β. The latter results in an inherent memory of Nβ ≈ 1
1−β frames, contributing to the subspace

estimation. The main limitation in applying the PASTd procedure to the problem at hand

stems from conflicting memory requirements. On the one hand, we would like to apply

PASTd with short memory in order to have fast adaptation time, and to quickly react to

birth or death of basis vectors. On the other hand, using short memory, only recently active

speakers will be included in the estimated subspace. All other speakers effectively die out.

As a consequence, during the adaptation time, desired speakers that resume activity might

suffer distortion, and competing speakers that resume activity may not be canceled out.

We propose to settle these contradicting requirements by using a short memory PASTd,

allowing for fast adaption of basis vectors. Yet, basis vectors meeting certain conditions are

declared stable and remain part of the estimated subspace for a predefined expiry-time. The

stability conditions are explained in Sec. 2.3.3.2.

The proposed subspace tracking algorithm consists of three stages. First, a generalized

PASTd procedure tracks the current subspace as explained in Sec. 2.3.3.1. Second, the expiry
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Subspace
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Generalized
Subspace
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z(�, k)

Q̃
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(�, k)

Figure 2.5: Block diagram of the proposed tracking algorithm.

time is attributed to stable basis vectors. Third, the current basis vectors and the valid stable

basis vectors are combined by using the union operation as explained in Sec. 2.3.3.3. A block

diagram of the proposed tracking scheme is depicted in Fig. 2.5.

2.3.3.1 PASTd – Subspace Tracking

As we are dealing with two distinct groups of signals (desired and interfering) we apply the

tracking algorithm to each group independently. Note that the proposed subspace tracking

algorithm can only operate on time-segments in which desired and interfering speakers are

mutually inactive. It is assumed that these segments exist and they are used for tracking

the respective signal subspaces. Let x denote the active group, where x ∈ {d, i}. Define the

activity indicator of the xth group

Ix(`) =

{
1 only sources of the xth group are active

0 otherwise
. (2.53)

We assume that this activity indicator is available to the algorithm. Note, that a group x is

declared active if at least one of its signals is active. The activity indicator Ix(`) is regulating

the subspace tracking algorithm.

PASTd estimation method is only suitable for tracking the signal subspace in a spa-

tially white noise environment. Therefore, a whitening procedure should precede the acti-

vation of the tracking algorithm. Denote the whitened microphone signals as zw(`, k) =

Φ−1
vv,L(`, k)z(`, k), where Φvv,L(`, k) is the lower triangular matrix obtained by the Cholesky

decomposition of the stationary noise covariance matrix, Φvv(`, k) = Φvv,L(`, k)ΦH
vv,L(`, k).

The noise covariance matrix Φvv(`, k) can be estimated by any conventional noise estimation

procedure. The resulting covariance matrix of the whitened microphone signals is therefore
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given by:

Φzwzw(`, k) = Φ−1
vv,L(`, k)Φzz(`, k)

(
Φ−1
vv,L(`, k)

)H
. (2.54)

The PASTd procedure tracks Nu ≤ M major eigenvectors of the two groups of the

whitened sources {uxr (`, k)}Nur=1 and their corresponding eigenvalues {dxr (`, k)}Nur=1. It is proven

by Yang [43] that the estimated subspace converges to an orthonormal basis of the signals

subspace.

A basis that spans the signal subspace of the original measurements z(`, k) is given by:

ũxr (`, k) =
√
dxr (`, k)Φvv,L(`, k)uxr (`, k) (2.55)

where we scaled the basis vectors by their corresponding eigenvalues.

Note that this representation is no longer orthogonal. To obtain an orthogonal represen-

tation the following steps are applied. Define, Ũ
x
(`, k) ,

[
ũx1(`, k) · · · ũxNu(`, k)

]
. Next,

a QRD is applied to Ũ
x
(`, k). Finally, the required orthogonal basis Q̃

x
(`, k) is obtained by

selecting the dominant vectors spanning Ũ
x
(`, k) scaled by their corresponding energy.

2.3.3.2 Classification of Subspace Stability

The basis Q̃
x
(`, k) defined in the previous section spans the subspace of the currently active

sources in group x. Recall that this basis is always valid for at least Nβ frames, due to the

inherent memory of the PASTd technique. In a static scenario these basis vectors should

remain unaltered. Based on this property, we propose a classification criterion for subspace

stability. We define an indicator function

Ixstable(`) ,

{
1 {Q̃x

(`, k)}NDFT−1
k=0 is stable

0 otherwise
.

Each subspace that is valid for more than Nstable frames will be declared stable. Define the

projection matrix to Q̃
x
(`, k), the signal subspace, by

P Q̃x(`, k) , Q̃
x
(`, k)

((
Q̃
x
(`, k)

)H
Q̃
x
(`, k)

)−1 (
Q̃
x
(`, k)

)H
. (2.56)
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The energy of the projection of the received signals in frame `′ to the current basis

{Q̃x
(`, k)}NDFT−1

k=0 is given by:

EQ̃x(`
′, `) ,

NDFT−1∑

k=0

αx(`, k)‖P Q̃x(`, k)z(`′, k)‖2 (2.57)

where α(`, k) , 1 − NQ̃x (`,k)

M
is a compensation factor for high signal subspace rank. Hence,

the aggregated projection energy over Nstable frames is given by:

EQ̃x(`) =

Nstable−1∑

j=0

EQ̃x(`−Nβ − j, `).

Finally, we set Ixstable(`) = 1 if
EQ̃x (`)

Ex(`)
is higher than a predefined threshold, where Ex(`) is the

aggregated energy of the received signal over Nstable frames. Subspaces that are declared sta-

ble are attributed with an expiry-time. The expiry-time provides a mechanism for forgetting

unused basis vectors.

2.3.3.3 Subspaces Union

To guarantee that basis vectors common to the current subspace and the stable subspaces are

not counted more than once they should be collected by the union operator (see an analogue

discussion in [51]). The union operator can be implemented in many ways. Here we chose to

use the QRD. The required orthonormal basis Qx(`, k) for group x is obtained by selecting

the dominant vectors spanning the collection of valid subspaces. Note that the rank of the

signal subspace is estimated from the received data and therefore the knowledge of Nd and

Ni is not required.

2.3.4 Experimental Study

The proposed algorithm is tested with simulated signals as well as with real signals recorded

in our acoustics lab. We examine a scenario in which two desired speakers and two interfering

speakers are moving around in a reverberant noisy environment. The dimensions of the sim-

ulated room are 3m×4m×2.7m. The reverberation time is set to 0.3s in both environments.

The acoustics lab and the simulated room are depicted in Figs. 2.6, 2.7, respectively. The

microphone array comprises 9 microphones and is arranged in a non-uniform linear array

with total length of 0.64m. The SIR (with respect to the non-stationary interferences) and
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SNR (with respect to the stationary interference) are 0dB and 30dB, respectively. The sono-

gram and the waveform of the signal received by a reference microphone, in the acoustics

lab scenario, are depicted in Fig. 2.8(a). The respective output of the proposed algorithm is

depicted in Fig. 2.8(b). Comparing both signals, it is clearly seen that the interference signals

are significantly attenuated, especially in high frequency bands. The SIR improvement in the

acoustics lab, using the proposed algorithm, is 7.5dB, while in the simulated environment is

9.7dB.

Figure 2.6: The acoustics lab at Bar-Ilan University premises.
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Figure 2.7: The simulated scenario: Green circles denote the microphones. Blue and red stars

denote desired and interfering sources, respectively. A line connecting two stars denotes the

route of the source’s movement. A red × denotes a stationary interference.
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(a) Signal received by a reference microphone.
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(b) The output of the beamformer.

Figure 2.8: Received signal and the beamformer output in a real environment with moving

sources.
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2.3.5 Conclusions

A novel algorithm for tracking signal subspaces has been introduced. The algorithm tracks

the current subspace using the PASTd algorithm and classifies certain subspaces as stable.

An expiry-time is then attributed to the stable subspaces. The union operator implemented

by the QRD is used for collecting valid basis vectors, independently for the desired and the

interfering groups of signals. The resulting signals subspaces are used to construct a BF

for extracting desired sources in a dynamic environment. The proposed tracking algorithm

relaxes limiting requirements on sources activity (common to other algorithms), and allows

for simultaneous source activity within the groups. The novel algorithm is shown to yield

good results, both in real and simulated environments.
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Chapter 3

Distributed beamforming

In this chapter, novel distributed BF algorithms based on well-known criteria are developed

for WASNs. The distributed versions alleviate the communication bandwidth requirements

of sharing all microphone data in the network. Iterative, and time-recursive procedures are

derived, in which only partial data is transmitted. These procedures are proven to converge

to the optimal centralized BF over time.

In Sec. 3.1, a distributed MVDR-BF is derived for binaural hearing aid systems. The latter

is a simple WASN topology which comprises two nodes, the left and right hearing apparatuses.

Considering a scenario of a single desired speaker in a noisy environment, we propose a

distributed binaural MVDR-BF which requires only a single bidirectional communication

channel with a bandwidth of a single microphone. The proposed algorithm is iterative, and

converges to the centralized solution after several iterations.

In Sec. 3.2, the multiple speakers scenario is addressed. A distributed GSC-BF, which

reduces the required communication bandwidth significantly, without sacrificing performance,

is suggested. Denoting N , the number of nodes, and P , the number of speakers, the required

communication bandwidth is equal to N + P audio channels.

In Sec. 3.3, we address the more simple scenario of a single desired speaker in a noisy

environment received by a WASN. We develop a GSC-BF for this special case which requires

only N transmission channels, rather than N + 1 when the distributed BF of Sec. 3.2 is

applied.

All distributed BFs in this chapter assume that the microphone signals in all nodes are

sampled with an equal and accurate sampling rate. However, this is hardly ever the case as

each node might use an independent clock source and sampling rate offsets are inevitable.

59



60 CHAPTER 3. DISTRIBUTED BEAMFORMING

In Sec. 3.4 we propose a blind synchronization algorithm for estimating the sampling rate

offsets in a WASN and propose methods for compensating this offset. The procedure assumes

that a noise with a coherent component and slowly time-varying statistics exists. Noise-only

time segments are used to track coherence changes between microphone of various nodes,

and hence to estimate the sampling-rate offsets. This procedure can be incorporated in the

previously presented distributed BFs.

3.1 A reduced bandwidth binaural MVDR beam-

former

A novel reduced bandwidth iterative algorithm for a distributed MVDR beamformer with

application to binaural hearing aids is presented. The proposed algorithm requires a single

transmission channel between laterals. It is well-known that the MVDR beamformer is a

special case of the SDW-MWF. The convergence of the iterative procedure to the binaural

MVDR is proved for a desired source correlation matrix with rank-1. The proposed method

is shown to outperform the monaural MVDR, where the output is generated by filtering only

local sensors, without communicating with the other side.

Maintaining spatial cues is a desired property of any binaural BF. The binaural MVDR

maintains the spatial cues of the desired source as can be deduces from its distortionless

response. However, spatial cues of the interfering sources are not maintained.

This section is organized as follows. In Sec. 3.1.1, the binaural hearing aids problem is

formulated. In Sec. 3.1.2, a closed-form solution for the binaural MVDR based on all sensors’

data is derived. In Sec. 3.1.3, the novel reduced bandwidth iterative MVDR algorithm is

proposed. The proof of convergence in the rank-1 scenario is presented in the Sec. 3.1.4.

Finally, the algorithm is evaluated for narrow-band stationary signals, and for speech signals

in reverberant environments in Sec. 3.1.5.

3.1.1 Problem Formulation

The problem is formulated in the STFT domain. Consider a desired speech signal s(`, k)

impinging on two microphone arrays in the left and right hearing aid apparatuses placed in a

reverberant environment. The received signals are contaminated by a stationary noise v(`, k).

From here on we omit the time and frequency indexes for brevity. The signals received by
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the left and right arrays are given by zl = hls + vl and zr = hrs + vr, respectively, where

hl,hr are the ATFs relating the desired source and the left and right arrays. Define the

vectors comprised of a concatenation of the left and right signals z =
[
zTl zTr

]T
= hs+v,

where v =
[
vTl vTr

]T
and h =

[
hTl hTr

]T
. Denote the covariance matrix of the received

signals:

Φzz = σ2hHh+ Φvv =

[
Φll Φlr

Φrl Φrr

]
(3.1)

where Φvv = E
[
vvH

]
is the covariance matrix of the stationary noise. The goal of the stan-

dard binaural MVDR beamformer is to reduce the noise power at two reference microphones

at the left and right apparatuses, by using all microphone data, and while keeping the desired

speech components undistorted. In this section a distributed version of the binaural MVDR

is addressed. The algorithm should limit communication bandwidth between laterals without

sacrificing the performance.

3.1.2 Closed-form Binaural MVDR

The binaural MVDR beamformer consists of two beamformers designed for reproducing the

desired signal components as received by reference microphones in each lateral, while mini-

mizing the overall noise power. The output signals of the closed-form beamformer are given

by yol = (wol)Hz and yor = (wor)Hz. The closed-form solution is given by:

wol =
(

(h̃
l
)HΦ−1

zz h̃
l
)−1

Φ−1
zz h̃

l
(3.2a)

wor =
(

(h̃
r
)HΦ−1

zz h̃
r
)−1

Φ−1
zz h̃

r
(3.2b)

where the left and right RTFs are defined as:

h̃
l
= (hl,1)−1 h =

[
(h̃

l

l)
T (h̃

l

r)
T

]T

h̃
r

= (hr,1)−1 h =
[

(h̃
r

l )
T (h̃

r

r)
T
]T
.

The first microphones are arbitrarily chosen as the reference microphones. Throughout this

section the subscript notations (·)l and (·)r are used for denoting the vector components

corresponding to the left and right laterals, respectively. The superscript notations (·)l and
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Figure 3.1: Diagram of the distributed binaural MVDR.

(·)r are used to denote variables which are used for calculating the outputs of the left and

right apparatuses, respectively. Note that the left and right MVDR beamformers are parallel

in the rank-1 case.

3.1.3 Proposed method

In this section, we introduce a batch iterative algorithm which converges to the closed-form

solution introduced in the previous section. We assume that the second moments of the

observed data are available or can be estimated without errors. At each iteration, each side

calculates the MVDR beamformer based on its local microphones and the channel received

from the lateral side. Its contribution to the binaural beamformer is transmitted to the

lateral side which in turn also updates its coefficients in a similar manner. Each iteration is

therefore comprised of updating both left and right beamformers. A diagram of the algorithm

is depicted in Fig. 3.1. Consider the ith iteration of the algorithm. Without loss of generality,

we assume that the left side is the first to update its beamformer. The data available to the

left side is its own microphones and the received channel from the right side in the previous

iteration

di−1
r = (wi−1

r )Hzr. (3.3)
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The MVDR equation at the ith iteration at the left side is given by

[
wi
l

αil

]
= argmin
wi

l ,α
i
l

[
wi
l

αil

]H
E



[
zl

di−1
r

][
zl

di−1
r

]H

[
wi
l

αil

]
(3.4)

s.t.

[
wi
l

αil

]H [
h̃
l

l

(wi−1
r )Hh̃

l

r

]
= 1.

The last minimization can be reformulated as a constrained minimization of the binaural

MVDR, where the right coefficients are constant up to a scaling factor αilw
i−1
r :

[
wi
l

αil

]
= argmin
wi

l ,α
i
l

[
wi
l

αilw
i−1
r

]H
Φzz

[
wi
l

αilw
i−1
r

]
(3.5)

s.t.

[
wi
l

αilw
i−1
r

]H
h̃
l
= 1.

The minimization is performed by using Lagrange multipliers. Define the Lagrangian of the

left side:

Ll(wi
l, α

i
l, λ

i
l) =

[
wi
l

αilw
i−1
r

]H
Φzz

[
wi
l

αilw
i−1
r

]

+ λil



[

wi
l

αilw
i−1
r

]H
h̃
l − 1




+ (λil)
∗
(

(h̃
l
)H

[
wi
l

αilw
i−1
r

]
− 1

)
. (3.6)

Minimizing (3.6) is performed by solving the partial derivatives ∂Ll
∂(wi

l)
H = 0, ∂Ll

∂(αil)
∗ = 0,

∂Ll
∂(λil)

∗ = 0 and its solution is given by:

λil =

(
−‖h̄l,il ‖2

(
¯Φ
i

ll)
−1
− ‖(h̃lr)Hwi−1

r ‖2

(wi−1
r )HΦrrwi−1

r

)−1

(3.7a)

wi
l =λil(Φ̄

i
ll)
−1h̄

l,i
l (3.7b)

αil =− (wi−1
r )Φrlw

i
l + λil(w

i−1
r )Hh̃

l

r

(wi−1
r )HΦrrwi−1

r

(3.7c)
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where

Φ̄
i
ll =Φll −

Φlrw
i−1
r (wi−1

r )HΦrl

(wi−1
r )HΦrrwi−1

r

(3.8a)

h̄
l,i
l =

(wi−1
r )Hh̃

l

rΦlrw
i−1
r

(wi−1
r )HΦrrwi−1

r

− h̃ll (3.8b)

and the matrix norm with respect to the matrix A is denoted by ‖·‖A. Note that the second

moments required for the calculation are available since

Φlrw
i−1
r =E

[
zl(d

i−1
r )∗

]

(wi−1
r )HΦrrw

i−1
r =E

[
‖di−1

r ‖2
]
.

The expression (wi−1
r )Hh̃

l

r = (wi−1
r )Hhr
hl,1

equals the RTF between the desired source compo-

nents at di−1
r and zl,1. It can be estimated by exploiting the non-stationarity of speech or by

the GEVD. The minimization of the right Lagrangian is solved in a similar manner. The

algorithm is summarized in Alg. 1, where we also define

Φ̄
i
rr =Φrr −

Φlrw
i
l(w

i
l)
HΦlr

(wi
l)
HΦllwi

l

(3.9)

h̄
r,i
r =

(wi
l)
Hh̃

r

lΦrlw
i
l

(wi
l)
HΦllwi

l

− h̃rr. (3.10)

The algorithm is initialized with the monaural MVDR on the left side. In the following

section the proposed algorithm is proved to converge to the binaural MVDR beamformer in

the rank-1 case.

3.1.4 Convergence of the distributed MVDR to the binaural

MVDR

The variance of the MVDR output is denoted by J (w) = wHΦzzw. Consider the ith itera-

tion at the left side J
(
wl,i
)
, where wl,i =

[
(wi

l)
T αi(wi−1

r )T
]T

. By manipulation of the

left constraint (wl,i)Hh̃
l

= 1 we obtain that
(

(h̃rl,1)∗wl,i
)H
h̃
r

= 1. Since (h̃rl,1)∗wl,i belongs

to the minimization range of the right side, the MVDR variance after updating the right

weight coefficients (at the ith iteration) is upper bounded by J (wr,i) ≤ J
(

(h̃rl,1)∗wl,i
)

=

|(h̃rl,1)|2J
(
wl,i
)
, where wr,i =

[
αir(w

i
l)
T (wi

r)
T
]T

. By manipulation of the right con-
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straint (wr,i)Hh̃
r

= 1 we obtain that
(

(h̃lr,1)∗wr,i
)H
h̃
l

= 1. Therefore the MVDR vari-

ance after updating the left weight coefficients (at iteration i + 1) is upper bounded by

J
(
wl,i+1

)
≤ J

(
(h̃lr,1)∗wr,i

)
= |(h̃lr,1)|2J (wr,i). We therefore obtain the following inequality

J
(
wl,i+1

)
≤ |(h̃lr,1)|2|(h̃rl,1)|2J

(
wl,i+1

)
, and since h̃lr,1 = (h̃rl,1)−1 we conclude that the vari-

ance of the left MVDR is monotonically non-increasing J
(
wl,i+1

)
≤ J

(
wl,i
)
. In a similar

way, we conclude that the variance of the right MVDR is also monotonically non-increasing

J (wr,i+1) ≤ J (wr,i). J (w) is trivially lower bounded by 0 and therefore J (wl,∞), J (wr,∞)

must converge. Consider the above inequalities for i→∞:

J
(
wl,∞) ≤ J

(
(h̃lr,1)∗wr,∞

)
(3.11a)

J (wr,∞) ≤ J
(

(h̃rl,1)∗wl,∞
)
. (3.11b)

Dividing Eq. (3.11b) by |h̃rl,1|2, noting that h̃rl,1h̃
l
r,1 = 1 and combining both inequalities we

have that J
(

(h̃lr,1)∗wr,∞
)
≤ J

(
wl,∞) ≤ J

(
(h̃lr,1)∗wr,∞

)
and due to the Squeeze theorem

an equality holds

J
(
wl,∞) = J

(
(h̃lr,1)∗wr,∞

)
. (3.12)

Since Ll(w∞l , α∞l , λ∞l ) is the only local minimum as shown in Sec. 3.1.3, and since (h̃lr,1)∗wr,∞

belongs to the minimization range they coincide wl,∞ = (h̃lr,1)∗wr,∞, and the spatial filters

after convergence are parallel. Notice that α∞l = (h̃lr,1)∗ and α∞r = (h̃rl,1)∗.

In order to prove that wol = wl,∞ we define the projection matrix to the desired signal

subspace P ‖ = hhH

hHh
and to its null subspace P⊥ = I − hh

H

hHh
, where I is the identity

matrix. Notice that the left and right constraints guarantee that at any iteration i > 1 the

parallel components remain constant P ‖wl,i = wl‖ = wol‖, P ‖wr,i = wr‖ = wor‖. Substitute

wl,i = (P ‖ + P⊥)wl,i = wl‖ +wl⊥,i in the left Lagrangian (3.6)

Ll(wi
l, α

i
l, λ

i
l) = (wl‖ +wl⊥,i)HΦzz(w

l‖ +wl⊥,i)

+ λil

(
(wl‖)Hh̃

l

l + (wr‖)Hh̃
l

r − 1
)

+ (λil)
∗
(

(h̃
l

l)
Hw

l‖
l + (h̃

l

r)
Hwl‖

r − 1
)
. (3.13)
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The partial derivative ∂Ll
∂wl⊥,i

l

equals:

∂Ll
∂wl⊥,i

l

=
(
P⊥ΦzzP

‖
)
ll
w
l‖
l +

(
P⊥ΦzzP

⊥)
ll
wl⊥,i
l

+
(
P⊥ΦzzP

‖
)
lr
wl‖
r +

(
P⊥ΦzzP

⊥)
ll
wl⊥,i
r . (3.14)

In a similar manner we reformulate Lr(wi
r, α

i
r, λ

i
r) and evaluate its partial derivative ∂Lr

∂wl⊥,i
r

∂Lr
∂wl⊥,i

r

=
(
P⊥ΦzzP

‖
)
ll
w
r‖
l +

(
P⊥ΦzzP

⊥)
ll
wl⊥,i
r

+
(
P⊥ΦzzP

‖
)
lr
wr‖
r +

(
P⊥ΦzzP

⊥)
ll
wr⊥,i
r . (3.15)

Hence, the partial derivatives with respect to the left part of the orthogonal weights simul-

taneously equal zero ∂Lr
∂wl⊥,i

r
|wr,∞ = α∞r

∂Ll
∂wl⊥,i

l

|wl,∞ = 0 when i → ∞. The right partial

derivatives simultaneously equal zero in a similar manner. Finally, the global minimum is

reached, since the parallel part of the weights equals its optimum, and since all the partial

derivatives according to the left and right orthogonal parts of the weights equal zero. Fur-

thermore, since the global Lagrangian under minimization has a single minimum, it has been

reached. Hence, it is concluded that

wl,∞ = wol (3.16a)

wr,∞ = wor� (3.16b)

3.1.5 Experimental Study

The proposed algorithm was evaluated using both narrow-band stationary signals and speech

signals in a reverberant room. The proposed method was compared with the closed-form bin-

aural MVDR, and the closed-form monaural MVDR. The narrow-band scenario is comprised

of one desired source and twointerfering sources received by two sub-arrays each comprised

of 2 sensors with random ATFs. The sources are generated directly at the STFT domain

as complex Gaussian random variables uncorrelated between time frames. A spatially white

sensor noise is added to the received signals. The SIR and SNR were set to 0dB and 20dB,

respectively. The various correlation matrices were assumed to be known. In Fig. 3.2(a) a

comparison between the noise variance of the proposed distributed MVDR and the monaural
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Algorithm 1 Distributed binaural MVDR

begin
for i = 1, 2, .. do

if i = 1 then

w1
l = Φ−1

ll h̃
l

l

(
(h̃

l

l)
HΦ−1

ll h̃
l

l

)−1

α1
l = 0
d1
r = 0

else

λil =

(
−‖h̄l,il ‖2

(
¯Φ
i

ll)
−1
− ‖( ˜h

l

r)
Hwi−1

r ‖2
(wi−1

r )HΦrrwi−1
r

)−1

wi
l = λil(Φ̄

i
ll)
−1h̄

l,i
l

αil = − (wi−1
r )Φrlwi

l+λ
i
l(wi−1

r )H
˜h
l

r

(wi−1
r )HΦrrwi−1

r

wi
l =

wi
l

(
˜h
l

l)
Hwi

l

end
dil = (wi

l)
Hzl

yil = (wi
l)
Hzl + (αil)

∗di−1
r

Transmit dil to the right side

λir =

(
−‖h̄r,ir ‖2

(
¯Φ
i

rr)
−1
− ‖( ˜h

r

l )
Hwi

l‖2
(wi

l)
HΦllwi

l

)−1

wi
r = λir(Φ̄

i
rr)
−1h̄

r,i
r

αir = − (wi
l)Φlrwi

r+λ
i
r(wi

l)
H ˜h

r

l

(wi
l)
HΦllwi

l

wi
r = wi

r

(
˜h
r

r)
Hwi

r

dir = (wi
r)
Hzr

yir = (wi
r)
Hzr + (αir)

∗dil
Transmit dir to the left side

end

end

MVDR normalized by the noise variance of the binaural MVDR is shown for the left and

right laterals. 50 Monte-carlo trials were used to produce the graphs. The noise variance is

plotted versus the iteration number. It is clear from the figure that the proposed algorithm

converges to the binaural MVDR.

The wide-band speech scenario is comprised of one desired speaker and two interference

signals received by two sub-arrays comprised of 2 microphones in a simulated 4×4×3m3 room

environment, with a reverberation time set to 150ms. The SIR and SNR were set to 15dB

and 60dB, respectively. The two sub-arrays were oriented in parallel. The inter sub-array
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distance was set to 17cm. The distance between the 2 microphones at each sub-array was

set to 5cm. The signals were sampled at 8kHz and were transformed into the STFT domain

with 2048 points and 75% overlap. The various algorithms operated in each frequency bin

independently. The signals were filtered in the time-domain1. The noise and speech correla-

tion matrices were estimated in noise-only and in speech and noise segments, respectively. A

simple energy threshold voice activity detector (VAD) was utilized. The desired signal RTF

was estimated by selecting the major eigenvector of the GEVD of the received signals corre-

lation matrix and the noise-only correlation matrix. The average noise PSD at the outputs

of the proposed distributed algorithm and the monaural MVDR algorithms normalized by

the noise PSD at the output of the binaural MVDR is depicted in Fig. 3.2(b). The graphs

were obtained by averaging 20 Monte-Carlo experiments. The number of iterations of the

distributed MVDR algorithm was set to 10. Due to estimation errors and filter window-

ing the noise PSD of the proposed distributed MVDR is 1.5dB higher than the noise PSD

of the binaural MVDR. In Fig. 3.3 the distributed MVDR is compared with the binaural

and monaural MVDR by subjective assessment of speech sonograms. It is clearly seen that

the proposed distributed binaural MVDR outperforms the monaural MVDR, and that its

performance is equivalent to the binaural MVDR.

1The noise PSD and the ATFs were assumed to be time-invariant, hence the MVDR beamformers were
also time-invariant.
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Figure 3.2: Excess noise variance in narrow-band scenario and excess noise PSD in wide-band

scenario.
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(b) Binaural MVDR.
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(c) Monaural MVDR.
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(d) Distributed MVDR.

Figure 3.3: Sonograms of left signals in an example scenario.

3.1.6 Conclusions

A novel distributed MVDR BF has been introduced. The proposed method reduces the

energy consumption by requiring a single transmission channel between two sub-arrays, re-

gardless of the number of microphones. The algorithm is proved to converge to the optimal

binaural MVDR when the desired source correlation matrix has a rank-1. The algorithm

is applied to the binaural hearing aid problem. The experimental study demonstrates the

superior performance of the proposed algorithm in comparison with the monaural MVDR.

The convergence to the binaural MVDR is analytically proven for the narrow-band case. A

time recursive version of the algorithm can be obtained by using a recursive estimation of
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the involved correlation matrices.

3.2 Distributed multiple constraints generalized side-

lobe canceler for fully connected wireless acoustic

sensor networks

In this section we propose a distributed multiple constraints GSC for speech enhancement in

an N -node fully connected WASN comprising M̄ microphones. Our algorithm is designed to

operate in reverberant environments with P constrained speakers (including both desired and

competing speakers). Rather than broadcasting M̄ microphone signals, a significant com-

munication bandwidth reduction is obtained by performing local beamforming at the nodes,

and utilizing only N + P transmission channels. Each node processes its own microphone

signals together with the transmitted signals. The GSC-form implementation, by separating

the constraints and the minimization, enables the adaptation of the BF during speech-absent

time segments, and relaxes the requirement of other distributed LCMV based algorithms to

re-estimate the sources’ RTFs after each iteration. We provide a full convergence proof of

the proposed structure to the centralized GSC-BF. An extensive experimental study of both

narrowband and (wideband) speech signals verifies the theoretical analysis.

The structure of this section is as follows. In Sec. 3.2.1, the problem is formulated. In

Sec. 3.2.2, a closed-form and a GSC structure of the centralized LCMV-BF are presented.

We show that, under certain conditions, an LCMV which operates on a transformation of

the inputs is equivalent to the regular BF. In Sec. 3.2.3, we derive the DGSC algorithm. The

latter is based on a specific transformation which allows to reformulate the centralized BF as

a sum of local GSC-BFs. The proposed algorithm makes use of shared signals, one for each

source, which are broadcast in the WASN. We give an analytical proof of the equivalence

between the DGSC and the centralized GSC-BF. In Sec. 3.2.4, we propose a scheme for

constructing the shared signals. We compare the proposed DGSC and the LC-DANSE in

Sec. 3.2.5. An extensive experimental study, which verifies the equivalence of the DGSC and

the centralized GSC, is presented in Sec. 3.2.6. Conclusions are drawn in Sec. 3.2.7.
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3.2.1 Problem formulation

Consider a WASN of microphones comprised of N nodes. Denote the number of microphones

in the nth node by M̄n. The total number of microphones is denoted M̄ and equals

M̄ ,
N∑

n=1

M̄n. (3.17)

The problem is formulated in the STFT domain where k denotes the frequency index and `

denotes the time-frame index. The vector of signals received by the microphones of all nodes

is z̄(`, k). It is composed by concatenating the microphone signals of all nodes:

z̄(`, k) ,
[
z̄T1 (`, k) · · · z̄TN(`, k)

]T
(3.18)

where z̄n(`, k) is an M̄n× 1 vector consisting of locally received signals at the nth node. The

vector of all received signals is given by:

z̄(`, k) , H̄(`, k)s(`, k) + v̄(`, k) (3.19)

where

s(`, k) ,
[
s1(`, k) · · · sP (`, k)

]T
(3.20)

is a P × 1 vector comprised of the speech sources, and

H̄(`, k) ,
[
h̄

1
(`, k) · · · h̄

P
(`, k)

]
(3.21)

is an M̄ × P matrix which columns are the ATFs relating the P speakers and the M̄ micro-

phones. The vector v̄(`, k) is a vector of interfering signals picked up by the microphones.

Assuming that the P speakers’ signals and the noise sources are uncorrelated, the M̄ × M̄
dimensional covariance matrix of the received signals may be written as:

Φ̄zz(`, k) , H̄(`, k)Γ(`, k)H̄
H

(`, k) + Φ̄vv(k, `) (3.22)

where (•)H denotes the conjugate-transpose operator, Γ(`, k) = diag
{
λ1(`, k), . . . , λP (`, k)

}

is the P × P dimensional covariance matrix of the P speech signals and Φ̄vv(`, k) is the

covariance matrix of the noise. Note that multiple speakers and noise sources may be si-
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multaneously active at each frequency bin. We assume that the network is fully connected,

hence any transmitted signal is available to all nodes. In cases that the network is not fully

connected a hierarchial algorithm, for example based on a spanning tree of the network, can

be sought. However, this is beyond the scope of the current contribution. As an example for

a distributed algorithm in a partially connected WASN please refer to [104]. The locations of

the speakers are assumed static, therefore their corresponding ATFs are time-invariant, and

hence the frame index is omitted in H̄(k). The algorithm is applied to each frequency bin

independently. For brevity, the index k is hereafter omitted. The noise statistics is assumed

to vary significantly slower than the convergence-time of the algorithm. For brevity, the

index ` is also omitted from Φ̄vv hereafter.

Denote the set of microphone indexes at the nth node by M̄n ,
{
mn(1), . . . ,mn(M̄n)

}
,

where M̄n , |M̄n| and | • | denotes the number of elements in a set. The vector of the

received signals at the nth node is given by

z̄n(`) = TH
n z̄(`) (3.23)

where T n is an M̄ × M̄n selection matrix which extracts the M̄n entries that correspond to

the microphone indexes of the nth node:

T n =
[

0M̄n×(
∑n−1
n′=1

M̄n′)
IM̄n

0M̄n×(
∑N
n′=n+1 M̄n′)

]T
(3.24)

and Im is an m×m identity matrix.

3.2.2 An equivalent centralized LCMV-BF

In the following, the centralized LCMV-BF is formulated. We show that under certain con-

ditions, an LCMV-BF which operates on a transformation of the inputs is equivalent to the

LCMV-BF which directly processes the microphone signals. A common design relaxation of

using the RTFs rather than the ATFs is formulated, and the GSC-form implementation is

defined. The distributed algorithm, derived in Sec. 3.2.3, will be based on a specific transfor-

mation matrix, that will conveniently split the centralized BF into a sum of N BFs. Each of

the BFs utilizes only local microphones and P shared signals, generated as a linear combina-

tion of the local microphone signals in some remote nodes. Together with the transmission

of the N local BF outputs, a total of N + P transmission channels is required.
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The centralized LCMV-BF, denoted w̄LCMV, is given by:

w̄LCMV , argmin{
w;

¯H
H
w=g

}{wHΦ̄vvw
}

(3.25)

where the global constraints set is

H̄
H
w̄ = g (3.26)

and g is a P×1 desired response vector. Typically, the desired response vector g is comprised

of values of zeros and ones, where a value of 1 is associated with a desired speaker and a

value of 0 is associated with an interfering speaker. In this case the BF is required to yield

a combination of all the desired speakers while mitigating the interfering speakers and the

noise. Generally, g can be any arbitrary P × 1 vector. We assume that the ATFs are

linearly independent, i.e., the column rank of the constraints matrix H̄ is P . In practice,

when M̄ � P the latter assumption usually holds, however, of course it is not guaranteed.

In cases for which the ATFs are linearly dependent, the constraints set might consist of

contradicting requirements. Hence, no solution that satisfies all constraints can be obtained.

When contradicting constraints exist, the system designer has to compromise and alleviate

the contradiction by reducing the number of constraints. The closed-form solution of (3.25)

is given by Van Veen and Buckley in [25]:

w̄LCMV = Φ̄
−1
vv H̄

(
H̄

H
Φ̄
−1
vv H̄

)−1

g (3.27)

where we assume that Φ̄vv is invertible since one of its components is a spatially white sensor

noise.

The output of the LCMV-BF is given by:

ȳLCMV(`) =
P∑

p=1

(gp)∗sp(`) + w̄H
LCMVv̄(`) (3.28)

where g =
[
g1 · · · gP

]T
. Note that the output comprises of the sum of the constrained

sources weighted by their corresponding desired responses and a residual noise component.
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Suppose that rather than z̄(`), a linear transformation of the inputs is available:

z(`) , UH z̄(`) (3.29)

where UH is an M × M̄ matrix and M > M̄ . Assuming that the column-subspace of UH

is full rank, i.e., its rank is M̄ , we will show that the LCMV-BFs in the original and in the

transformed domains are equivalent. Denote the following terms in the transformed domain:

H̃ ,UHH̄ (3.30a)

Φvv ,U
HΦ̄vvU . (3.30b)

Consider the following constraints set in the transformed domain:

H̃
H
w̃ = g. (3.31)

According to the fundamental theorem of linear algebra, any M×1 BF, w̃, in the transformed

domain can be expressed as the sum of two components:

w̃ = w̃u + w̃uc (3.32)

where w̃u and w̃uc lie in the column-subspace of UH and its complementary subspace, re-

spectively. Similarly to (3.25), the LCMV criterion in the transformed domain is:

w̃LCMV , argmin{
w̃;

˜H
H

w̃=g
}{w̃HΦvvw̃

}
. (3.33)

Note that from the definition of H̃ and Φvv in (3.30a) and (3.30b), their columns lie in the

column-subspace of UH . Hence, substituting (3.32) in the transformed constraint set (3.31)

and in the minimization of the transformed LCMV-BF (3.33) yields:

H̃
H
w̃u =g (3.34a)

w̃u
LCMV = argmin{

w̃u
;

˜H
H

w̃u
=g

}
{

(w̃u)HΦvvw̃
u
}

(3.34b)

w̃LCMV =w̃uc + w̃u
LCMV (3.34c)
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where the orthogonal component w̃uc can be chosen arbitrarily, since it affects neither the

noise power at the output nor the satisfaction of the constraints set. Any w̃u can be expressed

as a linear combination of the columns of UH :

w̃u , UHω (3.35)

where ω is an M̄ × 1 vector.

Substituting (3.35) in (3.34a),(3.34b),(3.34c), w̃LCMV becomes:

w̃LCMV = w̃uc

+UH argmin{
ω;

(
U ˜H

)H
ω=g

}{ωHUΦvvU
Hω
}
. (3.36)

Note that

UΦvvU
H = UUHΦ̄vvUU

H (3.37)

is a full-rank M̄ × M̄ matrix since both UUH and Φ̄vv are M̄ × M̄ dimensional rank-M̄

matrices. Hence, similarly to (3.27), the closed-form LCMV-BF of (3.36) in the transformed

domain equals:

w̃LCMV =w̃uc +UH
(
UΦvvU

H
)−1

×UH̃
((
UH̃

)H (
UΦvvU

H
)−1

UH̃

)−1

g. (3.38)

Substituting (3.30a),(3.30b) and (3.27) in (3.38) yields

w̃LCMV = UH
(
UUH

)−1
w̄LCMV + w̃uc, (3.39)

where we also used the invertibility of UUH . It can be easily deduced that the BFs in the

original and transformed domains are equivalent as their outputs coincide:

w̃H
LCMVz(`) = w̄H

LCMVz̄(`). (3.40)

In practice the ATFs of the speakers are unknown, and are difficult to estimate. A

practical solution can be obtained by replacing the sources in (3.28) with filtered versions
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thereof [39, 51, 105, 95]. Let hpref; p = 1, . . . , P be such filters. The RTF of the pth source in

the transformed domain is defined as:

hp ,
h̃
p

hpref

. (3.41)

The filters hpref; p = 1, . . . , P will be determined in Sec. 3.2.3. Note that these procedures

may require non-overlapping activity patterns of the speakers.

Define the transformed ATF and RTF matrices of dimensions M × P , respectively:

H̃ ,
[
h̃

1 · · · h̃
P
]

(3.42a)

H ,
[
h1 · · · hP

]
. (3.42b)

The modified constraints set is finally given by substituting H̃ by H in (3.26):

HHwLCMV = g. (3.43)

The modified centralized LCMV-BF (in the transformed domain), which satisfies the

modified constraints set in (3.43), is denoted by wLCMV and is given in closed-form, similarly

to (3.38):

wLCMV =wuc +UH
(
UΦvvU

H
)−1

×UH
(

(UH)H
(
UΦvvU

H
)−1

UH
)−1

g. (3.44)

where wuc is an arbitrary vector lying in the null-subspace of the column-subspace of UH .

Similarly to (3.34b),(3.34c) we identify that the component of wLCMV which lies in the

column-subspace of UH is:

wu
LCMV =UH

(
UΦvvU

H
)−1

×UH
(

(UH)H
(
UΦvvU

H
)−1

UH
)−1

g. (3.45)

The GSC-form implementation of (3.45), denoted centralized GSC-BF [35, 39], is obtained

by splitting wu into two components:

wu
LCMV , qGSC −BGSCfGSC. (3.46)
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Both qGSC and the columns of BGSC lie in the column-subspace of UH . The vector qGSC,

denoted FBF, lies in the column-subspace of H . qGSC is responsible for maintaining the

modified constraints set (3.43), and equals:

qGSC = H
(
HHH

)−1
g. (3.47)

The BM, BGSC, blocks the RTFs of the constrained speakers. Explicitly,

BH
GSCH = 0. (3.48)

Since the ranks of UH and H are M̄ and P , respectively, the rank of BGSC is M̄ − P and

its dimensions are M ×
(
M̄ − P

)
. The BM is not unique and can be obtained in several

ways, for example, as suggested in [25, 101], by applying the SVD. To construct the BM,

the SVD is applied to the M̄ × P matrix UH , rather than H , and then projected to the

transformed domain. Using this procedure an M × (M̄ − P ) BM is obtained. Denote the

NC by an (M̄ − P )× 1 vector fGSC. According to [25] it equals:

fGSC =
(
BH

GSCΦvvBGSC

)−1
BH

GSCΦvvqGSC. (3.49)

Note that the invertibility of BH
GSCΦvvBGSC is guaranteed by the definition (3.30b) and by

the BM construction procedure above.

To enable the construction of the DGSC in Sec. 3.2.3, an extended GSC-structure is

proposed:

w , q −Bf (3.50)

where the regular GSC components, qGSC, BGSC and fGSC, are replaced by:

q =qGSC +Ba+ quc (3.51a)

B =BGSC +Buc (3.51b)

f =
(
BHΦvvB

)−1
BHΦvvq. (3.51c)

Here, the regular FBF qGSC is extended by the vectors Ba and quc, and the regular

BM BGSC is extended by the matrix Buc. The extensions quc and Buc lie in the columns

null-subspace of the matrix UH , and Ba lies in null-subspace of H . For any choice of a,
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quc, Buc the modified constraints set (3.43) is maintained. Note that the regular GSC can

be obtained as a special case of (3.51a), (3.51b) and (3.51c) by setting a = 0, quc = 0 and

Buc = 0. As will be seen in the sequel, the introduction of a 6= 0, quc 6= 0 and Buc 6= 0 will

enable us to derive a distributed version of the GSC.

Now, we show that:

wHz(`) = wH
LCMVz(`) (3.52)

i.e., that w and wLCMV are equivalent. By substituting (3.51a), (3.51b), (3.51c) in (3.50), it

is evident that:

w =qGSC +Ba+ quc −B
(
BHΦvvB

)−1
BHΦvvq

(3.49)
= qGSC −BGSCfGSC

+ quc −Buc
(
BH

GSCΦvvBGSC

)−1
BH

GSCΦvvqGSC

(3.45)
= wu

LCMV +wuc (3.53)

where wuc is identified as:

wuc = quc −Buc
(
BH

GSCΦvvBGSC

)−1
BH

GSCΦvvqGSC. (3.54)

This concludes the proof of the equivalence between the extended and the regular GSC-

structures.

The output signal of the proposed GSC-structure is given by:

y(`) ,wHz(`) (3.55)

=yFBF(`)− yNC(`)

where yFBF(`) and yNC(`) are the outputs of the upper and lower branches of the GSC,

respectively:

yFBF(`) ,qHz(`) (3.56a)

yNC(`) ,fHu(`) (3.56b)

u(`) ,BHz(`) (3.56c)
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and u(`) are the noise reference signals at the output of the BM. Substituting the constraints

set of (3.43) in (3.55) yields:

y (`) =
P∑

p=1

g∗ph
p
refs

p (`) +wHv (`) . (3.57)

Note that the output of the GSC in the transformed domain and, by equivalence, the LCMV

in the original domain, is comprised of a summation of filtered versions of the P sources

and a residual noise component. It is interesting to compare the different combinations of

the constrained sources at the output of the regular LCMV-BF (3.28) and the extended

GSC-BF (3.57).

In conclusion, applying a transformation UH that preserves the rank-M̄ signal subspace,

guarantees the equivalence between the LCMV-BFs in the original and the transformed

domains. Furthermore, an equivalent extended GSC structure exists in the transformed

domain. Its optimality can be guaranteed by designing a FBF (3.51a) which satisfies the

transformed constraints set (3.43), and by designing a BM (3.51b) with M̄ − P linearly

independent noise references.

In the following section we propose a specific transformation U which enables the con-

struction of a distributed version of the extended GSC-BF.

3.2.3 DGSC

A recursive distributed version of the GSC-BF is now proposed. We present a specific trans-

formation matrix U which conveniently splits the centralized GSC into a sum of N GSC-BFs,

denoted wn for n ∈ {1, . . . , N}, operating in each of the WASN nodes. The proposed trans-

formation matrix consists of N sub-matrices:

U ,
[
U 1 · · · UN

]
(3.58)

where the transformed inputs of the nth node are constructed by

zn(`) , UH
n z̄(`) (3.59)
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and the concatenation of all transformed inputs yields:

z(`) ,
[
zT1 (`) · · · zTN(`)

]T
. (3.60)

Note that Un is an M̄ ×Mn matrix and the corresponding transformed input zn(`) is an

Mn × 1 vector for n = 1, . . . , N . The sub-matrices Un; n = 1, . . . , N will be later defined.

The transformed inputs of each node will comprise all of its local microphone signals and

a subset of the P shared signals. With the proposed transformation each node has at least

P input signals, allowing for P constraints to be maintained locally, without unnecessary

sacrificing degrees of freedom, as will be shown in the following sub-sections. In this section,

the selection of the P shared signals is arbitrary, and should only satisfy linear independence.

We will elaborate on this matter in Sec. 3.2.3.3. A specific and simple selection of the P

shared signals is given in Sec. 3.2.4. The N outputs of the GSC-BFs, denoted yn(`) for

n = 1, . . . , N , and the P shared signals are transmitted in the WASN, where:

yn(`) , wH
n zn(`) (3.61)

and wn is the GSC-BF at the nth node. Hence, a total of N + P transmission channels

are required by the algorithm. These channels effectively extend the number of available

microphones at each node and should be continuously broadcast (also after the algorithm

has converged). Note that for a node n that comprises a single microphone, i.e., M̄n = 1,

no communication-bandwidth reduction is obtained, since the single microphone signal is

transmitted. The global GSC-BF is given by augmenting the N nodes’ BFs:

w ,
[
wT

1 · · · wT
N

]T
. (3.62)

The final output of the algorithm is obtained by substituting (3.60), (3.61) and (3.62) in

(3.55):

y(`) =
N∑

n=1

wH
n zn(`)

=
N∑

n=1

yn(`). (3.63)
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The GSC-BF at the nth node is given by:

wn , qn −Bnfn (3.64)

where qn, Bn and fn are the FBF, BM and NC at each node. Substituting (3.64) in (3.63),

the output of the algorithm can be restated as:

y(`) =
N∑

n=1

(qn −Bnfn)H zn(`). (3.65)

Considering (3.65), we identify the global components of the GSC-BF (3.50) as a concatena-

tion of qn and fn for n ∈ {1, . . . , N}, respectively:

q ,
[
qT1 · · · qTN

]T
(3.66a)

f ,
[
fT1 · · · fTN

]T
. (3.66b)

The global BM, B, is constructed as a block-diagonal matrix with N blocks:

B , blkdiag
{
B1, · · · , BN

}
. (3.67)

Similarly to the notation in (3.55), (3.56a), (3.56b), (3.56c) for the global GSC, the

outputs of the upper and lower branches, and the noise references at the nth node, are

defined as:

yn(`) ,yFBF
n (`)− yNC

n (`) (3.68a)

yFBF
n (`) ,qHn zn(`) (3.68b)

yNC
n (`) ,fHn un(`) (3.68c)

un(`) ,BH
n zn(`). (3.68d)

The global noise references vector is given by augmenting the noise reference signals of all

nodes:

u(`) ,
[
uT1 (`) · · · uTN(`)

]T
. (3.69)

A proper selection of P shared signals ensures that the number of noise references at the
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output of the global BM is M̄ − P , and hence satisfies the requirement that BHΦvvB is a

full-rank (M̄ − P )× (M̄ − P ) matrix.

In the following, we prove analytically that the proposed DGSC converges to the cen-

tralized GSC. In Sec. 3.2.3.1 we propose a proper transformation matrix U , that will al-

low us to split the BF into the structure defined by (3.65). We show that the proposed

transformation matrix preserves the rank-M̄ signals subspace, as required for the equiva-

lence shown in Sec. 3.2.2. The design of FBF, BM, and NC of the DGSC is presented in

Secs. 3.2.3.2,3.2.3.3,3.2.3.4. This structure is shown to satisfy the requirements of Sec. 3.2.2.

3.2.3.1 The transformation matrix

In the following, we define some notations for formulating the DGSC. The node that trans-

mits the shared signal of the pth speaker is denoted as the “owner” of the pth source. In

Sec. 3.2.4 we describe the procedure for selecting the owners of each of the P signals2, and

for generating the shared signals. Denote by χ(p) the index of the node which is the owner

of the pth source. The shared signals are denoted by rp(`); p = 1, . . . , P . Consider the pth

shared signal, corresponding to the pth source. Assume that the pth source is owned by the

nth node, i.e. χ(p) = n. We suggest to construct the shared signal as:

rp(`) , (dpn)H z̄n(`)

= (dpn)H TH
n

(
P∑

p=1

h̄
p
sp (`) + v̄ (`)

)
(3.70)

where dpn is an M̄n×1 “local” BF that processes only the microphone signals of the nth node.

A specific choice of the BFs dpn for p = 1, . . . , P and n = χ(p) will be defined in Sec. 3.2.4.

Denote by Pn ,
{
pn(1), · · · , pn(Pn)

}
the set of sources owned by the nth node, and

by Pn , |Pn| the number of sources owned by the nth node. The shared signals generated

by the nth node, are defined in a vector notation by the Pn × 1 vector:

rn(`) ,
[
rpn(1)(`) · · · rpn(Pn)(`)

]T
(3.71)

=DH
n z̄n(`) (3.72)

2A node can be the owner of several sources.
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where

Dn ,
[
dpn(1)
n · · · dpn(Pn)

n

]
. (3.73)

The M̄n × Pn dimensional matrix Dn should be properly constructed to have a rank Pn. As

each source is exclusively owned by a single node

P =
N∑

n=1

Pn. (3.74)

The P × 1 vector of all shared signals is constructed by augmenting the contributions of all

nodes:

r(`) ,
[
rT1 (`) · · · rTN(`)

]T
. (3.75)

Note, that some of the nodes may own no sources. For instance, suppose that the n′th node

does not own any source. In that case, Pn′ = 0 and the corresponding vector of shared signals

rn′ (`) will be empty.

The set of indexes of the P speakers is denoted by P , {1, . . . , P}. Denote the set of

shared signals that the nth node receives as Ṗn. It comprises the indexes of all sources except

the self-owned sources:

Ṗn ,P\Pn
=
{
ṗn(1) · · · ṗn(Ṗn)

}
(3.76)

where \ denotes the set subtraction operation and Ṗn = |Ṗn|. The Ṗn × 1 vector of shared

signals received by the nth node is denoted by:

ṙTn (`) ,
[
rT1 (`) · · · rTn−1(`) rTn+1(`) · · · rTN(`)

]
. (3.77)

As previously defined in (3.59), the signals available for processing at the nth node are

denoted by zn(`), an Mn × 1 vector:

zn(`) , UH
n z̄(`)
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where

Un ,
[
T n Ṫ n

]
(3.78a)

Ṫ n ,
[
T 1D1 · · · T n−1Dn−1

T n+1Dn+1 · · · TNDN

]
. (3.78b)

From (3.78a), the number of transformed input signals at the nth node is given by:

Mn = M̄n + Ṗn. (3.79)

Note that T n and T n′ ∀n 6= n′ are linearly independent, since they comprise different mi-

crophones. Now, since the rank of Dn in (3.73) is Pn, it follows that the rank of T nDn is

also Pn. Hence, we argue that the rank of Ṫ n is
∑

n′ 6=n Pn′ = Ṗn. A similar argument can be

applied to Un. Constructed as a concatenation of T n and Ṫ n, its rank equals Mn.

We designate the pth shared signal, rp(`), as the reference microphone for the pth source

RTF (3.41). We identify the ATF relating the pth source and the pth shared signal (3.70) as:

hpref , (dpn)H TH
n h̄

p
. (3.80)

Now, the pth RTF (3.41) can be defined with respect to the pth shared signal. Considerations

for constructing dpn; p = 1, . . . , P will be discussed in Sec. 3.2.4.

The proposed M̄ ×M dimensional transformation matrix is finally given by:

U ,
[
U 1 · · · UN

]
(3.81)

where we note that

M =
N∑

n=1

Mn =
N∑

n=1

(
M̄n + Ṗn

)

=M̄ + (N − 1)P. (3.82)

It can be easily shown that the rank of the column-subspace of U is M̄ , since a permutation

of
[
T 1 · · · TN

]
= IM̄ is its sub-matrix. Hence, U is a valid transformation matrix,

rendering w and w̄LCMV equivalent (3.40).

According to (3.59) and (3.78a), the transformed input vector in the nth node is the
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Mn-dimensional vector:

zn(`) =
[
z̄Tn (`) ṙTn (`)

]T
(3.83)

where the received shared signals at the nth node are given by the Ṗn × 1 vector ṙn(`) ,

Ṫ
H

n z̄(`).

Examining (3.19) and (3.59), the transformed inputs vector of the nth node is given by:

zn(`) = H̃ns(`) + vn(`) (3.84)

where H̃n = UH
n H̄ is an Mn × P matrix and vn(`) = UH

n v̄(`).

Define

Hr ,D
HH̄ (3.85)

where D is defined as

D ,
[
T 1D1 · · · TNDN

]
(3.86)

and Dn is defined in (3.73). The elements of the P ×P matrix Hr are the ATFs relating the

speakers and the P shared signals. We assume that Hr is a full rank matrix. The condition

for the invertibility of Hr is given is Sec. 3.2.4.

We now show that the rank of H̃n is P for n = 1, . . . , N . Notice that the matrix Hr is

a column permutation of the P × P matrix:

[
Dn 0M̄n×Ṗn

0Ṗn×Pn I Ṗn×Ṗn

]H
H̃n.

Since P = rank {Hr} ≤ rank
{
H̃n

}
≤ P , we conclude that rank

{
H̃n

}
= P .

Determining U as above is instrumental for transforming, the centralized GSC-BF into

a sum of N GSC-BFs in the transformed domain. The total output of the DGSC algorithm

is available at each of the nodes in the WASN.

In the following sections we substitute H̃n by the RTFs matrix

Hn , U
H
n H̃H

−1
r (3.87)
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Figure 3.4: The DGSC.

for n = 1, . . . , N . A block-diagram of the proposed algorithm is depicted in Fig. 3.4.

3.2.3.2 The distributed FBF

Had H been known to all nodes, it would have been possible to calculate the classic cen-

tralized FBF, qGSC. In our case, we propose a distributed FBF consisting of a summation of

local FBFs, which are calculated from the transformed RTFs at each node. Explicitly, the

proposed distributed FBF at the nth node is defined as:

qn ,
1

N
Hn

(
HH

nHn

)−1
g. (3.88)

As Hn equals H̃n up to a different column scaling, its rank equals P . Therefore, HH
nHn is

an invertible matrix. As stated earlier, the FBF is not unique, and can have different forms

with different selections of a, quc,Buc in (3.51a),(3.51b). Various choices of the FBF will

differ in their robustness to estimation errors.

It can be easily verified, by substituting (3.88) in (3.66a), that the global distributed
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FBF (3.51a) satisfies the global constraints set (3.43) since

HHq =

(
N∑

n=1

HH
n qn

)

=
1

N

N∑

n=1

g

=g. (3.89)

This simple FBF design utilizes each of the WASN microphones and is not optimal in any

sense. The robustness analysis of the proposed algorithm to estimation errors is out of the

scope of the current contribution.

3.2.3.3 The distributed BM

As mentioned earlier, the BM is not unique, and several procedures for its construction are

available. Recently, we have proposed an efficient implementation of a sparse BM [101].

Similarly to the construction of the BM in Sec. 3.2.2, we propose that the nth node will

construct a transformed BM by applying the SVD to Hn, for n = 1, . . . , N . The SVD of Hn

is

Hn =
[

Γn Bn

] [ Λn

0(Mn−P )×P

]
ΘH
n . (3.90)

where the column-space of Hn is spanned by the column-space of Γn. The null-subspace

of Hn is spanned by the column-subspace of Bn and hence is an adequate BM at the nth

node. Since the column rank of Hn is P , The dimensions of the BM at the nth node are

Mn × (Mn − P ), and its column rank is Mn − P .

Next, we prove that B is a valid BM. From its construction (3.67), it trivially blocks H ,

hence, in order to complete the proof, we need to show that BHΦvvB is of full-rank. From

the definition of Φvv in (3.30b), and since Φ̄vv is full-rank (rank-M̄), the latter condition is

equivalent to showing that the column rank of UB =
[
U 1B1 · · · UNBN

]
is M̄ − P .

The rank of Un is Mn. A one-to-one linear transformation from Un to
[
Qn H̄

]
exists

for n = 1, . . . , N where Qn is an M̄ × (Mn − P ) matrix orthogonal to H̄ . It follows that

U 1, . . . ,UN share at least P degrees of freedom (the columns of H̄). Now, since the rank

of U is M̄ , we conclude that U 1, . . . ,UN share exactly P degrees of freedom. Hence, the
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rank of
[
Q1 · · · QN

]
is M̄ − P . By construction, Qn is an M̄ × (Mn − P ) BM of

H̄ , and its Mn − P outputs QH
n z̄(`) are equivalent (represent the same noise signals) to

the Mn − P outputs BH
n zn(`) = BH

n U
H
n z̄(`). Finally, UB is a concatenation of the sub-

matrices UnBn for n = 1, . . . , N . Hence, it has the same rank as the concatenation of Qn for

n = 1, . . . , N . Based on the above discussion, it is guaranteed that BHΦvvB is a full-rank
(
M̄ − P

)
×
(
M̄ − P

)
matrix.

3.2.3.4 The distributed NC

The normalized LMS (NLMS) adaptation of the global NC in [39] is given by:

f(`) = f(`− 1) + µ
u(`)y∗(`)

Pu(`)
(3.91)

where Pu(`) is a recursive estimator of the power of the noise reference signals, i.e.,

E {‖u(`)‖2}:

Pu(`) = ρPu(`− 1) + (1− ρ)‖u(`)‖2 (3.92)

where ρ is a forgetting factor (typically 0.8 < ρ < 1). Due to inevitable estimation errors,

some of the speech signals might leak to the noise reference signals. In order to prevent the

self-cancelation phenomenon, which is manifested in a severe speech distortion, the NC is

updated according to (3.91) only when the speakers are inactive. A perfect VAD is assumed

for this purpose. The total output of the algorithm, y(`), is available to all nodes as the

summation in (3.65). As clearly seen in (3.91), the noise reference signals at the nth node,

un(`), only affect fn(`). Hence, updating the NC is equivalent to N simultaneous updates of

the distributed NCs fn(`); n = 1, . . . , N . Explicitly, the recursive update of the distributed

NC is given by:

fn(`) = fn(`− 1) + µ
un(`)y∗(`)

Pu,n(`)
(3.93)

where Pu,n(`) is the estimated power of the global noise reference vector E {‖u(`)‖2} at the

nth node. We assume that the power of the local noise reference signals at the various nodes

are approximately the same, i.e E {‖u(`)‖2} = M̄−P
Mn−PnE {‖un(`)‖2} ; n = 1, . . . , N . Hence
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the estimated power at the nth node is:

Pu,n(`) = ρPu,n(`− 1) + (1− ρ)
M̄ − P
Mn − Pn

‖un(`)‖2. (3.94)

The latter assumption can be circumvented by sharing estimates of the variance of the noise

reference signals un(`); n = 1, . . . , N in the WASN. Assuming that the noise statistics is

slowly varying, the latter exchange of power estimates does not consume a large bandwidth.

3.2.4 Shared signals construction

Here, we propose a simple procedure for generating the shared signals, which is based on

selecting the microphones with the highest SNR for each of the sources. Since the pth shared

signal is used as the reference signal in the definition of the RTF (3.80), and since in practice

the RTF is unknown and has to be estimated, it is desired that the SNR of the pth source

will be maximal. The SNR of a microphone with respect to some source p is defined as the

ratio between the source power and the power of the slowly time-varying noise.

As mentioned in Sec. 3.2.3, the shared signals should satisfy that the column rank of Hr

is P . Therefore, a microphone that was selected as the shared signal of a certain source,

cannot be chosen as a shared signal for another source, or else the rank of Hr will be lower

than P .

During the initialization of the algorithm each node sets Jn ,
{

1, . . . , M̄n

}
the index set

of candidate microphones for shared signals. For each source p ∈ {1, 2, . . . , P} the following

procedure is applied. First, the nth node estimates γpn(j); j ∈ Jn, the pth source SNR at

each of its available local microphones, mn(j); j ∈ Jn. Each node selects the microphone

with the highest SNR. The SNR and the index of the candidate microphone of the nth node

are:

γpn ,max
j∈Jn

γpn(j) (3.95a)

jpn , argmax
j∈Jn

γpn (j) . (3.95b)

Each node shares the maximal SNR γpn with the rest of the nodes.

The node n′ with the maximum SNR will be declared the owner of the source p, i.e.,



3.2. DGSC 91

χ(p) = n′:

χ(p) , argmax
n=1,...,N

γpn. (3.96)

The n′th node constructs the BF that extracts the pth shared signal

dpn′ ,
[

01×(jp
n′−1) 1 01×(M̄n′−jpn′ )

]T
(3.97)

and removes jpn′ from its set of candidate microphones to own a signal

Jn′ = Jn′\jpn′ . (3.98)

This way, it is guaranteed that a single microphone will not be chosen more than once. The

procedure is repeated for all sources, resulting in the entire set of shared signals. Note that

some nodes may be the owners of more than a single source, and some nodes may have

no ownership on sources. The proposed method is very simple, and does not require any

processing for constructing the shared signals. In practice, Hr is usually full-rank, however,

this is not guaranteed. In case, that Hr is rank-deficient, a simple procedure of replacing

some of the shared signals until the rank is full can be applied.

3.2.5 A comparison between the DGSC and the LC-DANSE

We compare the proposed DGSC and the LC-DANSE [74]. Both algorithms converge to the

centralized LCMV-BF. The LC-DANSE implements a distributed version of the closed-form

LCMV, whereas the DGSC adopts the GSC implementation of the LCMV structure. In

the DGSC a common objective to all nodes, i.e. the classification of desired and competing

speakers, yields a single common constraints set. A more general approach is adopted by the

LC-DANSE, which allows node-specific constraint sets. In practice, this enables each node to

define its own objective, i.e. a set of desired and competing speakers. The LC-DANSE is an

iterative algorithm (although, the iterations can be carried out recursively over time), while

the DGSC is a time-recursive algorithm. The GSC structure conveniently decouples the task

of noise reduction from the task of satisfying the constraints set. Hence, allowing the ANC to

adjust to variations in the noise statistics. The DGSC requires N +P transmission channels,

whereas the LC-DANSE requires N × P transmission channels. Both algorithms, require

estimates of the sources RTFs. In static scenarios, the DGSC requires a single estimate
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thereof, whereas in the LC-DANSE, each iteration requires additional RTF estimates. In the

following section, we experimentally compare the DGSC and the LC-DANSE.

3.2.6 Experimental study

In order to verify the equivalence between the centralized GSC and the proposed DGSC, a

comprehensive experimental study is carried out. The validity of the proposed algorithm is

tested for narrowband signals in Sec. 3.2.6.1 and for speech signals in Sec. 3.2.6.2. We compare

the following five algorithms, namely, the centralized closed-form LCMV, the centralized

GSC, a single node local GSC (arbitrarily chosen as the first node), the LC-DANSE and the

proposed DGSC algorithm. The comparison criteria are noise reduction and distortion of the

constrained sources. Opposed to the global BFs and the DGSC algorithms where the number

of constraints can be as large as the total number of microphones in the WASN (P ≤ M̄),

the local GSC is constrained to handle only scenarios where P ≤ M̄1. The performance is

averaged over multiple Monte-Carlo experiments in various scenarios.

3.2.6.1 Narrowband signals

A WASN comprising N = 4 nodes, each consisting of M̄n = 4 microphones was simulated.

We denote by constrained sources, sources for which desired responses exist and are main-

tained with a proper linear constraints set. Furthermore, we denote by unconstrained sources,

all interfering sources that v̄(`, k) comprises. We examine a total of 28 scenarios: all com-

binations of P = 1, 2, . . . , 7 constrained sources and Pi = 1, 3, 5, 7 unconstrained sources. A

spatially white Gaussian sensor noise is added to the microphone signals. In each scenario (a

specific selection of P and Pi), 10 sets of source ATFs and a vector of desired responses are

randomized. For each set, 10 realizations of 105 samples of P + Pi independent identically

distributed (i.i.d.) Gaussian processes are randomized. These signals serve as the constrained

and unconstrained sources. Note that in the narrowband case all sources are stationary. A

total of 3200 Monte-Carlo experiments are used for the comparison of the various algorithms.

The SNR, the ratio between the constrained signals power and the sensors spatially white

noise, is set to 30dB, and the interference to noise ratio (INR), the ratio between the un-

constrained sources power and the sensors noise, is set to 25dB. The step-size of the NLMS

algorithms is set to µ = 0.25. The results of the LC-DANSE algorithm are measured after 10

iterations. We assume that the RTFs are known without estimation errors, hence no distor-
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tion to the constrained signals is measured for the centralized LCMV, the centralized GSC,

and the DGSC for all values of P ≤ M̄ = 16. For the single node GSC, there is no distortion

for P = 1, 3 ≤ M̄1 = 4, but for P = 5, 7, due to lack of degrees of freedom (there are only

M̄1 = 4 beams that can be steered), distortion is inevitable. The distortion measured in the

LC-DANSE is also low (< −23dB) in all scenarios. The NR of the various algorithms after

convergence for Pi = 3 versus the number of constraints, P , is depicted in Fig. 3.6. The

figure of merit is defined as the ratio between the slowly time varying noise power at the

input and at the output. As expected, the NR of the centralized GSC is about 0.35dB lower

than the centralized LCMV. This is a result of using the LMS algorithm, which suffers from

excess MSE. It can be mitigated by reducing the step-size µ compromising convergence rate.

The NR of the proposed DGSC is 0.52dB lower than the centralized GSC (probably since

longer convergence time is required), whereas the of the NR single node GSC is much lower

(from 7.7dB to 47.6dB, depending on the number of constraints). The NR performance of

all BFs reduces as the number of constraints increases. The convergence of the NR versus

the number of samples is depicted in Fig. 3.5 for a scenario with P = 5 and Pi = 3.
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Figure 3.5: The convergence of the tested algorithms versus the number of samples for P = 5

constraints and Pi = 3.
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Although the proposed DGSC and the centralized GSC converge to more or less the

same NR as the centralized LCMV, the convergence time of the DGSC is higher. This may

result from the higher condition number, defined as the ratio of the largest and smallest

eigenvalues, of the noise references covariance matrix BHΦvvB. Higher condition number

is known to increase the convergence time [106]. For example, in the depicted scenario, the

average condition number of the noise references covariance matrix of the DGSC is 6.9dB

higher than of the centralized GSC. The latter phenomenon may be attributed to the vector

a 6= 0 in (3.51a), which increases the norm of the ANC in (3.51c), however, this subject

requires further research.

The ratio of the noise level at the output of the DGSC and the noise level at the output

of the centralized GSC is given in Table 3.1 for P = 1, 2, . . . , 8 and Pi = 1, 3, 5, 7.

Table 3.1: The ratio of the noise level at the outputs of the DGSC and the centralized GSC
[dB].

P\Pi 1 3 5 7

1 0.03 0.20 0.18 0.26
2 0.08 0.22 0.37 0.44
3 0.32 0.22 0.39 0.62
4 0.25 0.56 0.48 0.75
5 0.51 0.50 0.89 0.66
6 0.38 0.90 0.45 1.01
7 0.15 1.29 0.91 0.95
8 0.31 0.75 0.90 0.84
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Figure 3.6: The NR of the tested algorithms versus the number of constraints P , for Pi = 3.

3.2.6.2 Speech signals

The performance of the various BFs is tested in a simulated room scenario, by using a

RIR generator [107],[108]. The dimensions of the simulated room are 4m × 3m × 3m, and

its reverberation time is set to T60 = 300ms. An N = 4 nodes WASN where each node

comprises M̄n = 2 microphones at a distance of 5cm is set. The nodes are located at the

center of each of the four walls, 10cm from the walls surface and at a height of 1.5m. A desired

female speaker and a competing male speaker, are located in the room as well as two white

Gaussian stationary interferences. The figures of merit of the BFs are tested by 90 Monte

Carlo experiments, where in each experiment the sources locations are randomly selected,

and the microphone constellation remains fixed. The room setup of one of the Monte Carlo

experiments is depicted in Fig. 3.7.
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Figure 3.7: The room setup of one of the Monte Carlo simulations.

The microphone signals are sampled at a sampling rate of 8kHz. The length of the STFT

window is 4096 points with 75% overlap between frames. The estimated RTFs are double

sided filters 3072 coefficient long. They are estimated using the subspace method as in [51].

In the DGSC algorithm, in order to save communication-bandwidth, the signals undergo

inverse STFT prior to the broadcast in the network. We use the overlap and save scheme for

applying the filters in the STFT domain [109],[39]. The SNR improvement, SIR improvement

and distortion measures of the centralized GSC, the DGSC and the single node GSC for the

various Monte Carlo experiments are depicted in Figs. 3.8,3.9,3.10, respectively.
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Figure 3.8: The SNR improvement of the tested algorithms in various Monte Carlo experi-

ments.
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Figure 3.9: The SIR improvement of the tested algorithms in various Monte Carlo experi-

ments.
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Figure 3.10: The distortion of the tested algorithms in various Monte Carlo experiments.

The SNR is the ratio between the powers of the desired speaker and the stationary noise,

the SIR is the ratio between the powers of the desired speaker and the competing speaker,

and the distortion is the ratio between the MSE of the desired speech at the output and the

power of the desired speech signal. The SNR and the SIR at the input are set to 13dB and

0dB, respectively. It is clear from these figures that the NR values of the DGSC and the

centralized GSC are equivalent, and that both outperform the single node GSC. The average

figures of merit of the various algorithms are depicted in Table 3.2. The SNR improvement of

the DGSC and the centralized GSC are similar (20.1dB and 19.3dB, respectively. The slight

differences may be explained as in the narrowband case), while the SNR improvement of the

single node GSC is significantly lower (1.7dB). The SIR improvement and the distortion of the

centralized GSC are 22.9dB and −23.0dB, respectively, whereas the corresponding measures

of the DGSC are a bit worse 18.6dB and −20.3dB, respectively. This may be attributed

to differences in the robustness of the BFs against RTF estimation errors (see discussion

in the narrowband case). Due to the significantly lower number of microphones, the SIR

improvement and distortion of the single node GSC (11.0dB and −14.1dB, respectively)

are much worse than the centralized GSC. The centralized GSC and the DGSC exhibit

comparable convergence behaviour as depicted in Fig. 3.11.
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Figure 3.11: The convergence of the tested algorithms versus time.

Note, that the single node GSC converges much faster, but its overall performance is very

poor.

Sonograms of the various components of the signal received in the first microphone, and

the outputs of the centralized GSC, the DGSC and the single node GSC are depicted in

Fig. 3.12. The equivalence of the DGSC and the centralized GSC and their superiority to

the single node GSC can be deduced from the figures.

3.2.7 Conclusions

In this section, we have introduced the DGSC, a novel distributed algorithm for speech en-

hancement in multiple speakers, noisy and reverberant environment. It is proven analytically

that the proposed algorithm converges to the optimal centralized GSC-BF. The adaptive

procedure of the DGSC is based on the low complexity, time recursive NLMS algorithm. A

common P linear constraints set, comprising the speakers’ ATF, is shared by all nodes in

the network. The algorithm requires N +P transmission channels. The GSC structure splits

the BF into two components. The first component lies in the constraints (speakers) subspace
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and the second component lies in its corresponding null-space. The constraints subspace

component of the DGSC is determined at the initialization phase of the algorithm where P

shared signals are constructed by a selection procedure in the WASN. In static environments

this procedure should be applied only at the initialization stage. The second component is

implemented as an adaptive algorithm which converges in speech-absent time segments.

A comprehensive experimental study validates the equivalence between the centralized

GSC and the DGSC algorithms. The proposed algorithm was tested successfully for both

narrowband and speech signals in multiple Monte Carlo experiments.

Table 3.2: Performance comparison of the centralized GSC, the DGSC and the single node
GSC algorithms with speech signals.

Algorithm SNR imp. SIR imp. Dist.
[dB] [dB] [dB]

Cent. GSC 20.1 22.9 −23.0
DGSC 19.3 18.6 −20.6

1 node GSC 1.7 11.0 −14.1
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(a) Desired speaker.
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(b) Competing speaker.
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(c) First microphone.
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(d) Centralized. GSC.
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(e) DGSC.
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(f) Single node GSC.

Figure 3.12: Sonograms of the various components of the signal received in the first micro-

phone, and the outputs of the centralized GSC, the DGSC and the single node GSC.
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3.3 Distributed GSC beamforming using the relative

transfer function

A speech enhancement algorithm in a noisy and reverberant enclosure for a WASN is derived.

We consider the case of a single desired speaker, which is a special case of the more general

scenario dealt with in the previous Sec. 3.2. The algorithm derived in this section requires

only N communication-channels, opposed to the DGSC (derived in Sec. 3.2) which requires

N + 1 channels in this case. The proposed algorithm is structured as a two stage BFs

scheme, where the outputs of the first stage are broadcast in the network. Designing the

second stage BF requires estimating the desired signal components at the transmitted signals.

The contribution here is twofold. First, in spatially static scenarios, the first stage BFs are

designed to maintain a fixed response towards the desired signal. As opposed to competing

algorithms, where the response changes and repeated estimation thereof is required. Second,

the proposed algorithm is implemented in a GSC form, separating the treatment of the

desired speech and the interferences and enabling a simple time-recursive implementation

of the algorithm. We outline a proof for the convergence of the proposed algorithm to

the centralized TF-GSC. A comprehensive experimental study demonstrates the equivalent

performance of the centralized GSC and of the proposed algorithm for both narrowband and

speech signals.

The structure of the section is as follows. The problem is formulated in Sec. 3.3.1. In

Sec. 3.3.2, the TF-GSC BF is surveyed. In Sec. 3.3.3, we introduce the proposed GSC-based

distributed algorithm, namely the DS-GSC. A comprehensive experimental study is given in

Sec. 3.3.4. Some concluding remarks are given in Sec. 3.3.5.

3.3.1 Problem formulation

Consider an N -node WASN. Denote by Mn the number of microphones in the nth node, and

by M =
∑N

n=1Mn the total number of microphones. The problem is formulated in the STFT

domain, where k denotes the frequency index and ` denotes the segment index. Let z(`, k) be

a vector constructed by all received microphone signals z(`, k) =
[
zT1 (`, k) · · · zTN(`, k)

]T

where zn(`, k) is the local Mn × 1 received signals vector of the nth node and (·)T is the

transpose operator. The term local (to the nth node) is associated with the signals and

parameters calculated using only the microphones at the nth node. By the term global we



3.3. DS-GSC 103

designate signals and parameters which are calculated using data from other nodes shared

via the wireless link. The global vector of received signals is formulated as:

z(`, k) =h(`, k)s(`, k) + v(`, k) (3.99)

where s(`, k) is the desired speech source, and h(`, k) consists of a vector of M ×1 ATF from

the desired speaker to the microphones. The vector v(`, k) is a vector of interferences picked

up by microphones. Assuming that the speaker and the noise are statistically independent,

the covariance matrix of the received signals is:

Φzz(`, k) = λs(`, k)h(`, k)hH(`, k) + Φvv(`, k) (3.100)

where λs(`, k) is the variance of the desired speech signal, Φvv(`, k) is the covariance matrix

of the interferences and (·)† is the Hermitian operator. We assume that the network is fully

connected, i.e. each transmitted signal is available to all nodes. In networks that are not

fully connected a variation of the proposed algorithm can be derived, however, it is beyond

the scope of this contribution. We assume that the location of the speaker is static and that

the noise sources’ statistics is slowly time-varying. Therefore, the speaker ATF and the noise

covariance matrix are assumed time-invariant. Hence, in these quantities the frame index is

omitted. For brevity, explicit frequency dependence is omitted hereafter. Finally, denote by

Un an M ×Mn matrix that extracts the local microphones zn(`) = UH
n z(`) from z(`):

Un =
[

0Mn×(
∑n−1
n′=1

Mn′)
IMn 0Mn×(

∑N
n′=n+1Mn′)

]†
(3.101)

where Im is an m×m identity matrix.

The problem at hand is to enhance the desired speech signal at each node, with access

only to the local microphones and the transmitted signals.

3.3.2 The centralized TF-GSC BF

Let w be the centralized TF-GSC BF. Recall that w is the output power, wHΦvvw, min-

imizer, that satisfies the constraint hHw = 1. In many applications, when the goal is to

reduce the noise level, while sacrificing dereverberation, it is sufficient to enhance the desired

signal as received by a reference microphone (arbitrarily chosen here to be the first micro-

phone). The RTF [39], h̃, is defined as the vector of ATFs from the desired signal to the
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microphones normalized by the ATF to the reference microphone, h̃ = h/h1. The resulting

modified constraint satisfies h̃
H
w = 1 (see [39]).

Now, we are ready to formulate the centralized GSC:

w̃ = q̃ − B̃f̃ (3.102)

where q̃ denotes the FBF and is parallel to the RTF, B̃ denotes the BM and f̃ denotes the

NC. The FBF [25] is given by:

q̃ =
h̃

‖h̃‖2
. (3.103)

The matrix B̃ is designed to block the RTF of the speaker, i.e., B̃
H
h̃ = 0(M−1)×1, but it is

not unique. One way of constructing the BM is by calculating the SVD of h̃:

h̃ = Θ̃Γ̃Ψ̃
H

(3.104)

and selecting the M − 1 left singular vectors (of Θ̃) which correspond to the zero singular

values [25]. The NC is given in a closed-form by:

f̃ =
(
B̃
H

ΦvvB̃
)−1

B̃
H

Φvvq̃. (3.105)

An efficient time-recursive implementation for adapting the NC during speech-absent seg-

ments utilizes the NLMS algorithm:

f̃(`+ 1) = f̃(`) +
µ

λ̃u(`)
ũ(`)ỹ∗(`) (3.106)

where the noise reference signals at the output of the BM are denoted ũ(`) = B̃
H
z(`), the

output of the TF-GSC is denoted ỹ(`) = w̃Hz(`), the adaptation step is 0 < µ < 2, λ̃u(`) is

a power normalization factor:

λ̃u(`+ 1) = ρλ̃u(`) + (1− ρ)‖ũ(`)‖2, (3.107)

and ρ is a forgetting factor (typically 0.8 < ρ < 1).



3.3. DS-GSC 105

3.3.3 The DS-GSC

A two-stage distributed enhancement TF-GSC BF algorithm, denoted as DS-GSC, is now

proposed. The first stage consists of N TF-GSC-BFs which process local signals at each

node. The output signals of the first stage are broadcasted in the WASN. The second stage

consists of a global TF-GSC BF which processes the N outputs of the first stage. A replica

of the global BF is concurrently applied in all nodes.

Denote the first stage output at the nth node as ẏn(`) for n = 1, .., N . Let the

concatenated N outputs of the first stage be ẏl(`) = Ẇ
H

l z(`) =
[
ẏ1(`) · · · ẏN(`)

]T
,

where the subscript l denotes local, the N local BFs are given in a matrix notation by

Ẇ l =
[
U 1ẇ1 · · · UNẇN

]
, and ẇn are filters of the first stage TF-GSC BF at the nth

node:

ẇn = q̇n − Ḃnḟn. (3.108)

Note that Ẇ l is an M ×N matrix. The local FBF, BM and NC at the nth node are denoted

q̇n, Ḃn and ḟn, respectively. The total output of the DS-GSC is given by ẏg(`) = ẇH
g ẏl(`)

where the subscript g denotes global and

ẇg = q̇g − Ḃgḟ g (3.109)

is the second stage global TF-GSC BF. The second stage FBF, BM and NC are denoted

by q̇g, Ḃg and ḟ g, respectively. A block-diagram of the DS-GSC algorithm is depicted in

Fig. 3.13.
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Figure 3.13: A block-diagram of the DS-GSC.

The proposed algorithm consists of three phases: first, the local RTFs are estimated,

and the local FBFs and BMs are constructed; second, the global RTFs are estimated, and

the global FBF and BM are constructed; third, the local and global NCs are alternatingly

updated until convergence. The first two phases are only applied once in static environments.

We adopt in our implementation a standard subspace-based RTF estimation procedure [51],

where a perfect VAD is assumed.

The local and global stage filtering are presented in Secs. 3.3.3.1 and 3.3.3.2, respec-

tively. In Sec. 3.3.3.3 we present an iterative algorithm for updating the NCs, and prove its

convergence. Later, in Sec. 3.3.3.4 we derive a time-recursive variant.

3.3.3.1 Local stage filtering

Denote by ḣn the local RTF, which equals the ATF relating the desired signal and the local

microphone signals at the nth node normalized by its first component, ḣn = UH
n h/

(
UH
n h
)

1
.

The local TF-GSC BF at the nth node is designed to satisfy the constraint ḣ
H

n ẇn = 1,

therefore the desired signal component at its output is hn,1s(`). Similarly to (3.103) and
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(3.104) the local FBF is given by:

q̇n =
ḣn

‖ḣn‖2
(3.110)

and the local BM, Ḃn, is constructed by the Mn − 1 left singular vectors, corresponding to

the zero singular values in the SVD of ḣn.

3.3.3.2 Global stage filtering

Denote by ḣg the global RTF, which equals the ATF relating the desired signal and the local

output signals ẏl(`), normalized by its first component ḣg =
˙W
H

l h
h1

. Note, that the fixed

response of the desired source at the local outputs, simplifies the global RTF estimation

in static scenarios. Following similar arguments to (3.103) and (3.104) the global FBF is

q̇g =
˙hg

‖ ˙hg‖2
and the global BM, Ḃg, is constructed by the N − 1 left singular vectors,

corresponding to the zero singular values in the SVD of ḣg. Consequently, the desired signal

component at the BF output is h1s(`).

3.3.3.3 Iterative algorithm

Following the results of previous sections, the noise component at the output of the DS-GSC

is:

v̇(`) = ẇH
g Ẇ

H

l v(`) = ẇH
l Ẇ

H

g v(`). (3.111)

where Ẇ g is an M ×M diagonal matrix given by

Ẇ g = blkdiag {ẇg,1IM1 , . . . , ẇg,NIMN
} (3.112)

and ẇl is a concatenation of the local GSC-BFs:

ẇl = q̇l − Ḃlḟ l (3.113)
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and its components are given by:

q̇l =
[
q̇T1 · · · q̇TN

]T
(3.114a)

Ḃl = blkdiag
{
Ḃ1, .., ḂN

}
(3.114b)

ḟ l =
[
ḟ
T

1 · · · ḟ
T

N

]T
. (3.114c)

The variance of the noise component (3.111) is:

γ =ẇH
g Ẇ

H

l ΦvvẆ lẇg (3.115a)

=ẇH
l Ẇ

H

g ΦvvẆ gẇl. (3.115b)

Since the FBFs and BMs have been already determined (recall that the acoustic scenario is

static), only the NC filters ḟ l and ḟ g should be set for minimizing the residual noise power.

The concatenated NCs vector is denoted by ḟ =
[
ḟ
T

l ḟ
T

g

]T
.

We propose an iterative algorithm comprised of two alternating steps sequentially: first,

updating the local NCs ḟ l; second, updating the global NC ḟ g. We denote values at the ith

iteration with the superscript (·)(i).

Consider the first update step, i.e., ḟ
(i)

g is updated to ḟ
(i+1)

g while ḟ
(i+1)

l = ḟ
(i)

l remains

fixed. An explicit expression of (3.115a) in terms of ḟ
(i)

g at the ith iteration is given by:

γ(i) =
(
q̇g − Ḃgḟ

(i)

g

)† (
Ẇ

(i)

l

)H
ΦvvẆ

(i)

l

(
q̇g − Ḃgḟ

(i)

g

)
. (3.116)

Equation (3.116) is a quadratic function of ḟ
(i)

g , allowing for a simple calculation of the

gradient with respect to ḟ g:

∂γ(i)

∂ḟ
H

g

= −ḂH

g

(
Ẇ

(i)

l

)H
ΦvvẆ

(i)

l

(
q̇g − Ḃgḟ g

)
. (3.117)

The updated ḟ g is obtained by equating the gradient to zero:

ḟ
(i+1)

g =

(
Ḃ
H

g

(
Ẇ

(i)

l

)H
ΦvvẆ

(i)

l Ḃg

)−1

· ḂH

g

(
Ẇ

(i)

l

)H
ΦvvẆ

(i)

l q̇g. (3.118)
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Consider the second update step, i.e. ḟ
(i)

l is updated to ḟ
(i+1)

l while ḟ
(i+1)

g = ḟ
(i)

g remains

fixed. An explicit expression of (3.115b) at the ith iteration is given in terms of ḟ l by:

γ(i) =
(
q̇l − Ḃlḟ

(i)

l

)† (
Ẇ

(i)

g

)H
ΦvvẆ

(i)

g

(
q̇l − Ḃlḟ

(i)

l

)
. (3.119)

Equation (3.119) is a quadratic function of ḟ l. The gradient of γ(i) with respect to ḟ l is:

∂γ(i)

∂ḟ
H

l

=− ḂH

l

(
Ẇ

(i)

g

)H
ΦvvẆ

(i)

g

(
q̇l − Ḃlḟ l

)
(3.120)

yielding

ḟ
(i+1)

l =

(
Ḃ
H

l

(
Ẇ

(i)

g

)H
ΦvvẆ

(i)

g Ḃl

)−1

· ḂH

l

(
Ẇ

(i)

g

)H
ΦvvẆ

(i)

g q̇l. (3.121)

It can be easily verified that the proposed algorithm converges. First, γ(i+1) ≤ γ(i) is mono-

tonically non-increasing, since ḟ
(i)

belongs to the minimization range of ḟ
(i+1)

. Second, γ(i)

is trivially lower bounded by 0 ≤ γ(i). In practice the iterative algorithm cannot be im-

plemented, since updating ḟ l (3.121) involves non-local quantities unavailable at each node.

However, a practical time-recursive algorithm can be derived, as presented in the sequel.

3.3.3.4 Time-recursive algorithm

A time-recursive procedure for updating the NCs is obtained by using two NLMS algorithms

for updating ḟ g(`) and ḟ l(`) alternately, during speech-absent time segments. As in all

stochastic approximation procedures, we propose to replace the iteration index i by the time-

segment index `. We further propose to perform Lu updates of each filter before switching

to the other filter updates.

Consider an update step of ḟ g(`) to ḟ g(` + 1) while ḟ l(` + 1) = ḟ l(`) is unaltered.

An instantaneous estimate of the gradient (3.117) at the `th frame is −u̇g(`)v̇∗(`) where

u̇g(`) = Ḃ
H

g v̇l(`), and v̇l(`) is the noise component in ẏl(`). The updated ḟ g(` + 1) is

therefore:

ḟ g(`+ 1) = ḟ g(`) +
µ

λ̇u,g(`)
u̇g(`)v̇

∗(`) (3.122)
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where, similarly to (3.107), λ̇u,g(`) is a time-recursive estimate of the power normalization.

Similarly, we can define an update step of ḟ l(`) to ḟ l(` + 1) while ḟ g(` + 1) = ḟ g(`). An

instantaneous estimate of the gradient (3.120) at the `th frame is −ẆH

g (`)u̇l(`)v̇
∗(`), where

u̇l(`) = Ḃ
H

l z(`). Note that the calculation of the nth component of the estimated gradient

can be done locally. Hence, ḟn(`+ 1); n = 1, .., N can be updated in parallel:

ḟn(`+ 1) = ḟn(`) +
µ

λ̇nu,l(`)
ẇ∗g,n(`)u̇n(`)v̇∗(`) (3.123)

where, as in (3.107), λ̇nu,l(`) is a power normalization factor.

3.3.4 Experimental study

An experimental study of three algorithms using multiple Monte-Carlo trials is presented.

We compare the centralized TF-GSC, the time-recursive DS-GSC and the local TF-GSC (a

TF-GSC BF which utilizes only the microphones of a the first node). A WASN comprised

of N = 4 nodes, each consisting of Mn = 2 microphones was simulated. The performance of

the BFs was evaluated by using the SIR improvement.

3.3.4.1 Narrowband signals

The performance of the algorithms was tested with various numbers of interfering sources

(1, 3, 5, 7). For each number of interfering sources, 20 different sets of desired source ATFs

and noise covariance matrices were randomized at a particular frequency bin. For each set, 10

realizations of 105 samples of the desired and interfering narrowband sources were randomized

(white Gaussian processes). Also, a spatially white noise was added to the received signals.

The input SIR and SNR were set to 5dB and 30dB, respectively. In total, 800 Monte-Carlo

experiments were tested. The algorithm parameters were set to: µ = 0.15, ρ = 0.95 and

Lu = 12. The SIR improvement of the proposed DS-GSC exhibits equivalent performance to

the centralized TF-GSC in all Monte-Carlo experiments, and both significantly outperform

the local TF-GSC. The average SIR improvement versus the number of interferences is

depicted in Fig. 3.14.
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Figure 3.14: SIR improvement versus the number of interferences with narrowband signals.

3.3.4.2 Speech signals

A 4m× 3m× 3m room with a reverberation time of T60 = 300ms was simulated. Four nodes

were arbitrarily positioned at the center of the walls. The locations of the desired speaker

and the two interfering sources were randomized with a minimum distance of 10cm from

the walls in 100 Monte-Carlo experiments. An additive spatially white noise was added to

the received signals. The input SIR and SNR were set to 6dB and 60dB, respectively. The

sample rate was 8kHz and a 4096 point STFT with 75% overlap was used. The algorithm

parameters were set to µ = 0.15, ρ = 0.95 and Lu = 12. The average SIR improvement of the

centralized TF-GSC, the DS-GSC and the local TF-GSC were 26.4dB, 28.6dB and 12.2dB,

respectively. Theoretically, the DS-GSC cannot outperform the centralized TF-GSC, but in

our experiments a 2.2dB improvement of the DS-GSC was recorded. This can be attributed

to the finite segment length and the lengths of the different equivalent filters applied in each

scheme.
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3.3.5 Conclusions

A DS-GSC algorithm was proposed and both iterative and time-recursive adaptation proce-

dures were derived. In static scenarios, only a single estimate of the speech RTF is required,

as opposed to closed-form based distributed algorithms, which require repeated RTFs estima-

tions. The convergence of the proposed algorithm was proven. A comprehensive experimen-

tal study demonstrates the equivalence between the centralized TF-GSC and the proposed

DS-GSC.

3.4 Blind sampling rate offset estimation and compen-

sation in wireless acoustic sensor networks with ap-

plication to beamforming

In this section, we address the problem of blind sampling rate offset estimation and com-

pensation in beamforming applications. As we are interested in blind scenarios, no reference

signals (neither speech from a far-end nor pilot channels) are assumed to be available. To

simplify the exposition, a WASN, for which all microphone signals are available at the fusion

center, is considered. The same sampling rate compensation method is applicable in dis-

tributed constellations as well. The proposed method utilizes speech-absent time segments,

where the interference statistics is assumed slowly time-varying, and the sampling rate offsets

are assumed fixed [77]. An estimation procedure for the sampling rate offsets is proposed

based on the coherence between the received signals. Following [80], we propose to resample

the microphone signals with the Lagrange polynomials interpolation method. We incorpo-

rate the proposed sampling rate offset estimation and compensation scheme in the TF-GSC,

introduced by Gannot et al. [39].

The structure of the section is as follows. In Sec. 3.4.1, the problem is defined. An

algorithm for estimating the sampling rate offsets is derived in Sec. 3.4.2. The Lagrange

polynomials interpolation method is described in Sec. 3.4.3. In Sec. 3.4.4, the sampling rate

offset estimation and compensation procedures are incorporated in the TF-GSC-BF. The

performance of the proposed structure is evaluated in an extensive simulated experimental

study. Conclusions are drawn in Sec. 3.4.5.
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3.4.1 Problem formulation

Consider a WASN comprising N nodes in a reverberant and noisy enclosure. The nth node

comprises Mn microphones, and the total number of microphones is M =
∑N

n=1 Mn. Denote

the Mn × 1 microphone signals vector in continuous time at the nth node by:

zn (t) = xn (t) + vn (t) . (3.124)

Let zn,r (t) be the continuous-time received signal at microphone r in node n, and xn,r (t),

vn,r (t) the respective speech and noise components. It is assumed that the received noise

contains a spatially coherent component, and that a perfect VAD is available. Hence, noise-

only segments can be determined, and hereafter only these segments will be considered.

Since nodes utilize individual clock sources, sampling rate differences are inevitable. De-

note the sample rate at the nth node by fs,n. Without loss of generality, the sampling rate

offsets are defined with respect to the first node by:

fs,n = (1 + εn) fs (3.125)

where εn is the relative sampling rate offset and fs = fs,1 is the sampling rate at the first

node.

The sampled microphone signals at the nth node are denoted by vn [p] = vn (pTs,n) where

Ts,n = 1
fs,n

is the sampling period at the nth node and p is the sample index. The notations

(•) and [•] are used for denoting continuous-time and discrete-time functions, respectively.

We assume that the WASN is fully connected and that all sampled microphone signals are

transmitted to the fusion center, selected, without loss of generality, as the first node.

Let V `
n,r [k] be the discrete STFT of the rth microphone signal of the nth node at the `th

sample, using the analysis window c [p]:

V `
n,r [k] =

∞∑

p=−∞
vn,r [p] c [p− `] exp

(
−j

2πkp

K

)
(3.126)

where k = 0, 1, . . . , K − 1. Throughout the section, lowercase and uppercase letters denote

functions in time and frequency domains, respectively.

Since vn [p] ; n = 1, . . . , N are sampled with different sampling rates, straightforward

application of a beamforming algorithm may result in a degraded performance. In Sec. 3.4.4
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we will demonstrate this degradation. In the next section, a sampling rate offset estimation

procedure is derived.

3.4.2 Sampling rate offset estimation

We turn now to the derivation of a procedure for estimating εn, the sampling rate offset of

the nth node. In Sec. 3.4.2.1 some notations are defined, and in Sec. 3.4.2.2 the procedure is

derived.

3.4.2.1 Notation

Consider microphones s and r at the first and the nth nodes, respectively. Let Rs,r (τ) and

θs,r (ζ) be their cross-correlation and cross-spectrum:

Rs,r (τ) =E {v1,s (t) vn,r (t− τ)} (3.127a)

θs,r (ζ) =

∫ ∞

−∞
Rs,r (τ) exp (−jζτ) dτ (3.127b)

where we assume that v1,s (t) and vn,r (t) are jointly wide-sense stationary (WSS) processes.

Similarly to (3.127a), Rs,r (τ + ∆) = E {v1,s (t) vn,r (t− τ −∆)}, and the corresponding cross-

spectrum, denoted θ∆
s,r (ζ), is obtained by applying Fourier transform properties:

θ∆
s,r (ζ) = exp (jζ∆) θs,r (ζ). (3.128)

Due to sampling rate offset, the time difference between the `th sample at microphone s and

microphone r is approximately `Ts − `Ts,n ≈ `Tsεn, where we replaced Ts,n = Ts
1+εn

with its

first-order Taylor series approximation Ts (1− εn). Let θ`s,r [k] be the discrete cross-spectrum

of the sampled microphones s and r at the `th sample. Assuming that the continuous

cross-spectrum is band-limited by fs
2

, the following equivalence between the discrete and the

continuous spectra holds:

θ`s,r [k] = θ`Tsεns,r

(
2πkfs
K

)
. (3.129)

Now, applying the relation in (3.128) to (3.129) yields:

θ`s,r [k] = exp

(
j
2πk`εn
K

)
θs,r [k] (3.130)
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where

θs,r [k] = θs,r

(
2πkfs
K

)
. (3.131)

Let θs,s [k] and θr,r [k] be the auto-spectra of microphones s and r, respectively. Denote the

coherence between microphones s and r at the `th sample by:

γ`s,r [k] =
θ`s,r [k]√

θs,s [k]θr,r [k]
(3.132)

for k = 0, 1, . . . , K − 1. Substituting (3.130) in (3.132), the coherence is given by:

γ`s,r [k] =α`nγs,r [k] (3.133)

where

γs,r [k] =
θs,r [k]√

θs,s [k]θr,r [k]
(3.134a)

αn = exp

(
j
2πkεn
K

)
. (3.134b)

3.4.2.2 Estimation

We propose the following procedure for estimating εn; n = 2, . . . , N , given Ps samples of

the microphone signals. We wish to estimate the coherence between the microphones at

the first and the nth node, n = 2, . . . , N, at samples ` = i × P ; i = 0, 1, . . . , I − 1, where

I = bPs
P
c. For that purpose the Welch method with K frequency bins is applied. Note that

the support of the analysis window c[n] should be significantly longer than the delay induced

by the sampling rate offset in order the accurately estimate εn. The estimated M1 × Mn

cross-coherence matrix at sample iP is denoted by Γ̂
iP

1,n [k]. Assuming that the estimation

error is low γ̂iPs,r [k] ≈ γiPs,r [k], where γ̂iPs,r [k] is the element in the sth row and the rth column

of the matrix Γ̂
iP

1,n [k]. Considering (3.133) and assuming that the frequency offsets between

the transformed microphone signals are significantly smaller than the frequency resolution,

we note that αPn =
γiPs,r[k]

γ
(i−1)P
s,r [k]

.
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Assume that the sampling rate offset is bounded to |εn| < εmax, and define

kmax =
K

2Pεmax

. (3.135)

Note that for 1 ≤ k ≤ kmax it is guaranteed that the phase difference between γiPs,r [k] and

γ
(i−1)P
s,r [k] is bounded in the range [−π, π]. Therefore, we propose to estimate εn by averaging

the results obtained from all microphone couples:

ε̂n =
1

M1Mn

M1∑

s=1

Mn∑

r=1

ε̂n,s,r (3.136)

where ε̂n,s,r is the estimate of the sampling rate offset derived from microphones s and r. It is

obtained by averaging the phase differences of consecutive estimates of γ̂iPs,r [k] and γ̂
(i−1)P
s,r [k]

for all k in the allowable range with a proper frequency dependent normalization factor:

ε̂n,s,r =
1

kmax

kmax∑

k=1

K

2πPk
∠

{
1

I − 1

(
I−1∑

i=1

γ̂iPs,r [k]

γ
(i−1)P
s,r [k]

)}
. (3.137)

Note that the averaging is applied in both time and frequency. If |εn| > εmax, a phase

ambiguity of 2π will occur and the estimated offset will be incorrect.

In the following section, given estimates of εn; n = 2, . . . , N , we describe a procedure,

applied by the fusion center, that compensates for sampling rate offsets by resampling the

microphone signals.

3.4.3 Resampling with Lagrange polynomials interpolation

Consider the rth microphone signal of the nth node, i.e. zn,r [p]. Given an estimate of the

sampling rate offset at the nth node, ε̂n, the signal is resampled to the sampling rate of the

fusion center, fs, by a fourth order Lagrange polynomials interpolation [81]. First, zn,r [p]

is interpolated by a factor of 4, and the signal z̃n,r [p̃] is obtained. Denote ṗ = b4pTs
Ts,n
c ≈

b4p (1 + ε̂n)c, the closest interpolated sample index preceding time pTs. Then, the resampled

value of zn,r (pTs), denoted ẑn,r [p], is calculated by proper weighting its four neighboring

interpolated samples:

ẑn,r [p] =βp−1z̃n,r [ṗ− 1] + βp0 z̃n,r [ṗ]

+ βp1 z̃n,r [ṗ+ 1] + βp2 z̃n,r [ṗ+ 2] (3.138)
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where

η =4p (1 + ε̂n)− ṗ (3.139a)

βp−1 =− η (η − 1) (η − 2)

6
(3.139b)

βp0 =
(η + 1) (η − 1) (η − 2)

2
(3.139c)

βp1 =− (η + 1) η (η − 2)

2
(3.139d)

βp2 =
(η + 1) η (η − 1)

6
. (3.139e)

3.4.4 Experimental study

Consider the following scenario. A 4m×3m×3m room, with a reverberation time of 300ms is

simulated. A desired speaker and Q point source stationary interfering sources are picked up

by the microphones, for Q = 1, . . . , 4. Utterances of 75s with 20% voice activity and a 6dB

SNR are used. Two microphone arrays, each comprises 6 microphones with 5cm spacing,

are located close to two perpendicular walls. The sampling rate of the first array is set to

8kHz, whereas the sampling rate of the second array is subject to offsets in the range of

{−300,−250, . . . , 300} ppm of the sampling rate of the first array, where ppm = 10−6. The

sampling rate offsets are simulated using the Lagrange polynomials interpolation method,

discussed above. For each combination of sampling rate offset and number of interferences,

5 Monte-Carlo experiments are conducted, where the locations of the sources are randomly

selected. The proposed sampling rate estimation and compensation scheme incorporated in

the TF-GSC [39] is denoted the synchronized TF-GSC. The performances of the regular

TF-GSC and the synchronized TF-GSC are compared in the various scenarios. The RTF

is estimated once, using the subspace method [51], and is used to construct the FBF and

the BM, which remain fixed during the entire utterance. The NC is adapted using the

NLMS. The performance criteria are the excess distortion and the excess noise with respect

to the corresponding TF-GSC without a sampling rate offset. The following parameters are

used in the proposed sampling rate estimation. The Welch method with a discrete Fourier

transform (DFT) size of 4096, 75% overlap and a Hamming window is applied to 32s speech-

absent segments for estimating the auto and cross-covariances θs,s [k], θr,r [k] and θ`s,r [k].

Coherence estimates, Γ̂
iP

1,n [k], of I = 6 time segments with 50% overlap (P = 128× 103), are

used for estimating the sampling rate offset, assuming that it is bounded by |εn| ≤ 400ppm.
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The TF-GSC uses a 4096 points STFT with 75% overlap, and an NLMS step of µ = 0.15.

The results of the experimental study, averaged over all frequency offsets. are summarized

in Table. 3.3. The standard deviation of the estimated sampling rate offset in the synchronized

TF-GSC is lower than 3.2ppm in all scenarios.

Table 3.3: Performance (excess noise and distortion) of the regular and the synchronized
TF-GSC with sampling rate offsets

Without offset With offset
Regular Regular Synchronized

Q SDR SNR Ex. Ex. Ex. Ex.
Dist. Noise Dist. Noise

1 15.0 34.3 11.2 7.7 0.0 0.0
2 14.9 27.5 11.2 4.9 0.1 0.0
3 14.6 24.5 11.5 3.4 0.4 0.1
4 14.7 23.5 11.9 2.9 0.8 0.2

Clearly, the performance of the proposed synchronized TF-GSC is comparable to the

regular TF-GSC without sampling rate offsets and is highly superior to the regular TF-GSC

(with sampling rate offsets). The excess noise level in the regular TF-GSC with respect to

its counterpart without a sampling rate offset is depicted in Fig. 3.15.
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Figure 3.15: The excess noise (dB) in the regular TF-GSC with respect to its counterpart

without a sampling rate offset.

3.4.5 Conclusions

The problem of blind sampling rate offset estimation and compensation in WASN was con-

sidered. An interference with slowly time-varying statistics, and speech-absent segments

obtained by a perfect VAD were assumed available. A procedure for estimating the sampling

rate offsets was derived. It was based on the phase drift in the coherence between two mi-

crophone signals, sampled at different sampling rates. The estimated sampling rate offsets

were compensated for by resampling the signals with the Lagrange polynomials interpolation

method. The estimation and compensation scheme was incorporated in the TF-GSC, denoted

the synchronized TF-GSC. It was shown that, under sampling rate offsets, the synchronized

TF-GSC significantly outperforms the regular TF-GSC. Moreover, the performance of the

proposed method is comparable to the performance of the regular TF-GSC as if there were

no sampling rate offsets.
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Chapter 4

Performance analysis of arrays with

randomly located microphones

Careful design of the microphone array is usually possible in condensed arrays. However, in

some WASNs the exact nodes/microphones positions cannot be controlled. As the beam-

forming performance depends on microphone locations, a classical deterministic analysis

does not suit this problem. Instead, following Lo [6], we treat the microphone locations as

stochastic variables, and derive probabilistic measures of the performance. Note that previ-

ous contributions in the literature considered only data-independent BFs in non-reverberant

environments.

In this chapter the performance of data-dependent BFs is analyzed for scenarios where

the microphones are randomly located. Since, the performance depends on the microphones’

constellation, it is also a random variable (RV). We analyze its statistics in two scenarios.

The derived statistics enables the system designer to determine the number of microphones

required to meet a desired performance level (with a controlled uncertainty).

In Sec. 4.1, a scenario of microphones uniformly distributed over a line is considered. A

single desired speaker, and a single noise source arriving from the far-field in a non-reverberant

environment are picked up by the microphone array. We analyze the statistics of the obtained

performance, measured by the noise reduction level, of an MWF-BF.

In Sec. 4.2, we extend the work of Sec. 4.1 and consider a reverberant enclosure with ran-

domly located microphones with an arbitrary constellation. A desired speaker contaminated

by two types of noise sources is considered: 1) P coherent noise sources; 2) a diffuse noise

field. The performance of the SDW-MWF, measured as the noise-reduction and sensitivity

levels, is analyzed for these cases. We derive a statistical model for the performance, and

121
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verify it in a simulative experimental study.

4.1 Performance analysis of a randomly spaced wireless

microphone array

In this section a statistical model for the performance of the MWF beamformer is derived

for a randomly located linear microphone array in a typical speech enhancement scenario.

As stated earlier, the MWF is considered here since data-dependent beamformers are more

suitable to speech processing than their data-independent counterparts [29]. We treat the

scenario of a coherent wideband desired source and a coherent wideband interfering source

arriving from the far-field and impinging on the microphone array, in a non-reverberant

environment. Other scenarios can be treated in a similar fashion.

In Sec. 4.1.1, the problem is formulated. In Sec. 4.1.2, a formula for the MMSE of

the MWF, given the microphones locations, is derived. Then, in Secs. 4.1.3 and 4.1.4 the

statistics of the MMSE cost function is analyzed. The derived theoretical models are verified

in Sec. 4.1.5. Aspects of applying the MWF in randomly distributed microphone arrays to

speech processing are discussed in Sec. 4.1.6.

4.1.1 Problem Formulation

Consider a coherent wideband desired source and a coherent wideband interfering source im-

pinging on a linear array of randomly spaced microphones from the far-field in a reverberant-

free environment. The array is assumed to comprise M uniformly distributed microphones

in the range
[
−∆

2
, ∆

2

]
, where ∆ is the array aperture. The microphones locations are de-

noted by x1, . . . , xM . In the STFT domain, the desired source is denoted by sd(`, k), and the

interfering source is denoted by si(`, k), where ` is the frame index, and k is the frequency

index. The analysis window length is denoted by NDFT. For simplicity, the desired source

is assumed to arrive from the broadside. The angle between the interfering and the desired

sources is denoted by θi. The received signals are denoted in vector notation by:

z(`, k) =
√
Mhd(`, k)sd(`, k) +

√
Mhi(`, k)si(`, k) + u(`, k) (4.1)

where hd(`, k) and hi(`, k) are the normalized ATFs relating the desired and interfering

sources and the microphones, respectively, and u(`, k) is a spatially-white sensors noise. The
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kth wavelength corresponding to the kth frequency index is λk = 2πc
fs

NDFT

k
where fs is the

sampling frequency and c is the sound velocity.

The desired and interfering ATFs are assumed time-invariant and are given by:

hd(`, k) =
1√
M


 1 · · · 1
︸ ︷︷ ︸

M




T

(4.2a)

hi(`, k) =
1√
M

[
e
−jξi x1λk · · · e

−jξi xMλk
]T

(4.2b)

where ξi = 2π sin (θi). Note that by this notation the phase of both the desired source and

of the interfering source is assumed to be 0 at the origin (x = 0). Note also that unlike the

common notation, the ATFs in our work are normalized. For brevity, the frequency index is

omitted and only the kth frequency index is considered. The same analysis is applicable to

each frequency bin. Define the total interference by v(`) =
√
Mhisi(`) + u(`). The second

moments of the received signals are denoted by:

Φzz = Mσ2
dhdh

H
d + Φvv (4.3)

where

Φvv = Mσ2
ihih

H
i + σ2

uI (4.4)

is the covariance matrix of the total interference, σ2
d, σ

2
i , σ

2
u are the spectra in the kth frequency

bin of the desired source, the interfering source and the microphone noise, respectively, and

I is an M ×M identity matrix. The goal of the MWF is to estimate a delayed version of the

desired signal in the MMSE sense. Here, the desired signal is defined by the desired source

component at the first microphone:

d(`) =
√
Mhd,1sd(`). (4.5)

The output of the beamformer w is denoted by yo(`) = wHz(`).

4.1.2 MSE analysis given the microphone locations

As the microphone locations are random, the corresponding MWF and its corresponding

MMSE are also RVs. Their statistics is analyzed in the following sections. In this section the
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MSE of the MWF is analyzed for a given set of microphone locations. The MWF is given

by:

wMWF = Φ−1
zz φzd (4.6)

where

φzd = E [z(`)d∗(`)] (4.7)

is the cross-correlation vector between the received signals and the desired signal. Substitut-

ing (4.1) in (4.7) gives

φzd = Mσ2
dhd,1hd. (4.8)

For further simplification of (4.6), the Woodbury identity is applied to Φzz in (4.3):

Φ−1
zz =Φ−1

vv −Φ−1
vv hd

((
Mσ2

d

)−1
+ hHd Φ−1

vv hd

)−1

hHd Φ−1
vv

=

(
I −

((
Mσ2

d

)−1
+ α

)−1

Φ−1
vv hdh

H
d

)
Φ−1
vv (4.9)

where

α = hHd Φ−1
vv hd. (4.10)

Substituting (4.9) and (4.8) in (4.6) yields the expression

wMWF =
hd,1

(Mσ2
d)
−1

+ α
Φ−1
vv hd. (4.11)

The corresponding MMSE is given by:

JMWF = E
[
|d(`)−wMWF

Hz(`)|2
]

= σ2
d −wMWF

HΦzzwMWF. (4.12)

Substituting (4.11) in (4.12) gives

JMWF = σ2
d

(Mσ2
d)
−1

(Mσ2
d)
−1

+ α
. (4.13)
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Denote the inner product of the desired and interfering ATFs by:

ρ = hHd hi. (4.14)

Applying the Woodbury identity to Φvv in (4.4) and substituting the result in (4.10) yields

α =
1

σ2
u

(
1− σ2

i

σ2
i + σ2

u/M
|ρ|2
)
. (4.15)

Finally, denoting the following spectra ratios

γd =
σ2
d

σ2
d + σ2

u/M
(4.16a)

γi =
σ2
i

σ2
i + σ2

u/M
(4.16b)

and substituting (4.15) in (4.13) gives

JMWF

(
|ρ|2
)

=
σ2
u

M
γd
(
1− γdγi|ρ|2

)−1
. (4.17)

The last expression for the MMSE depends only on the sources spectra, the number of

microphones, and ρ. The residual error power, JMWF, is a monotonically increasing function

of |ρ|2. Considering that 0 ≤ |ρ|2 ≤ 1 and the monotonic behavior of JMWF, it is bounded

by σ2
d

σ2
u/M

σ2
d+σ2

u/M
≤ JMWF ≤ σ2

d
σ2
i+σ2

u/M

σ2
d+σ2

i+σ2
u/M

. The lower bound corresponds to the case where

the sources’ ATFs are orthogonal. Its corresponding MWF is the average of M identical

single channel Wiener filters calculated at the absence of the interference. The upper bound

corresponds to the case where the sources’ ATFs coincide. In this case the residual error

power is maximized since it is impossible to spatially separate the desired and interfering

sources. Its corresponding MWF is the average of M identical single channel Wiener filters

assuming that the interference is present.

In Sec. 4.1.3 the microphone locations are assumed random and the statistics of ρ is

analyzed. The statistics of ρ will then be used for analyzing the statistics of JMWF based on

(4.17) .
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4.1.3 The statistics of ρ

A summary of the statistics of ρ which was derived by Lo in [6] follows. ρ is a complex RV,

ρ = ρr + iρi, with real and imaginary components denoted by ρr and ρi. Using (4.14) and

(4.2a,4.2b) it can be verified that

ρr =
1

M

M∑

m=1

cos
(
ξi
xm
λ

)
(4.18a)

ρi =
1

M

M∑

m=1

sin
(
ξi
xm
λ

)
(4.18b)

where i =
√
−1. Now since {xm}Mm=1 are i.i.d. RVs, it can be shown that the first-order and

second-order moments of ρr and ρi are given by:

µρ,r = E [ρr] = φx(
ξi
λ

) (4.19a)

σ2
ρ,r = E

[
(ρr − µρ,r)2

]
=

1

2M

(
1 + φx(2

ξi
λ

)

)
− φ2

x(
ξi
λ

) (4.19b)

µρ,i = E [ρi] = 0 (4.19c)

σ2
ρ,i = E

[
(ρi − µρ,i)2

]
=

1

2M

(
1− φx(2

ξi
λ

)

)
− φ2

x(
ξi
λ

) (4.19d)

where φx (t) = sinc(t∆) denotes the characteristic function of the RV x, in the Uniform

distribution case. The summands of the summation in ρr, ρi are i.i.d. RVs. Therefore,

according to the central limit theorem (CLT) they converge to a Gaussian RV for M � 1.

Assuming that

ξi∆

λ
� 1 (4.20)

the following approximation holds:

ρr ∼N (0,
1

2M
) (4.21a)

ρi ∼N (0,
1

2M
). (4.21b)

Note that this approximation is not valid for θi → 0. Since ρr and ρi are uncorrelated, i.e.

E [ρrρi] = 0, 2M |ρ|2 = 2Mρr
2+2Mρi

2 is approximated by a χ2 RV with 2 degrees of freedom,
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which is an Exponential RV with a parameter 1/2, i.e.

2M |ρ|2 ∼ exp(1/2). (4.22)

Note that when assumption (4.20) holds, ρ tends to its lower bound 0 as the number of

microphones M increases, and according to (4.17) the corresponding JMWF tends to its lower

bound as well.

4.1.4 Statistics of the MSE

Using the Exponential distribution of |ρ|2, the expression for JMWF in (4.17) and its monotonic

behaviour, the cumulative distribution function (c.d.f.) of JMWF is given by:

Pr
(
JMWF(|ρ|2) ≤ J0

)
= Pr

(
|ρ|2 ≤ J−1

MWF (J0)
)

=

Pr

(
|ρ|2 ≤ γd

−1γi
−1

(
1− σ2

u/M

J0

γd

))
=

1− exp

(
−Mγd

−1γi
−1

(
1− σ2

u/M

J0

γd

))
. (4.23)

Equation (4.23) denotes a reliability measure of JMWF. It equals the probability that the

MMSE will not exceed a desired level, J0.

4.1.5 Model verification

We turn now to the verification of the derived models. We verify the Normal model of ρ in

(4.21a,4.21b), and the Exponential models of |ρ|2 and the reliability function in (4.22) and

(4.23), respectively. For each scenario a Monte-Carlo simulation consisting of 1000 arrays of

M = 21 microphones (unless stated otherwise) were randomized with a Uniform distribution

on a linear aperture of ∆ = 10 length units. A desired source and an interfering source

arriving from the far-field were simulated. The angle of arrival (AOA) of the desired source

was set to 0o, and the AOA of the interference was set to θi = 5.5o (unless stated otherwise).

A low level sensors noise was added to the received signals. The SIR was set to 0dB and

the SNR was set to 30dB. The results were obtained for wavelengths in the range of [0.1, 2]

length units, and are shown for a a specific wavelength of λ = 0.91 length units (unless stated

otherwise).
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4.1.5.1 The Normal model of the components of ρ and the Exponential model

of |ρ|2

The Normal probability plots of ρr and the Exponential probability plots of 2M |ρ|2 were

simulated for various combinations of λ and θi and the results are shown in Fig. 4.1(a) and

Fig. 4.1(b), respectively. The blue color corresponds to θi = 1.5o, λ = 0.41⇒ ξi
∆
λ

= 0.64, the

green color corresponds to θi = 9.5o, λ = 2 ⇒ ξi
∆
λ

= 0.82, and the red color corresponds to

θi = 9.5o, λ = 0.41⇒ ξi
∆
λ

= 4.02. The various markers (cross, circle and plus) correspond to

the measurements data and the dashed lines correspond to the best distribution fit. Markers

that coincide with the dashed lines correspond to a good fit between the distribution model

and the data.

Since assumption (4.20) holds only for the parameters of the red curve, we expect it to

coincide with the theoretical distribution models in (4.21a,4.21b) and (4.22). It is clear from

Fig. 4.1(a) that a Normal distribution model fits the blue, green and red curves. However,

only the red curve matches the zero mean model of ρ in (4.21a,4.21b). From Fig. 4.1(b) it is

obvious that only the red curve matches the Exponential distribution. The estimated mean

and variance of ρr are −3.1×10−3 and 2.34×10−2. These values match the theoretical values

of 0 and 2.38 × 10−2 = 1
2×21

in (4.21a,4.21b). The estimated parameter of the Exponential

distribution of 2M |ρ|2 is 0.49. It matches its theoretical value of 0.5 in (4.22). The blue

and the green curves are examples for cases where assumption (4.20) is invalid, rendering the

Exponential distribution inappropriate for representing the data points.

4.1.5.2 The reliability of JMWF

In order to verify the reliability of JMWF the number of microphones was set in the range

M = 5, 6, . . . , 30. The analytical and empirical reliability functions for M = 11 microphones

are depicted in Fig. 4.2(a). It is clear from this figure that the theoretical model in (4.23)

matches the empirical data. The MMSE normalized by the signal power in this case varies

in the range of −41dB to −36dB.

The theoretical value of the c.d.f. of the MMSE at point Pr
(

10 log
(
JMWF

σ2
d

)
≤ −40

)
, as

well as its empirical value are depicted in Fig. 4.2(b). It is clear from this figure that the

theoretical model matches the empirical results. It is evident that the c.d.f. has an approx-

imate step function characteristics. Below a certain threshold (number of microphones) the

c.d.f. tends to 0 and above the threshold it tends to 1 with an abrupt transition between the
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two values. The threshold in Fig. 4.2(b) is approximately at M = 11 microphones. Using

more than 11 microphones, it is almost guaranteed that the MWF error will be lower than

−40dB.
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(a) Normal probability plots of ρr.
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(b) Exponential probability plots of 2M |ρ|2.

Figure 4.1: Normal and Exponential probability plots of ρr and |ρ|2, respectively, for various

values of ξi
∆
λ

(0.64 in blue, 0.82 in green and 4.02 in red).
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(a) Theoretical (blue) and empirical (green) c.d.f. curves of JMWF with an

M = 11 microphones array.
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vs. M , the number of microphones.

Figure 4.2: The c.d.f. of JMWF as a function of J0 and M , the number of microphones.

Examples for a beampattern corresponding to an array realization with M = 9 micro-
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phones (below the threshold), and for a beampattern corresponding to an array realization

with M = 15 microphones (above the threshold) are depicted in Fig. 4.3(a) and Fig. 4.3(b),

respectively. The beampattern in Fig. 4.3(a) has low sidelobes while the beampattern in

Fig. 4.3(b) seems to suffer from spatial aliasing and as a results, exhibits high sidelobes.
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(a) An example beampattern with M = 15 microphones.
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(b) An example beampattern with M = 9 microphones.

Figure 4.3: Examples for beampatterns for two array realizations. The AOAs of the desired

and interfering sources are depicted in green and red, respectively.
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4.1.6 Conclusions

In many applications, e.g. border security, exact design of the array is impractical. The per-

formance of these arrays, characterized by a large number of microphones deployed in vast

areas, cannot be analyzed by traditional deterministic methods. In the current contribution

we have presented a statistical model for the performance of a randomly located linear micro-

phone array. Specifically, we analyzed the MMSE measure of the MWF, commonly used in

speech applications. The case of one desired source and one interfering source arriving from

the far-field was treated. The theoretical models that have been developed were verified by

simulations. The proposed model can be used for determining the number of microphones

required for obtaining a predefined residual error level.

Special considerations need to be made when processing speech signals. Throughout this

work we assumed that the second-order statistics of the various sources is available. This

is hardly ever the case in actual applications. A practical design of the MWF for speech

processing is given by Doclo and Moonen [29]. The derivation of the reliability measure

assumes that the sources are stationary with known spectra. The reliability measure can

be extended to the case of speech signals in several ways. The stationary spectra can be

replaced by instantaneous spectra estimates, or time averaged spectra. Alternatively, the

required number of microphones can be determined by worst-case considerations.

4.2 Performance of the SDW-MWF with randomly lo-

cated microphones in a reverberant enclosure

In this section, we consider an array of randomly located microphones with a uniform distribu-

tion in a reverberant enclosure. A single desired speaker is assumed. Utilizing the statistical

model of the RIR, we derive a statistical model for the SIR and white noise gain and intro-

duce their reliability functions for the SDW-MWF in several noise scenarios. Specifically, we

consider the case of P < M coherent noise sources, where M is the number of microphones,

and the case of a diffuse sound field, an infinite number of uncorrelated sources arriving from

all directions. The derived statistical model, and the reliability functions can be used to

determine the number of microphones needed to assure a desired performance level (with

a controlled level of uncertainty). Note, that we extend the contribution of the previous

Sec. 4.1 in two aspects: first, a reverberant environment is treated instead of a far-field direct
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arrival only model; second, we analyze the performance for both coherent and diffuse sound

fields.

The structure of the section is as follows. The problem is formulated in Sec. 4.2.1.

We briefly present the SDW-MWF, and derive expressions for SIR and white noise gain in

Sec. 4.2.2. In Sec. 4.2.3 we derive a statistical model for the ATF, and experimentally verify

its validity. Sec. 4.2.4 is dedicated to deriving a statistical model for the BF criteria, namely

SIR and white noise gain, in various noise fields: 1) few coherent noise sources P < M ; 2)

diffuse sound field. In Sec. 4.2.5 we compare the proposed model and the empirical results

obtained by an extensive simulative study. The work is summarized and conclusions are

drawn Sec. 4.2.6.

4.2.1 Problem formulation

In the current contribution we analyze the performance of the SDW-MWF, aiming to enhance

a desired source contaminated by interference sources. We consider the case of randomly

located microphones with a uniform distribution in a reverberant enclosure, and derive a

statistical model for the performance.

Consider a Dx × Dy × Dz dimensional reverberant room, in which M microphones are

randomly located with a uniform distribution. The microphone locations are given in a

Cartesian coordinate system, with the origin at the center of the room:

rm ,
[
rmx rmy rmz

]T
(4.24)

for m = 1, . . . ,M , where (•)T denotes the transpose operator. Throughout this contribution,

the STFT domain is considered, where ` and k denote the frame and frequency indices. Let

sd (`, k) be a desired speaker positioned at rd in the enclosure. The signals received by the

microphones are given by:

z (`, k) , hd (`, k) sd (`, k) + v (`, k) (4.25)

where hd (`, k) ,
[
h1
d (`, k) · · · hMd (`, k)

]T
denotes the ATF relating the desired speech

signal and the microphones, and v (`, k) is a vector comprised of the interference signals.

At this point, a general noise field is assumed. In the next sections several specific cases

are addressed, explicitly, P < M coherent interference sources as well as a diffuse sound
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field are considered. Denote the received signals, and the interference covariance matrices,

respectively, as:

Φzz (`, k) ,E
{
z (`, k) zH (`, k)

}

=δd (`, k)hd (`, k)hHd (`, k) + Φvv (`, k) (4.26a)

Φvv (`, k) ,E
{
v (`, k)vH (`, k)

}
(4.26b)

where E {•} denotes the expectation operator, (•)H denotes the transpose-conjugate opera-

tor, and δd (`, k) , E {|sd (`, k) |2} denotes the PSD of the desired signal. We assume that the

desired speech signal and the interference signals are statistically independent. For brevity,

hereafter the frame index ` is omitted from the covariance matrices and the ATFs of the

desired and interfering sources. The frequency index k = 1, . . . , K where K is the window

length, is also omitted, and the subsequent derivations should be understood as frequency

dependent.

In the following section, the SDW-MWF is briefly presented, and its performance criteria

are defined.

4.2.2 The SDW-MWF

The MSE between the output of a BF, w′, and the desired signal is E
{
|sd(`)− (w′)H z(`)|2

}
.

The SDW-MWF BF is designed to minimize a weighted version of the MSE and its goal is to

enhance the desired signal sd(`). It is defined as the solution of the following minimization

problem:

w , argmin
w′

|1−
(

(w′)
H
hd

)
|2δd + µ (w′)

H
Φvvw

′

=
Φ−1
vv hd

hHd Φ−1
vv hd + µ

δd

(4.27)

where µ is a non-negative parameter which controls the tradeoff between the interference

reduction and the desired signal distortion. For µ = 1 the classical Wiener filter [25] (MMSE)

is obtained. At the limit µ → 0 the MVDR-BF is reached, and no distortion is introduced

to the desired signal.

Next, we define two criteria of BFs. The SIR at the output of a BF, w, is denoted κ and

is defined as the ratio of the powers of the desired signal and the interference signals at the
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beamformer output, i.e.:

κ ,
δd|wHhd|2
wHΦvvw

. (4.28)

The white noise gain [27] is denoted ξ and is defined as the SNR gain of the BF for a spatially

white noise. It equals:

ξ ,
|wHhd|2
‖w‖2

. (4.29)

By substituting (4.27) in (4.28) and (4.29), we obtain expressions for the performance

criteria of the SDW-MWF:

κ =δdh
H
d Φ−1

vv hd. (4.30a)

ξ =

(
hHd Φ−1

vv hd
)2

hHd Φ−2
vv hd

. (4.30b)

Note, that both expressions do not depend on µ. This can be attributed to the fact that

SDW-MWF equals the MVDR-BF followed by a single channel SDW-MWF [110],[31] with

the parameter µ. Hence, the SIR and white noise gain at the output of the SDW-MWF equal

to their respective quantities at the output of an MVDR-BF (locally, per frequency bin).

In the next section, a statistical model for the ATF is presented. From this model we will

derive the statistics of the SIR and the white noise gain criteria for various noise fields.

4.2.3 ATF statistics

In the following sections approximations for the first and second moments of the ATF are

derived. We will show that, under several assumptions, the ATFs relating a source with

the microphone array can be modeled as i.i.d. complex Gaussian RVs with zero mean and a

variance which depends on the properties of the enclosure. Furthermore, ATFs of different

sources are shown to be uncorrelated.

4.2.3.1 Single ATF statistics

The performance of statistical BFs relies greatly on the acoustic propagation model. Con-

sidering acoustic signals propagation, Schroeder, in the 1950s, proposed a stochastic model

for the RIR and the respective frequency correlation between microphones. This work was
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later translated to English in [111] and further developed by Polack [112]. In [113], Schroeder

investigated the frequency correlation between frequency responses in a room. For a survey

on the topic please refer to Kuttroff [114] and to Jot et al. [115].

Let h be an ATF relating a coherent point source signal, located at r, and the mth

microphone, located at rm. The ATF is comprised of two components: the direct arrival

ATF and the reverberant component ATF. Since the microphone location, rm, is random,

the ATF is also a complex RV. Explicitly:

h , h̄+ ĥ (4.31)

where h̄ and ĥ denote direct arrival and reverberant components, respectively. We assume

that the direct arrival and the reverberant ATFs are uncorrelated. Define the room volume

and surface area as:

V ,Dx ×Dy ×Dz (4.32a)

A ,2 (Dx ×Dy +Dx ×Dz +Dy ×Dz) (4.32b)

and denote the reverberation time as T60. Adopting the ATF model of Schroeder [111],[114],

ĥ is modeled as a complex Gaussian RV:

ĥ ∼ CN (0, α̂) (4.33)

where

α̂ ,
1− ε
πεA

(4.34)

and

ε ,
0.161V

AT60

(4.35)

is the exponential decay rate of the RIR tail. The latter model is valid under the following

assumptions: first, the signal wavelength is much smaller than the room dimensions; second,

microphones and sources are at least half a wavelength away from the walls; third, the signal
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frequency is above the Schroeder frequency, defined as:

fSchroeder , 2000

√
T60

V
. (4.36)

In typical acoustic scenarios fSchroeder is in the order of few hundred Hz.

The direct arrival ATF is given in a polar representation by

h̄ , ā exp
(
jφ̄
)

(4.37)

where ā and exp
(
jφ̄
)

are the amplitude and phase responses, respectively. Assuming spherical

wave propagation:

ā =

{
1 ; |r| ≤ 1

4π
1

4π‖r−rm‖ ; 1
4π
< |r| (4.38a)

φ̄ =
2π‖r − rm‖

λk
(4.38b)

where λk = cK
kfs

is the wavelength corresponding to the kth frequency bin, K is the STFT

window length, fs is the sampling frequency rate and c is the sound velocity. Furthermore,

since (4.38a) is not physically meaningful for ‖r−rm‖ → 0, we limit the amplitude response

to ā = 1 for ‖r− rm‖ < 1
4π

. Without loss of generality, consider that the source is located at

the origin r = 0, and that a sphere with radius r̄, centered at the origin, is within the room

volume. The sphere radius is chosen such that r̄ � λk. Since multiple 2π phase cycles are

repeated while propagating in the sphere, the amplitude and phase responses, ā and exp
(
jφ̄
)

can be approximated as uncorrelated inside the sphere. We verify this approximation in

Sec. 4.2.3.3. Note, that the direct arrival component is a stochastic variable, since it is a

function of the microphone location which is random, and that the reverberant component

is stochastic under Schroeder’s model. The subsequent expectation operations should be

interpreted accordingly.

Moreover, the mean phase response is approximately

E
{

exp
(
jφ̄
)}
≈ 0 (4.39)
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and the mean direct arrival ATF is:

E
{
h̄
}

=E {ā}E
{

exp
(
jφ̄
)}

=0. (4.40)

These results are also verified in Sec. 4.2.3.3.

Considering a microphone which location is uniformly distributed in a sphere with radius

r̄ and using (4.38a), the variance of the direct arrival equals the solution of the following

integral in spherical coordinates:

ᾱ =E
{
ā2 |‖rm‖ < r̄

}

=

∫ 2π

φ=0

∫ π

θ=0

∫ r̄

r=0

3

4πr̄3
ā2r2 sin (θ) drdθdφ

=
6πr̄ − 1

32π3r̄3
. (4.41)

Combining (4.33) and (4.40), the mean ATF equals:

E {h} = 0. (4.42)

Denote the variance of the ATF:

α , E
{
|h|2
}
. (4.43)

Using the law of total probability, (4.43) can be written as:

α =Pr (‖rm‖ < r̄) E
{
|h|2 |‖rm‖ < r̄

}

+ Pr (‖rm‖ ≥ r̄) E
{
|h|2 |r̄ ≤ ‖rm‖

}
. (4.44)

Denote the critical distance, the distance from the source at which the powers of the direct

arrival and the reverberant components are equal, as rc. Kuttruff [114] derived an expression

for the critical distance:

rc ,

√
V

100πT60

. (4.45)

We assume that r̄ � rc, i.e. the sphere radius r̄ is much larger than the critical distance.



140 CHAPTER 4. PERF. ANALYSIS WITH RANDOMLY LOCATED MICROPHONES

Hence |h̄| � |ĥ| (the direct arrival ATF is negligible compared to the reverberant ATF

component) for ‖rm‖ > r̄, and (4.44) is approximately:

α ≈Pr (‖rm‖ < r̄) E
{
|h̄|2 + |ĥ|2 |‖rm‖ < r̄

}

+ Pr (‖rm‖ ≥ r̄) E
{
|ĥ|2 |r̄ ≤ ‖rm‖

}

=Pr (‖rm‖ < r̄) E
{
|h̄|2 |‖rm‖ < r̄

}
+ E

{
|ĥ|2
}
. (4.46)

Note, that we utilized the fact that h̄ and ĥ are uncorrelated. Substituting (4.41) and (4.33)

in (4.46) and noting that Pr (‖rm‖ < r̄) = 4πr̄3

3V
yields:

α =
4πr̄3

3V
ᾱ + α̂. (4.47)

We return to the original coordinate system, centered in the room, and consider the

statistics of an ATF vector h. Since the microphone locations are i.i.d., and since hm, the

mth element in h, depends on the location of the mth microphone, rm, we conclude that

hm; m = 1, . . . ,M are i.i.d..

4.2.3.2 Cross -covariance of ATFs

In this section we model the cross-covariance of the ATFs relating two sources located at r1

and r2 with a microphone randomly located at rm. The covariance is comprised of the sum

of the direct arrival and reverberant component covariances:

E {h1h
∗
2} = E

{
h̄1h̄

∗
2

}
+ E

{
ĥ1ĥ

∗
2

}
(4.48)

where hi, h̄i and ĥi are, respectively, the total ATF, the direct arrival ATF and the reverberant

ATF for sources i = 1, 2. Similarly to (4.37), the amplitude and phase components of the ith

source direct arrival ATF are defined as h̄i = āi exp
(
jφ̄i
)
.

First, let us examine the covariance of the reverberant ATFs. Schroeder models the re-

verberant ATF as the sum of multiple independent reflections arriving from all directions.

Hence, their coherence, defined as
E{ĥ1ĥ∗2}

α̂
, is equivalent to the coherence between two mi-

crophones located at r1 and r2 in a diffuse sound field (comprised of multiple uncorrelated
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sources radiating from a surrounding sphere) [116]. Explicitly, the covariance equals:

E
{
ĥ1ĥ

∗
2

}
= α̂ sinc

(
2π‖r1 − r2‖

λk

)
(4.49)

where sinc(x) = sin(x)
x

. Assuming that the distance between the sources is much larger than

the wavelength, i.e. ‖r1 − r2‖ � λk, the covariance between the reverberant component is

approximately:

E
{
ĥ1ĥ

∗
2

}
≈ 0. (4.50)

Consider the expectation of the inner product of direct arrival ATFs in (4.48), i.e. E
{
h̄1h̄

∗
2

}
=

E
{
ā1ā2 exp

(
j
(
φ̄1 − φ̄2

))}
. Again, since ‖r1−r2‖ � λk and by applying same considerations

as leading to (4.40), we approximate that the phase and amplitude in the last expression are

uncorrelated, and that E
{

exp
(
j
(
φ̄1 − φ̄2

))}
≈ 0. Hence:

E
{
h̄1h̄

∗
2

}
≈ 0. (4.51)

Finally, substituting (4.50) and (4.51) in (4.48), we conclude that the ATFs are uncorrelated:

E {h1h
∗
2} = 0. (4.52)

4.2.3.3 Model verification

In order to verify the proposed simplified model we have conducted several different Monte-

Carlo experiments. First, the model of the ATF statistics is examined for various reverbera-

tion times and enclosure dimensions. The theoretical model was calculated with the param-

eter r̄ = 2rc. In the first experiment, the location of a single microphone was uniformly ran-

domized in a 4m×4m×3m room with a reverberation time in the range [0.2s, 0.3s, . . . , 0.8s].

In the second experiment, we examined the relation between the ATF statistics and the

room dimensions. We set the reverberation time to 0.3s and examined different room sizes:

(2+0.5i)m× (2+0.5i)m× (2.2+0.1i)m for i = 0, . . . , 8. For each room configuration in both

experiments, the locations of a single source and a microphone were uniformly randomized

in the room. The locations of the single source were randomized 4 times, and for each case

100 locations of the microphone were randomized. For each case, the direct arrival and the

tail of the ATF as well as the complete ATF were generated using [108]. The normalized
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error of the empirical mean of the ATF, is defined as |〈h〉−E{h}|2
E{|h|2} = |〈h〉|2

E{|h|2} , where 〈•〉 denotes

the empirical average. As we expect that E {h} ≈ 0, as in Eq. (4.42), the ratio |〈h〉|2
E{|h|2} is con-

sidered to verify this approximation in both experiments. For all tested reverberation times

and room dimensions the normalized error, averaged over all considered scenarios, is −20dB,

and clearly the approximation E {h} ≈ 0 holds. The theoretical and empirical (denoted
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Figure 4.4: Empirical and theoretical ATF variances versus reverberation time.

emp.) variances of direct arrival, reverberant (denoted rev.) and total ATFs, i.e. ᾱ, α̂ and

α, are depicted in Figs. 4.4,4.5 for both experiments, respectively. The empirical variances

were averaged over the frequency range of [300Hz, 3700Hz]. Note that the reverberation time,

T60, affects the variance of the direct arrival ATF, (4.41), from the setting r̄ = 2rc and the

definition of the critical distance (4.45). In these figures, it is clearly depicted that the model

for α̂, the variance of the reverberant component, is accurate, whereas the model for ᾱ, the

variance of the direct arrival, demonstrates small mismatch. The model for α, the variance of

the total ATF, is accurate, since it is mostly affected by the reverberant component. These

results also apply when considering a specific frequency (in the specified range), instead of

averaging over all frequencies.

In the third experiment, we verified our theoretical result stating that the ATFs are
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Figure 4.5: Empirical and theoretical ATF variances versus room dimensions.

uncorrelated. The room dimensions were set to 3m × 3m × 2.4m. We tested the statement

for various reverberation times 0.2s, 0.4s and 0.6s, and for different distances between the

sources r1,2 , ‖r1 − r2‖ = 0.2m, 0.6m, . . . , 1.8m. For each room configuration 4 locations

of the sources were randomly selected, and for each source location 100 different locations

of microphones were randomized. The empirical coherence of the total ATFs is defined

as coh (h1, h2) ,
〈h1h∗2〉√
〈|h1|2〉〈|h2|2〉

, where we note that h1 and h2 are zero mean. In a similar

manner, we define coh
(
h̄1, h̄2

)
, coh

(
ĥ1, ĥ2

)
. The empirical coherence of the direct ATFs, the

reverberant ATFs and the total ATFs for all tested reverberation times and distances between

sources are lower than −30dB (averaged over all frequencies). The empirical coherence versus

frequency in the case of T60 = 0.4sec and r1,2 = 0.2m is depicted in Fig. 4.6. The results of

this evidently verify the assumption that the ATFs of different sources are uncorrelated. In

all experiments a sampling rate of 8kHz is used.
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Figure 4.6: Empirical coherence between ATFs versus frequency.

4.2.4 Beamformers performance

In this section, we analyze the performance of the SDW-MWF in various noise fields. We

derive reliability measures for the SIR and white noise gain criteria. The reliability of an SIR

level of κ0 is defined as the probability that the output SIR will exceed κ0, explicitly:

Rκ (κ0) , Pr (κ ≥ κ0) . (4.53)

Similarly, the reliability of a white noise gain level of ξ0, is defined as the probability that

the white noise gain will exceed ξ0:

Rξ (ξ0) , Pr (ξ ≥ ξ0) . (4.54)

The reliability functions can be used to predict the performance of the BF in the WASN.

Moreover, they can be used to determine the number of microphones that should be used in

order to meet a predefined performance level. However, as these measures are statistical, for

any microphones location realization, a non-zero probability that the desired performance
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level will not be met exists.

4.2.4.1 Coherent interference signals P < M

Let si,1 (`) , . . . , si,P (`) be P < M coherent noise sources located at ri,1, . . . , ri,P , respectively.

Denote the covariance matrix of the interference signals as:

∆i , diag {δi,1, . . . , δi,P} (4.55)

where δi,p = E {|si,p(`)|2} is the variance of the pth source, for p = 1, . . . , P , and let

hi,p ,
[
h1
i,p · · · hMi,p

]T
(4.56)

be the ATF relating the pth interfering source and the microphones. The received interference

signals vector, in the case of coherent interference signals, is therefore given by:

v (`) = H isi (`) + u (`) (4.57)

where

H i =
[
hi,1 · · · hi,P

]
(4.58a)

si (`) =
[
si,1 (`) · · · si,P (`)

]T
(4.58b)

and u (`) is a complex Gaussian sensors noise with covariance δuI, i.e. u (`) ∼ CN (0, δuI).

Therefore, the covariance matrix of the received interference signals is:

Φvv = H i∆iH
H
i + δuI. (4.59)

Consider the expression hHd Φ−1
vv hd which appears in the SIR and white noise gain criteria

of the SDW-MWF in (4.30a) and (4.30b). Applying the Woodbury identity to Φ−1
vv as defined

in (4.59) yields:

Φ−1
vv =δ−1

u IM − δ−1
u H i

(
IP + δu

(
HH

i H i

)−1
∆−1

i

)−1

×
(
HH

i H i

)−1
HH

i . (4.60)

Now, assuming that the power of the coherent interference signals is much larger than the
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variance of the sensors noise, and further assuming that IP +δu
(
HH

i H i

)−1
∆−1

i ≈ IP , (4.60)

can be approximated as:

Φ−1
vv ≈ δ−1

u

(
IM −H i

(
HH

i H i

)−1
HH

i

)
. (4.61)

Note that, Φ−1
vv is approximately a projection matrix to the null-subspace of H i, scaled by

δ−1
u .

Let

H i = ΨΩΘH (4.62)

be the SVD of H i. Substituting (4.62) in (4.61), we obtain the more compact expression:

Φ−1
vv = δ−1

u Ψ̇Ψ̇
H

(4.63)

where Ψ̇ is an M × (M − P ) matrix comprising the M − P last columns of Ψ, associated

with the zero singular values, which span the null-subspace of H i.

Define

ρc , Ψ̇
H
hd (4.64)

and substituting (4.63) and (4.64) in (4.30a) and (4.30b) yields the simplified criteria expres-

sions:

κc =
δd
δu
‖ρc‖2 (4.65a)

ξc =‖ρc‖2 (4.65b)

where we denote the SIR and white noise gain criteria in the coherent noise field (for P < M)

as κc and ξc, respectively. Note that both criteria depend on ‖ρc‖2 with different coefficient

multipliers. Now, we turn to analyze their statistics.

Denote the nth column of Ψ̇ and the nth element of ρc as ψ̇n and ρc,n, respectively, for

n = 1, . . . , (M − P ). A single element ρc,n is obtained by

ρc,n = ψ̇
H

n hd (4.66)
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which is a linear combination of the uncorrelated elements of hd. From the unitarity of Ψ,

we conclude that ρc is a vector of uncorrelated variables:

E
{
ρcρ

H
c

}
=E

{
Ψ̇
H

i hdh
H
d Ψ̇i

}

=αIM−P . (4.67)

Now, since (M − P )� 1 the CLT conditions hold and hence we argue that the distribution

of the random variable ρc,n; n = 1, . . . ,M −P converges to the complex normal distribution

ρc,n ∼ CN (0, α), where α is defined in (4.47):

ρc ∼ CN (0, αIM−P ) . (4.68)

It is easily concluded that the elements of ρc are i.i.d..

Define

ηc ,
2

α
‖ρc‖2. (4.69)

It is a Chi-square RV with 2(M − P ) degrees of freedom, i.e.

ηc ∼ χ2 (2 (M − P )) . (4.70)

From (4.69) we have:

‖ρc‖2 =
α

2
ηc. (4.71)

Substituting (4.71) in (4.65a) and (4.65b) yields alternative expressions for the performance

criteria:

κc =
δd
δu

α

2
ηc (4.72a)

ξc =
α

2
ηc. (4.72b)

Using the probability distribution function (p.d.f.) of ηc, the average SIR and white noise
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gain, denoted κ̄c and ξ̄c, are given by:

κ̄c , E {κc} =
αδd
δu

(M − P ) (4.73a)

ξ̄c , E {ξc} =α (M − P ) (4.73b)

where we substituted E {ηc} = 2 (M − P ). Note, that the latter averages of the SIR and

white noise gain are linear with the number of microphones.

From (4.72a) it is clear that κc is a scaled version of a Chi-square RV with 2(M − P )

degrees of freedom. Hence, its reliability (4.53) can be calculated as:

Rκ,c (κ0) = 1− Fη,c
(

2

α

δu
δd
κ0

)
(4.74)

where

Fη,c (η0) ,Pr (ηc ≤ η0)

=
γf
(
M − P, η0

2

)

Γf (M − P )
(4.75)

is the cumulative distribution function of a Chi-square RV with 2 (M − P ) degrees of freedom,

Γf is the Gamma function and γf is the lower incomplete Gamma function.

Similarly, the reliability of the white noise gain (4.72b) is:

Rξ,c (ξ0) = 1− Fη,c
(

2

α
ξ0

)
. (4.76)

4.2.4.2 Diffuse sound field

In this section we derive the performance of an SDW-MWF in a diffuse sound field. This noise

field is can be modeled by numerous statistically independent noise sources arriving from all

directions simultaneously (P �M). It is a common noise field in reverberant environments,

cocktail party and car scenarios [117]. The covariance Φvv (m,m′) of a diffused noise between

the noise components received at the mth and the m′th microphones equals:

Φvv (m,m′) = δdif sinc

(
2π‖rm − rm′‖

λk

)
(4.77)

where δdif denotes the variance of the diffuse sound field received at each microphone. Note

that the coherence is a RV due to the random microphone locations.
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Consider, the average covariance E {Φvv (m,m′)} in a sphere with radius R� λk around

rm
′
. Assuming that the mth microphone is randomly located in the sphere with a uniform

distribution, the expectation can be formulated as:

E {Φvv (m,m′)} =

∫∫∫ δdif sinc
(

2πr
λk

)
r sin (θ) drdθdφ

4/3πR3

=δdif ×





1 ; m = m′

3 sin2
(
πR
λk

)
2R

; m 6= m′
. (4.78)

Now, since R� λk we can approximate:

E {Φvv (m,m′)} ≈ δdif. (4.79)

Since the enclosure is much larger than λk, we assume that on average the distance between

any pair of microphones is larger than λk, and propose the approximation:

Φvv ≈ δdifI. (4.80)

Define

ρdif ,
√
δdif

(
Φ−1/2
vv

)H
hd (4.81)

where Φ−1
vv = Φ−1/2

vv

(
Φ−1/2
vv

)H
is the Cholesky decomposition. Since, in most cases the

power of the reverberant component dominates the ATF, we propose to model hd ∼
CN (0, αIM×M), and by using (4.80) to model ρdif as an M × 1 complex Gaussian RV with

the probability distribution:

ρdif ∼ CN (0, αIM×M) . (4.82)

Define

ηdif ,
2

α
‖ρdif‖2 (4.83)

and note that ηdif is a Chi-square RV with 2M degrees of freedom, i.e.

ηdif ∼ χ2 (2M) . (4.84)
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Substituting (4.80), (4.81) and (4.83) in (4.30a) and (4.30b) yields:

κdif =
δd
δdif

α

2
ηdif (4.85a)

ξdif =
α

2
ηdif (4.85b)

where we have applied the following approximation resulting from (4.80):

Φ−2
vv ≈

1

δdif

Φ−1
vv . (4.86)

The average SIR and white noise gain in the diffuse sound field case are given by:

κ̄dif , E {κdif} =
αδd
δdif

M (4.87a)

ξ̄dif , E {ξdif} =αM (4.87b)

where we substitute E {ηdif} = 2M . Note, that as in the coherent interference signals case,

the latter averages of the SIR and white noise gain are linear with the number of microphones.

Van Trees [118] showed that, for spatially white noise, the SIR linearly increases with the

number of microphones in the deterministic case (when the microphone locations are not

random). Since we show that the diffuse sound field covariance matrix can be approximated

by a scaled identity matrix, we obtain a similar result for randomly located microphones.

Similarly to (4.74), (4.76) the reliability of κdif and ξdif are given by:

Rκ,dif (κ0) =1− Fη,dif

(
2

α

δdif

δd
κ0

)
(4.88a)

Rξ,dif (ξ0) =1− Fη,dif

(
2

α
ξ0

)
(4.88b)

where

Fη,dif (η0) ,Pr (ηdif ≤ η0)

=
γf
(
M, η0

2

)

Γf (M)
(4.89)

is the cumulative distribution function of the 2M degrees of freedom Chi-square RV ηdif.
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4.2.5 BF Model verification

4.2.5.1 Coherent interference signals P < M

We carry out experiments to verify the theoretical model for the statistics of κc and ξc in

the case of coherent noise sources. The room dimensions are set to 4m × 4m × 3m, the

number of microphones is M = 5, the sampling rate is 8kHz, and the DFT size is K = 8192.

The number of interference signals is in the range of P = 1, 2, 3, 4 and the reverberation

time can take the values 0.2s, 0.4s, 0.6s, 0.8s. The received microphone signals comprise of

a coherent desired source, modeled as a 6th order auto regressive (AR) random process,

coherent noise sources, modeled as an AR(1) random processes, and sensors noise. We

simulate the spectra of the signals, and substitute them in the derived formulas. The average

SNR of the desired source, and the average INR of each of the coherent noise sources are set

to 90dB at the microphones. The locations of the desired source and the interference signals

are randomly selected in 4 scenarios. In each scenario 100 microphones positions are drawn

with a 3D uniform distribution. In each Monte-Carlo experiment, and per each frequency,

the SDW-MWF with µ = 1 is calculated, and its SIR and white noise gain are recorded. The

normalized errors of the average SIR and white noise gain, i.e. κc and ξc, defined as (〈κc〉−κ̄c)2
κ̄2c

and
(〈ξc〉−ξ̄c)

2

ξ̄2c
, respectively, are −20dB for low and medium reverberation times, 0.2s, 0.4s, and

for all numbers of interference signals scenarios. For higher reverberation times, 0.6s, 0.8s,

the measured normalized errors are a bit higher, −15dB. Evidently, the formulas for the

average criteria (4.73a),(4.73b) are valid.

The following figures correspond to one of the desired source and interference signals con-

stellations at frequency 2kHz. Similar results are obtained for other scenarios and frequencies.

In the derivation of the theoretical model, we argued that κc is a scaled χ2 (2 (M − P )) RV.

The quantile-quantile probability plots of 2δu
αδd
κc versus the χ2 (2 (M − P )) distribution is de-

picted in Fig. 4.7 for reverberation time T60 = 0.4s, and for various numbers of interference

signals P = 1, . . . , 4. From this figure, the Chi-square distribution with 2 (M − P ) degrees

of freedom of the scaled κc can be verified. We also verify that ρc is an (M − P )×1 complex

normal vector. The reliability function of the SIR, i.e. Rκ,c, versus the SIR improvement (de-

fined as the ratio of the output and input SIR) for T60 = 0.4s is depicted in Fig. 4.8. Clearly

from this figure, the reliability function of the SIR is verified. As expected, the reliability of

the white noise gain demonstrates similar behavior.

The reliability functions of the SIR and white noise gain were measured for all combi-
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nations of T60 = 0.2, 0.4, 0.6, 0.8s and P = 1, 2, 3, 4 interference signals for various values

of µ = 1, 10, 100. Correspondingly to derivation in (4.74), (4.76), the measured reliability

criteria are independent to the parameter µ.
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Figure 4.7: Quantile-quantile probability plot of 2δu
αδd
κc versus χ2 (2 (M − P )) distribution

with various numbers of coherent interference signals, P = 1, . . . , 4, and for a reverberation
time of T60 = 0.4s.

Now, we wish to verify the effect of the number of microphones M on the reliability

measures and of the SIR and white noise gain in the coherent interference signals case.

We use the same room dimensions as above, and set the reverberation time to T60 = 0.4s.

We test 4 different constellations of a desired source and a single interference signal. For

each constellation 100 microphone locations are uniformly randomized, where the number of

microphones is taken from M = 5, 10, 15, 20, 25. As before, in each Monte-Carlo experiment

and per each frequency, the SDW-MWF with µ = 1 is calculated, and its SIR and white noise

gain are recorded. The normalized errors of the average SIR and white noise gain, i.e. κc

and ξc, are −20dB for all tested numbers of microphones. The theoretical relation between

the number of microphones, M , and the average SIR and white noise gain (4.73a),(4.73b),

are verified, as the normalized errors are considerably small.
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Figure 4.8: Reliability function of SIR, Rκ,c, versus SIR improvement with various numbers
of coherent interference signals, P = 1, . . . , 4, and for a reverberation time of T60 = 0.4s.

The reliability of the SIR at a frequency of 2kHz, i.e. κc versus the SIR improvement for

various numbers of microphones is depicted in Fig. 4.9. It is clear from this figure, that the

derived reliability function fits the empirical data. It is interesting to note that as the number

of microphones increases the reliability function converges to a step function, and hence the

performance level becomes more deterministic. Similar results are obtained for other frequen-

cies and sources constellations. As discussed earlier, the reliability measures (4.88a),(4.88b)

equal the probability that the performance criteria will meet a predefined level.

4.2.5.2 Diffuse sound field

Here, we perform an experiment to verify the theoretical model of κdif and ξdif for the case of

a diffuse sound field. The room dimensions, the sampling rate and the DFT size are as in the

previous section, 4m × 4m × 3m, 8kHz and 8192, respectively. The number of microphones

is set to M = 16. The reverberation time is set to one of the values 0.2s, 0.3s, . . . , 0.6s. The

received microphone signals comprise of a coherent desired source, modeled as before by an

AR(6) random process, a diffuse sound field and sensors noise. As in the previous experiment,
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Figure 4.9: Reliability function of SIR, Rκ,c, versus SIR improvement with various numbers
of microphones.

we simulate the spectra of the signals, and substitute them in the derived formulas. The

average SNR of the desired source and the average INR of the diffuse sound field are set

to 90dB and 60dB, respectively. The location of the desired source is randomly selected

in 4 scenarios. For each scenario, 100 microphones positions are drawn with a 3D uniform

distribution. In each Monte-Carlo experiment, and per each frequency, the SDW-MWF with

µ = 1 is calculated, and its SIR and white noise gain are recorded. The normalized errors of

the average SIR and white noise gain, i.e. κdif and ξdif, defined as (〈κdif〉−κ̄dif)2
κ̄2dif

and
(〈ξdif〉−ξ̄dif)

2

ξ̄2dif
,

respectively, for all tested reverberation times is about −20dB. Evidently, the formulas for

the average criteria (4.87a),(4.87b) are valid.

The following figures correspond to one of the source location scenarios at frequency 2kHz,

however, similar results are obtained at other scenarios and frequencies. In the derivation

of the theoretical model, we argued that κdif is a scaled χ2 (2M) RV. The quantile-quantile

probability plots of 2δdif
αδd

κdif versus the χ2(32) distribution is depicted in Fig. 4.10 for reverber-

ation times of 0.2sec, 0.6sec. From this figure, the Chi-square distribution with 2M degrees

of freedom of the scaled κdif can be verified. The theoretical model is verified also for other
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reverberation times. We also verify that ρdif is an M × 1 complex normal random vector.

The reliability function of the SIR, i.e. Rκ,dif, versus the SIR improvement is depicted in

Fig. 4.11. Clearly from this figure, the reliability function of the SIR is verified. Similar

results were obtained in all other tested reverberation times. The theoretical model for the

reliability of the white noise gain is also verified in this simulation.

The reliability functions of the SIR and white noise gain, i.e. Rc,dif and Rξ,dif, were

measured with different reverberation times T60 = 0.2, 0.4, 0.6, 0.8s and for various values of

µ = 1, 10, 100. Correspondingly to derivation in (4.88a), (4.88b), the reliability criteria are

independent to the parameter µ.
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Figure 4.10: Quantile-quantile probability plot of 2δdif
αδd

κdif versus χ2(32) distribution with a
diffuse sound field for various reverberation times.

Now, we wish to verify the effect of the number of microphones M on the reliability

measures of the SIR and white noise gain in the diffuse sound field case. We use the same

room dimensions as above, and set the reverberation time to T60 = 0.4s. We test 4 different

locations for the desired source. For each case 100 microphones locations are uniformly

randomized, where the number of microphones is taken from M = 5, 10, 15, 20, 25. As before,

in each Monte-Carlo experiment and per each frequency, the SDW-MWF with µ = 1 is
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Figure 4.11: Reliability function of SIR, Rκ,dif, versus SIR improvement with a diffuse sound
field for various reverberation times.

calculated, and its SIR and white noise gain are recorded. The normalized errors of the

average SIR and white noise gain, i.e. κdif and ξdif, for all tested numbers of microphones,

are about −20dB. The theoretical relation between the number of microphones, M , and

the average SIR and white noise gain (4.87a),(4.87b), are verified from these results, as the

normalized errors are considerably small.

The reliability of the SIR at a frequency of 2kHz, i.e. κdif, versus the SIR improvement for

various numbers of microphones is depicted in Fig. 4.12. Clearly from this figure, the derived

reliability function fits the empirical data. Similar results are obtained for other frequencies

and source locations. As in the case of coherent noise sources, the performance tends to

become deterministic as the number of microphones increases.

4.2.6 Conclusions

We have considered the problem of signal enhancement in WASN applications where the

microphone locations cannot be determined in advance. Assuming that the microphones

are randomly located with a uniform distribution, and utilizing results from statistical room
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Figure 4.12: Reliability function of SIR, Rκ,dif, versus SIR improvement with various numbers
of microphones.

acoustics, we analyzed the performance of applying the SDW-MWF. Two noise fields were

discussed: first, P < M coherent noise sources and second, a diffuse sound field. Statistical

models for two performance criteria, namely the SIR and the white noise gain, were derived

for the different noise fields. Reliability functions, which give the probability of a BF crite-

rion to exceed a predefined level, were derived for both criteria and both noise fields. The

reliability functions can be used to predict the BF performance measures in a WASN, and

to calculate the number of microphones needed to maintain a desired level thereof with a

predefined probability. The proposed statistical models and reliability functions were verified

in a comprehensive simulative study.
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Chapter 5

Complexity reduced beamformers

The processing power of WASN is a restricting requirement for distributed algorithms. In this

chapter we derive computationally efficient procedures for implementing a distributed LCMV-

BF. In Sec. 5.1, we consider reducing the complexity of the GSC-BF, which is dominated by

the BM filtering operation. We propose a sparse BM structure which significantly reduces

the complexity involved in applying this stage. We show that this structure is equivalent to

other BM implementations, and does not sacrifice the performance of the GSC-BF.

The dynamics of the WASN, manifested in variations of the network connectivity and in

the activity patterns of speakers, is addressed in Sec. 5.2. We derive, efficient procedures for

updating either the LCMV or GSC BFs correspondingly to changes in nodes connectivity

and sources activity. These procedures reduce the computations requirement significantly

compared with straightforward methods.

5.1 A sparse blocking matrix for multiple constraints

GSC beamformer

The major contributor for computational burden in GSC-BF implementations is the BM. In

this section a novel systematic procedure for designing a K constraints sparse M × (M −K)

BM is proposed. The BM requires only K× (M −K) complex multiplications. The blocking

ability of the sparse BM, defined as the robustness to the ATFs, is analyzed and compared

with the blocking ability of the commonly used eigen-space BM. For low estimation errors,

it is proven that blocking ability of the sparse BM and of the eigen-space BM are equivalent.

The section is organized as follows. In Sec. 5.1.1 the problem is formulated. In Sec. 5.1.2

159
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the eigen-space BM and the sparse BM are formally derived. Then, in Sec. 5.1.3 the blocking

ability and the signal leakage of the BMs are analyzed. A comprehensive experimental study

of narrowband signals as well as of speech signals is described in Sec. 5.1.4.

5.1.1 Problem Formulation

Consider a microphone array comprising M microphones. The received signals in the STFT

domain are:

z(`, ζ) = H(ζ)s(`, ζ) + v(`, ζ) (5.1)

where ` is the frame index and ζ is the frequency bin index. The received signals comprise

two contributions. The first contribution H(ζ)s(`, ζ) is related to the constrained sources,

where s(`, ζ) =
[
s1(`, ζ) · · · sK(`, ζ)

]T
is a K × 1 vector of coherent signals, H(ζ) =

[
h1(ζ) · · · hK(ζ)

]
is an M × K constraints matrix comprised of the K ATFs relating

the constrained sources and the microphones. The second contribution, v(`, ζ), is related to

the non-constrained contribution. Without loss of generality, we assume that the ATFs are

normalized, i.e. ‖hk(ζ)‖2 = 1; k = 1, .., K. Henceforth, the frequency bin index ζ is omitted

for brevity. The derived formulas correspond to either a single frequency, or one frequency

bin for wideband signals.

5.1.2 Designing the BM

In Sec. 5.1.2.1 the eigen-space based BM is defined, as in [51]. In Sec. 5.1.2.2 the proposed

sparse BM is derived.

5.1.2.1 Eigen-space based BM

The eigen-space BM is given by the projection matrix to the null-subspace of the constraint

matrix H :

Be = IM×M −H
(
HHH

)−1
HH (5.2)

where IM×M is the M ×M identity matrix. It can be verified that BH
e H = 0. Application

of the eigen-space BM involves M2 complex multiplications per frame and frequency bin.
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5.1.2.2 Sparse BM

The contribution of the constrained signals to the received signals in (5.1), i.e. Hs(`), lies

in a rank-K subspace in the M dimensional space. By a proper transformation, Hs(`) can

be expressed as a linear combination of the constrained signal contributions of K reference

received signals. Without loss of generality, we consider the first K microphones as the

reference signals. Denote the reference microphones by zr(`) =
[
z1(`) · · · zK(`)

]T
. The

reference microphones are given by:

zr(`) = Hrs(`) + vr(`) (5.3)

where Hr = H1:K,1:K , and vr(`) =
[
v1(`) · · · vK(`)

]T
. Assuming that Hr is invertible,

Hs(`) can be expressed in terms ofHrs(`) asHs(`) =
[
IK×K βK+1 · · · βM

]H
Hrs(`)

where βm =
(
H−1

r

)H
HH

m,: for m = K+1, ..,M and Hm,: is the mth row of H . Utilizing the

latter representation, a noise reference (non-constrained part) based on the mth microphone

(for m = K + 1, ..,M), is extracted by subtracting a linear combination of the reference

microphones zr(`) from zm(`). I.e.

um(`) = zm(`)− βHmzr(`) = vm(`)− βHmvr(`). (5.4)

The corresponding BM is denoted as Bs and is given by:

Bs =

[
−βK+1 · · · −βM

I(M−K)×(M−K)

]
. (5.5)

Please note that Bs has (M −K) ×K non-zero entries in its first K rows and M −K
entries equal to 1 in the lower M − K rows. Hence, the proposed BM can be denoted as

the sparse BM. Its application requires (M −K)×K complex multiplications per frame per

frequency, which is much lower than the M × (M −K) complex multiplications required by

the eigen-space BM (assuming that K �M).

In the special case of K = 1 the proposed sparse BM equals to the BM proposed by

Gannot et al. [39], which is based on the RTF with respect to a single (arbitrarily chosen)

microphone.
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5.1.3 Performance analysis

In this section, the blocking ability and the signal leakage criteria are defined and analyzed

for the eigen-space and for the sparse BMs.

Consider a noisy estimate of H :

H̃ = H + ∆ (5.6)

where ∆ =
[
δ1 · · · δK

]
comprises the M × 1 dimensional vectors δ1, . . . , δK of i.i.d.

complex Normal random variables with a zero mean, and a variance of λu. Since hk; k =

1, .., K are assumed to be normalized, the estimation accuracy defined as ‖H‖2
F/E {‖∆‖2

F}
equals (Mλu)

−1, where ‖·‖2
F is the squared Frobenius norm.

The ability of the noisy BM B̃b to block hk, the ATF of the kth source, is denoted by ηkb ,

and equals the ratio between the leakage of kth ATF to the output of the BM, λs,kb , and the

power of a unit variance spatially white noise filtered by the BM, λnb :

ηkb =
λs,kb
λnb

(5.7)

where

λs,kb =E
{
‖B̃H

b hk‖2
}

(5.8a)

λnb =E
{
‖B̃H

b w‖2
}

(5.8b)

b ∈ {e, s} stands for sparse BM (s), or eigen-space BM (e), and w is an M × 1 vector of zero

mean, and unit variance complex Normal i.i.d. RVs. Substituting hk = h̃k−δk in (5.8a) and

noticing that B̃
H
h̃k = 0 by construction yields:

λs,kb =E
{
‖B̃H

b δk‖2
}
. (5.9)

The total blocking ability is defined as the sum of the blocking abilities of all constrained

ATFs:

ηb =
K∑

k=1

ηkb . (5.10)
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5.1.3.1 Blocking ability and signal leakage of the eigen-space BM

The noisy eigen-space BM is given by substituting the noisy ATFs (5.6) in (5.2):

B̃e = IM×M − H̃
(
H̃

H
H̃
)−1

H̃
H
. (5.11)

The noise power at the output of the eigen-space BM, λne , is given by substituting (5.11) in

(5.8b):

λne = E
{
wHB̃eB̃

H

e w
}

= trace
{

E
{
B̃eB̃

H

e

}}
. (5.12)

As B̃e is a hermitian projection matrix, the following equation holds: B̃eB̃
H

e = B̃eB̃e = B̃e.

And after some matrix manipulation λne equals:

λne = M −K. (5.13)

The signal leakage of the kth ATF at the output of the eigen-space BM, λs,ke , is given by

substituting B̃e in (5.9):

λs,ke = E
{
δHk B̃eB̃

H

e δk

}
(5.14)

Expanding (5.14) to a Taylor series around H as a function of ∆, neglecting elements of

order ∆n for n > 2, and using E {∆} = 0, the following approximation holds:

λs,ke ≈E
{
δHk BeB

H
e δk

}
= λu trace

{
BeB

H
e

}
. (5.15)

And similarly to the derivation of (5.13), λse equals:

λs,ke = (M −K)λu. (5.16)

Therefore, the ability of the noisy eigen-space BM B̃e to block hk, the ATF of the kth

source is given by:

ηke =
λs,ke
λne

= λu. (5.17)
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And the total blocking ability of the eigen-space BM is:

ηe = Kλu. (5.18)

5.1.3.2 Blocking ability and signal leakage of the sparse BM

The noisy sparse BM is constructed by substituting H̃ (5.6), the noisy estimate of H , in

(5.5):

B̃s =

[
−β̃K+1 · · · −β̃M

I(M−K)×(M−K)

]
(5.19)

where

β̃m =
(
H̃
−1

r

)H
H̃

H

m,: (5.20a)

H̃r =Hr + ∆r. (5.20b)

and ∆r = ∆1:K,1:K .

Similarly to the derivation in (5.12), the noise power at the output of the sparse BM is

given by:

λns = trace
{

E
{
B̃sB̃

H

s

}}
. (5.21)

Following the definition in (5.19), the latter expression is:

λns =M −K +
M−K∑

m=1

E
{
‖β̃m‖2

}
. (5.22)

Consider a single term of the sum in (5.22):

E
{
‖β̃m‖2

}
= E

{
H̃m,:H̃

−1

r

(
H̃

H

r H̃r

)−1

H̃
H

m,:

}
. (5.23)

Assuming again thatHr is invertible and high estimation accuracy, i.e. ‖Hr‖2 � ‖∆r‖2, and

by replacing the expression
(
H̃

H

r H̃r

)−1

with its first term Taylor series expansion around
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0, we obtain:

(
H̃

H

r H̃r

)−1

≈
(
I −

(
HH

r Hr

)−1 (
HH

r ∆r + ∆H
r Hr + ∆H

r ∆r

))

·
(
HH

r Hr

)−1
. (5.24)

Next, substituting the approximation (5.24) in (5.23) and neglecting terms ∆n of order n > 2

and using E {∆} = 0, the following approximation holds:

E
{
‖β̃m‖2

}
≈‖βm‖2 + λu trace

{(
HH

r Hr

)−1
}

− λuHm,:

(
HH

r Hr

)−2
HH

m,:. (5.25)

Finally, substituting (5.25) in (5.22) yields:

λns =M −K + λu trace
{(
HH

r Hr

)−1
}

(M −K)

+
M−K∑

m=1

‖βm‖2 − λuHm+K,:

(
HH

r Hr

)−2
HH

m+K,:

≈M −K +
M−K∑

m=1

‖βm‖2 (5.26)

where the approximation in the last transition is due to the high estimation accuracy.

Similarly to the derivation of (5.14), the leakage of the kth ATF to the output of the

sparse BM is given by:

λs,ks =λu trace
{
BsB

H
s

}

=

(
M −K +

M−K∑

m=1

‖βm‖2

)
λu. (5.27)

The ability of the noisy sparse BM B̃s to block hk, the ATF of the kth source is given by:

ηks =
λs,ks
λns

= λu (5.28)

and the total blocking ability of the sparse BM is therefore:

ηs =Kλu. (5.29)
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Please note that the blocking ability of the proposed sparse BM is equivalent to the blocking

ability of the eigen-space BM (5.17), (5.18).

5.1.4 Experimental study

The performance of the proposed sparse BM, and of the eigen-space BM is presented for

narrowband signal scenarios in Sec. 5.1.4.1, and for wideband speech signals in Sec. 5.1.4.2.

5.1.4.1 Narrowband signals

A comprehensive Monte-Carlo simulation was performed for validating the theoretical anal-

ysis derived in Sec. 5.1.3. A total of 561 scenarios were tested, the parameters of the scenario

were: 1) the number of microphones was set to M = 5, 10, .., 30; 2) the number of constraints

was set to K = 1, 2, .., bM
2
c; 3) the estimation accuracy level was set to 0dB, 5dB, .., 50dB. At

each scenario the performance was averaged over 100 randomly generated ATFs (H), times

1000 random estimation errors per instance. Altogether, the blocking abilities of 56.1× 106

sparse and eigen-space BMs were evaluated and compared with the theoretical analysis. In

Fig. 5.1 the average differences between the theoretical blocking ability and of the empirical

blocking ability for the sparse and eigen-space BMs are depicted. In these figures the num-

ber of microphones was set to M = 20, while the numbers of constraints varied in the range

of K = 1, 2, .., bM
2
c and the SNR levels varied in the range of 0dB, 5dB, .., 50dB. The re-

sults validate the theoretical analysis as the average deviation from the theory for estimation

accuracies higher than 5dB is lower than 0.5dB.

5.1.4.2 Speech signals

The eigen-space and sparse BMs were tested on wideband speech signals in a simulated

4m × 3m × 3m room environment with a reverberation time of T60 = 150ms. A uniform

linear microphone array comprising 9 microphones with 5cm spacing was placed next to one

of the walls. Three speakers and a stationary interference were located in the room, at a

distance of 1.8m in front of the microphone array, at angles −60o,−20o, 20o, 60o. The received

signals were sampled at a sample rate of 8kHz and transformed to the STFT domain with

4096 DFT points and a 50% overlap between frames. The three speakers were constrained.

The BMs were calculated in the STFT domain based on the normalized ATFs of the three

speakers contaminated by a −30dB error level. High estimation accuracy can be obtained
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Figure 5.1: Difference in dB between theoretical and empirical blocking abilities for narrow-
band signals simulation with M = 20 microphones, for the eigen-space BM (left) and sparse
BM (right).

by applying the subspaces based estimation in [51]. In order to keep the power at the output

of the sparse BM at a constant level over frequency, a normalized BM B̃s/‖B̃s‖F was used

rather than B̃s. Note that the latter scaling does not affect the blocking ability as the

signal leakage and the spatially white noise gain are multiplied by the same factor. The total

blocking ability of the eigen-space BM was −28dB while the total blocking ability of sparse

BM was slightly worse at −26.5dB. The 1st source as received by the microphone array and

its contribution to the leakage at the outputs of the BMs are depicted in Fig. 5.2. Note the

different scale in the microphone and leakage figures. It can be verified that the proposed

sparse BM, and the eigen-space BM obtain similar performance for wideband speech signals.

5.1.5 Conclusions

A novel systematic scheme for constructing a K constraints sparse BM for the LCMV-BF

was derived. The signal leakage and the blocking ability of the proposed sparse BM and of

the commonly used eigen-space BM are analyzed and compared. It is analytically proven

that the blocking abilities of both BMs are equivalent, provided that the estimation accuracy

is high. The computational complexity of the proposed sparse BM is K× (M −K), which is

substantially lower than the computational complexity of the eigen-space BM, which is M2.

The theoretical analysis is experimentally verified for both narrowband signals and wideband
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Figure 5.2: Source number 1 as received by the 1st microphone (top), its contribution to the
leakage at the output of the eigen-space BM (middle) and at the output of the sparse BM
(bottom).

speech signals.

5.2 Low-complexity addition or removal of sen-

sors/constraints in LCMV beamformers

Here, we address the problem of reducing the computational burden of recalculating the

LCMV-BF when modifying the group of sensors which participate in the spatial filtering,

denoted as the active sensors or nodes, or when modifying the constraints set. We assume

that the required BF updates are subjected to a controlling mechanism, referred to as the

oracle. The decisions of the oracle can be motivated by optimizing the tradeoff between

performance and resource usage, handling arbitrary link failures, and also by determining

the desired response for the various sources, which result in updating of the constraints set.

Updating the configuration of the active sensors could affect the desired constraints set. For

example, adding sensors increases the dimension of the received signals and allows for the

application of a larger number of constraints. The decision mechanism of the oracle is out of

the scope of the current contribution.

In this section, we propose a set of lower complexity procedures for updating the group

of active sensors, and the constraints set to a given LCMV-BF. We derive the updating

procedures for both the LCMV closed-form BF and its respective GSC form. The proposed
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procedures reduce the computational complexity, and are equivalent to the straightforward

calculation of the LCMV-BF.

The section is organized as follows. In Sec. 5.2.1 the problem is formulated. In Sec. 5.2.2

four examples for updating procedures of the LCMV-BF are fully derived. Later in the

Sec. 5.2.5 all eight updating procedures are summarized. In Sec. 5.2.3 we discuss extend-

ing the derived algorithms for adding or removing a group of sensors or constraints. The

computational complexity of the proposed procedures is analyzed and compared with the

complexity of their corresponding straightforward BFs in Sec. 5.2.4.

5.2.1 Problem formulation

Consider P point source signals, some stationary and other non-stationary, denoted by

s1(`, k), . . . , sP (`, k), propagating in a multi-path environment and impinging on an array

comprising M sensors. The problem is formulated using a narrow-band model in the STFT

domain, where ` is the frame index and k is the frequency index. From hereon, the frequency

notation is omitted for brevity. The application and the calculation of the BF should be

interpreted frequency-wise. The transfer function (TF) relating the pth source and the mth

sensor is denoted by hpm(`). Define in vector notation:

s(`) =
[
s1(`) · · · sP (`)

]T
(5.30a)

hp(`) =
[
hp1(`) · · · hpM(`)

]T
; p = 1, . . . , P (5.30b)

H(`) =
[
h1(`) · · · hP (`)

]
. (5.30c)

The received signals vector and its covariance matrix are given by:

z(`) =Hs(`) + v(`) (5.31a)

Φ =E
[
z(`)zH (`)

]

=HΣHH + Φvv (5.31b)

where v(`) denotes the total received interferences vector of the non coherent signals, Σ

denotes the diagonal covariance matrix of the coherent sources (assuming they are statistically

independent), and Φvv = E
[
v(`)vH(`)

]
is the covariance matrix of v(`).
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Consider a general P th order constraints set:

C =
[
c1 · · · cP

]
(5.32a)

g =
[
g1 · · · gP

]T
. (5.32b)

The optimization criterion of the LCMV-BF is given by:

w = argmin
CHw=g

wHΦw. (5.33)

The closed-form LCMV-BF is described in Sec. 5.2.1.1, and the efficient GSC implementation

is described in Sec. 5.2.1.2.

5.2.1.1 Closed-form LCMV-BF

This BF form is obtained by solving (5.33) directly using Lagrange multipliers. The closed-

form LCMV-BF solution to the problem is given by:

w = Φ−1CQ−1g (5.34)

where Q is defined as follows:

Q = CHΦ−1C. (5.35)

We denote the solution in (5.34) as the straightforward LCMV (SF-LCMV). Its computa-

tional complexity is mainly dominated by the two matrix inversion Φ−1, and Q−1.

In the following sections, we derive algorithms for updating an existing LCMV-BF. We

consider two types of updates. The first type is sensor updates and the second type is con-

straint set updates. For each type of update we derive two procedures. The first procedure,

denoted as the incremental procedure, refers to adding either a sensor or a constraint to an

existing BF. The second procedure, denoted as the decremental procedure, refers to remov-

ing either a sensor or constraint from an existing BF. The derived procedures reduces the

dimensions of the matrices to be inverted, and hence reduce the computational complexity

substantially.
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5.2.1.2 GSC-form LCMV-BF

This BF form is obtained by splitting the applied filters into two components, i.e. w =

w‖−w⊥. The components, w‖ and w⊥, lie in the column-subspace of the constraint matrix

C and its complement null-subspace, respectively. The GSC formulation of the problem is

given by:

w =w‖ −Bf (5.36a)

w‖ =CR−1g (5.36b)

f =
(
BHΦB

)−1
BHΦw‖ (5.36c)

R =CHC. (5.36d)

The GSC form is decomposed into two branches. The upper branch, also known as the

quiescent BF, is denoted by w‖. It is responsible for maintaining the constraints set. The

lower branch is comprised of two parts: the BM and the subsequent NC denoted by B and

f , respectively. The objective of the BM is to block the signals arriving from the constraints

set subspace and generate M − P interference-only reference signals. Its dimensions are

M × (M −P ), and it can be calculated, for example, by applying the SVD to the constraints

matrix C [25]. We will assume that all the columns of the BM are orthogonal, as in [51].

Note that an orthogonal BM can always be constructed. The NC uses the reference signals

from the output of the BM to estimate the noise component at the output of the quiescent BF

and therefore reduce its level. We denote the GSC-form BF in (5.36) as the straightforward

GSC (SF-GSC) BF.

The computational complexity of the SF-GSC BF is mainly dominated by the SVD used

for constructing the BM, and by the matrix inversion R−1. In the following sections, we

derive algorithms for updating an existing GSC-BF. We consider two types of updates. The

first type is sensor updates and the second type is constraint set updates. For each type of

update we derive incremental and decremental procedures which circumvent the SVD and the

matrix inversion, and hence reduce the computational complexity substantially. The NC is

usually implemented as an ANC using the LMS algorithm [39]. The LMS algorithm consumes

O(M) operations per frequency bin. Due to its low complexity and adaptive nature, it is

unnecessary to formulate an update procedure to the ANC.

Please note that in the following sections some notations may be re-defined for brevity.
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Explicitly, when considering sensor addition or removal, a constraints set comprising P con-

straints is assumed. Also, when considering constraint addition or removal, an array com-

prising M sensors is assumed.

5.2.2 Low-Complexity Beamformer Updating Methods

Algorithms for adding or removing a single constraint to the LCMV-BF and the associ-

ated GSC implementation are now derived. The algorithms are denoted by [S\C]U[I\D]-

[GSC\LCMV], where S\C stands for sensor or constraint, respectively, U stands for update,

I\D stands for incremental or decremental, respectively, and GSC\LCMV stands for the GSC

or the closed-form implementations, respectively. For example, the sensor update incremen-

tal closed-form implementation algorithm is denoted by SUI-LCMV. For brevity we do not

derive all eight algorithms in details. Instead, we chose to elaborate on the derivation of four

representative procedures, namely the SUI-LCMV, SUI-GSC, CUI-GSC and the SUD-GSC

in the following sub-sections. The derivation of the other algorithms is based on the same

methods. A summary of all eight algorithms is given in Sec. 5.2.5.

5.2.2.1 Derivation of the SUI-LCMV Algorithm

Assume an M − 1 sensors and P constraints LCMV-BF is active.

w = Φ−1CQ−1g (5.37)

where C is the (M − 1)× P constraints matrix, g is the P × 1 desired response vector, and

the constraints set is

CHw = g. (5.38)

Now, a new sensor (indexed M) becomes available. Define the augmented constraints set:

Ċ =

[
C

ċH

]
(5.39)

where ċ is a P × 1 vector extending the constraints set to M sensors.
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The covariance matrix of the M sensors is given by

Φ̇ =

[
Φ φ̇

φ̇
H

σ̇2

]
. (5.40)

Applying the block matrix inversion formula [90], the inverse of the covariance matrix equals

Φ̇
−1

=

[
Φ−1 + ε̇Φ−1φ̇φ̇

H
Φ−1 −ε̇Φ−1φ̇

−ε̇φ̇HΦ−1 ε̇

]
(5.41)

where

φ̇ =E

[[
z1 · · · zM−1

]T
z∗M

]
(5.42a)

σ̇2 =E [zMz
∗
M ] (5.42b)

ε̇ =
(
σ̇2 − φ̇HΦ−1φ̇

)−1

. (5.42c)

Considering the definition of Q in (5.35), the updated Q̇ in terms of Q is given by:

Q̇ =Ċ
H

Φ̇
−1
Ċ

=
[
CH ċ

]

·
[

Φ−1 + ε̇Φ−1φ̇φ̇
H

Φ−1 −ε̇Φ−1φ̇

−ε̇φ̇HΦ−1 ε̇

]

·
[
C

ċH

]
(5.43)

=Q+ ε̇q̇q̇H (5.44)

where

q̇ = CHΦ−1φ̇− ċ. (5.45)

Applying the Woodbury identity [119] to the inverse of (5.44), Q̇
−1

equals

Q̇
−1

= Q−1 − Q−1q̇q̇HQ−1

ε̇−1 + q̇HQ−1q̇
. (5.46)

Finally, the updated BF, ẇ, is given in terms of the previous BF terms, w, Q, Q−1, Φ and
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Φ−1, by substituting (5.41), (5.46) in (5.34):

ẇ =

[
w + ∆̇w

ẇM

]
(5.47a)

∆̇w =− q̇HQ−1g

ε̇−1 + q̇HQ−1q̇
Φ−1CQ−1q̇ − ẇMΦ−1φ̇ (5.47b)

ẇM =− ε̇
(
φ̇
H

Φ−1CQ−1 − ċHQ−1
)

·
(
IP×P −

q̇q̇HQ−1

ε̇−1 + q̇HQ−1q̇

)
g. (5.47c)

A block-diagram of the SUI-LCMV algorithm is depicted in Fig. 5.3. The procedure is

summarized in Alg. 2.

z1
z2

zM−1
zM

M − 1
w

Δ̇w

ẇM

+
y

ẇ

Figure 5.3: Block-diagram of the SUI-LCMV procedure.

5.2.2.2 Derivation of the SUI-GSC Algorithm

Similarly to (5.36), suppose now that an M − 1 sensors GSC BF maintaining P constraints

is given by:

w =w‖ −Bf (5.48a)

w‖ =CR−1g (5.48b)

f =
(
BHΦB

)−1
BHΦw‖ (5.48c)

R =CHC (5.48d)
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where we assume that the ANC has converged to f . The latter filter is the appropriate

Wiener filter for estimating the noise component at the output of the quiescent BF based on

the noise references at the output of the BM. We further assume that B is an appropriate

(M −1)× (M −1−P ) BM. The BM can be calculated for example using the SVD of C [25].

We assume that the BM is orthogonal, i.e. BHB = I(M−1−P )×(M−1−P ).

Consider adding the Mth sensor and updating the BF. The updated constraints set is

defined as in (5.39). The updated Ṙ matrix is given by substituting (5.39) in (5.48d)

Ṙ = R+ ċċH . (5.49)

Applying the Woodbury identity to the inverse of (5.49), Ṙ
−1

is given by

Ṙ
−1

= R−1 − R
−1ċċHṘ

−1

1 + ċHR−1ċ
. (5.50)

The M sensors quiescent BF is given, similarly to (5.48b), by replacing C and R−1 with

Ċ and Ṙ
−1

from equations (5.39), (5.50):

ẇ‖ =

[
w‖ + ∆̇w‖

ẇ‖M

]
(5.51a)

ẇ‖M =
ċHR−1g

1 + ċHR−1ċ
(5.51b)

∆̇w‖ =− ẇ‖MCR−1ċ. (5.51c)

Next, we address the problem of updating the BM. Since we added the Mth sensor, there

should be M − P signals at the output of the BM. The updated BM, Ḃ, should block the

signal subspace, i.e. Ḃ
H
Ċ = 0. The first M − P − 1 reference signals are equivalent to the

older ones. This can be verified by adding a row of zeros to B, i.e.

[
B

01×(M−P−1)

]H
Ċ =

BHC = 0(M−P−1)×P . We suggest to use

∆̇b =

[
ċHR−1CH −1

]H

‖
[
ċHR−1CH −1

]
‖

(5.52)

as the (M − P )th column of the updated BM. ∆̇b is orthogonal to the first M − P − 1
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columns of Ḃ since

[
B

01×(M−P−1)

]H
∆̇b =

BHCR−1ċ

‖
[
ċHR−1CH −1

]
‖
− 0(M−P−1)×1

=0(M−P−1)×1

where the last transition is again due to BHC = 0(M−P−1)×P . ∆̇b is also orthogonal to Ċ

since:

∆̇b
H
Ċ =

[
ċHR−1CH −1

] [ C

ċH

]

‖
[
ċHR−1CH −1

]
‖

=
ċHR−1CHC − ċH

‖
[
ċHR−1CH −1

]
‖

=01×P

where the last transition is due to the definition of R in (5.48d). Therefore, augmenting B

by ∆̇b is a proper BM of P constraints:

Ḃ =

[
B

01×M−1−P
∆̇b

]
. (5.53)

After updating the quiescent BF and the BM, another reference signal is added. In

the general case the new reference signal and the previous reference signals are correlated.

Therefore, not only the NC filter of the new reference signal needs to be determined, but also

the NC filters of the previous reference signals need to be adjusted. As mentioned earlier,

we rely on the low complexity and fast convergence of the LMS algorithm for updating the

NC coefficients. The resulting NC after convergence is given by substituting (5.40), (5.51a),

(5.53) in (5.48c):

ḟ =
(
Ḃ
H

Φ̇Ḃ
)−1

Ḃ
H

Φ̇ẇ‖. (5.54)

A block-diagram of the SUI-GSC algorithm is depicted in Fig. 5.4. The algorithm is sum-

marized in Alg. 6.
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M − P

z1
z2

zM−1
zM

M − 1
w‖

Δ̇w‖

ẇ‖M

+
y

B

Δ̇b

M − 1

M

ḟ

+
+

-

ẇ‖

Ḃ

Figure 5.4: Block-Diagram of the SUI-GSC procedure.

5.2.2.3 Derivation of the CUI-GSC Algorithm

Suppose that an M sensors P − 1 constraints GSC BF is given by:

w =w‖ −Bf (5.55)

w‖ =CR−1g (5.56)

f =
(
BHΦB

)−1
BHΦw‖ (5.57)

R =CHC (5.58)

where C is the M × (P − 1) constraints matrix, g is the (P − 1)× 1 desired response vector

and B is an appropriate M × (M − P + 1) BM. As was previously stated, we assume that

the BM is orthogonal, i.e. BHB = I(M−P+1)×(M−P+1).

Consider adding the P th constraint and updating the BF. The updated constraints set

is

C̈ =
[
C c̈

]
(5.59a)

g̈ =
[
gH g̈∗

]H
. (5.59b)
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Updating the matrix R in (5.58) with the P th constraint yields

R̈ =

[
R r̈

r̈H ‖c̈‖2

]
(5.60)

where r̈ = CH c̈. The inverse of R̈ is given by applying the block matrix inversion formula

R̈
−1

=

[
R−1 + ρ̈R−1r̈r̈HR−1 −ρ̈R−1r̈

−ρ̈r̈HR−1 ρ̈

]
(5.61)

where

ρ̈ =
(
‖c̈‖2 − r̈HR−1r̈

)−1
. (5.62)

The updated quiescent BF designed to maintain the P constraints set is given by substi-

tuting the updated values of R̈
−1

, C̈ and g̈ from (5.61), (5.59a), (5.59b) in (5.56):

ẅ‖ =w‖ + ∆̈w‖ (5.63a)

∆̈w‖ =ρ̈
(
g̈ − c̈Hw‖

) (
I −CR−1CH

)
c̈. (5.63b)

Next, we update the BM. Notice that the rank of the BM equals the number of sensors

minus the number of constraints (assuming the constraints set are linearly independent), i.e.

M − P + 1. Therefore, the rank of the BM corresponding to the modified constraints set is

smaller by one than that of the former BM. Hence, we would like to reduce the dimensions

of the current BM to M × (M − P ) such that its columns are an orthogonal set and that

B̈
H
C̈ = 0(M−P )×P . (5.64)

The new constraint vector c̈ can be written as a combination of two components:

c̈ =
(
I −BBH

)
c̈+BBH c̈. (5.65)

The first component lies in the P − 1 constraints subspace, and the second component lies

in its corresponding null-subspace, hence spanned by the columns of B. The new BM, B̈,

should block both C and BBH c̈, the component of c̈ not spanned by the columns of C.

This can be obtained by: 1) rotating the current BM such that all but one of its columns
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are orthogonal to the second component of c̈; 2) deleting that column. The Householder

transformation [120] can be applied to satisfy both requirements. The transformed BM is

given by:

B̃ = B

(
I(M−P+1)×(M−P+1) −

2χ̈χ̈H

‖χ̈‖2

)
(5.66)

where χ̈ is defined as

χ̈ =
b̈

‖b̈‖
+ exp

(
j∠b̈M−P+1

)
iM−P+1, (5.67)

∠(·) denotes the angle extraction of a complex number, iM−P+1 =
[

01×(M−P+1) 1
]T

, b̈ is

the projection of c̈ onto B, i.e. b̈ = BH c̈, and b̈M−P+1 is the last entry of b̈. It follows that:

B̃
H
C =0(M−P+1)×(P−1) (5.68a)

B̃
H
c̈ =− exp

(
j∠b̈1

)
iM−P+1. (5.68b)

Note that since the Householder transformation is unitary, the rotated basis remains orthog-

onal. The orthogonality property of B is imperative for assuring that all columns of B̃ but

the last one are orthogonal to BBH c̈. Finally, the updated BM is obtained by deleting the

last column of B̃:

B̈ = B̃ĪM−P , (5.69)

where Īm is an (m − 1) × m matrix constructed by removing the last row of the identity

matrix Im×m.

In a similar manner to the NC update of the SUI-GSC procedure in Sec. 5.2.2.2, the

updated NC filters after convergence are given in a vector form by substituting (5.69), (5.31b),

(5.63a) in (5.57):

f̈ =
(
B̈
H

ΦB̈
)−1

B̈
H

Φẅ‖. (5.70)

A block-diagram of the CUI-GSC algorithm is depicted in Fig. 5.5. The algorithm is sum-

marized in Alg. 8.
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+zM w‖

Δ̈w‖

+
y

B I − 2
χ̈χ̈†

‖χ̈‖2 ĪM−P−1

f̈

B̈

ẅ‖

+
-

Figure 5.5: Block-diagram of the CUI-GSC procedure.

5.2.2.4 Derivation of the SUD-GSC Algorithm

Suppose that an M sensors and P constraints GSC-BF is given by:

ẇ =ẇ‖ − Ḃḟ (5.71a)

ẇ‖ =ĊṘ
−1
g (5.71b)

where Ċ, Ṙ are defined as in (5.39), (5.49), respectively, and Ḃ is an M×(M−P ) orthogonal

BM. Now, consider that the Mth sensor becomes unavailable. In this sub-section we derive

the equations for updating the BF using its previous value. The updated R−1 is given by

applying the Woodbury identity to the inverse of (5.49):

R−1 = Ṙ
−1

+
Ṙ
−1
ċċHṘ

−1

1− ċHṘ−1
ċ
. (5.72)

Substituting (5.72), (5.39) in (5.71b) yields:

w‖ =Ī
H
Mẇ‖ − ∆̇w‖ (5.73a)

∆̇w‖ =− ẇ‖MCR−1ċ (5.73b)

ẇ‖M =iHMẇ‖. (5.73c)

Next we address updating the BM. We apply the Householder transformation step and
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diagonalize the last row of Ḃ. Define:

χ̇ = Ḃ
H
iM + ‖ḂH

iM‖ exp
(
−j∠ḂM,M−P

)
iM−P (5.74)

where ḂM,M−P is the (M,M − P ) entry in Ḃ. The rotated BM is given by:

B̃ = Ḃ

(
I − 2χ̇χ̇H

‖χ̇‖2

)
. (5.75)

It can be verified that the last row of B̃ equals:

iHMB̃ =
[

01×(M−P−1) −‖Ḃ
H
iM‖ exp

(
j∠ḂM,M−P

) ]
. (5.76)

Since the Householder transformation is unitary, the orthogonality of the BM is kept. The

rotated matrix keeps blocking the original constraints matrix, i.e. B̃
H
Ċ = 0(M−P )×P . Fi-

nally, the updated (M − 1)× (M − P − 1) dimensional BM is obtained by deleting the last

row and last column of B̃

B = Ī
H
MB̃ĪM−P (5.77)

and the NC is given after convergence by (5.36c).

A block-diagram of the SUD-GSC algorithm is depicted in Fig. 5.6. The algorithm is

summarized in Alg. 7.

z1
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†
Mẇ‖
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+
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+
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-
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Ḃ I − 2
χ̇χ̇†

‖χ̇‖2 ĪM−P

B

+

-

Ī
†
M

f

Figure 5.6: Block-diagram of the SUD-GSC procedure.
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5.2.3 Adding/removing a group of sensors/constraints

In a partially connected sensor network some nodes are accessible only indirectly through

some other nodes. In these networks a change in a single link can affect the activity of

multiple nodes. Here we discuss adding or removing multiple nodes or multiple constraints

to an LCMV-BF.

Two basic methods are used by the algorithms derived in this section. The first method

is the block matrix inversion formula [90] which is used for inverting an m×m matrix based

on the already calculated inverse of an (m − 1) × (m − 1) sub-matrix. Two strategies can

be adopted in the application of the block matrix inversion formula in cases of k > 1 sen-

sor/constraint updates. One strategy utilizes k sequential updates as derived previously.

An alternative strategy uses the more general version of the block matrix inversion formula.

Namely, the inverse of the (m − k) × (m − k) sub-matrix is utilized in the inversion of the

m×m matrix. The latter strategy results in more cumbersome expressions. As both strate-

gies involve equivalent computational burden, the sequential strategy of multiple updates is

preferred.

The second method used in this section, is the Householder transformation step [120],

which is used for rotating an orthogonal basis such that all of its new basis vectors but one

are orthogonal to a predefined vector. A sequence of Householder transformation steps can be

applied for multiple sensor/constraint updates. The detailed derivation of these algorithms,

as well as their complexity analysis, is out of the scope of the current contribution.

5.2.4 Complexity evaluation

In this section we compare the complexity of the straightforward LCMV-BF closed-form

and GSC form implementations with their updated form counterparts. Opposed to the

straightforward BFs, the updating procedures rely on calculation results of previous BFs,

and therefore impose memory requirements. We consider both computational complexity

and memory requirements. The computational analysis is based on the complexity of basic

operations [121] defined in Table. 5.1.
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Table 5.1: Complexity of basic operations.

Operation Computations

Matrix mult. (m× n) · (n× p) mnp

Matrix inversion n× n 2
3
n3

SVD m× n 4m2n+ 8mn2 + 9n3

A summary of the complexity of the compared BFs is given in Table. 5.2. The proposed

Table 5.2: Number of computations and memory usage of various closed-form and GSC-form
LCMV-BF.

BF Computations Memory
SF-LCMV 2

3
M3 + 2

3
P 3 + 2M2P 0

+MP + P 2

SF-GSC 92
3
P 3 + 4M2P + 9MP 2 0

+MP + P 2

SUI-LCMV 4M2 + 2MP + 5P 2 2M2 + 2P 2

−6M + 11P + 2
SUD-LCMV 4M2 + 2MP + 5P 2 2M2 + 2P 2

−5M + 5P + 1
SUI-GSC MP + 5P 2 + 4M 2P 2

+2P − 2
SUD-GSC 2M2 + 7P 2 − 3MP 2P 2

+5M − 2P − 2
CUI-LCMV 2M2 + 2MP + 3P 2 2M2 + 2P 2

+2M − 4P + 1
CUD-LCMV 2M2 + 2MP + 2P 2 2M2 + 2P 2

+2M − 2P
CUI-GSC 4M2 − 5MP + 6P 2 2P 2

+12M − 12P + 6
CUD-GSC 3MP + 3P 2 2P 2

+3M − 4P

updating procedures reduce the computational complexity of the SF-LCMV implementation,

which isO(M3+M2P ), toO(M2+MP ) while increasing the memory requirement toO(M2+

P 2). Similarly, regarding the GSC implementation, the updating procedures reduce the

computational complexity from O(P 3 +M2P +P 2M) in the straightforward implementation

to O(M2 + MP ), while increasing the memory requirements to O(P 2). Please note that

the computational complexity of the LCMV and the GSC updating procedures is similar,

whereas the memory requirement of the GSC procedures is much lower than its LCMV form

counterparts. The number of computations versus the number of sensors while the number
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of constraint is fixed to P = 10 is depicted in Figs. 5.7 and 5.8 for the closed-form and

for the GSC form implementations, respectively. It is evident that the updating procedures

impose a lower computational burden. The number of computations versus the number of

constraints while the number of sensors is fixed to M = 20 is depicted in Figs. 5.9 and 5.10.

Again, it is evident that the updating procedures impose a lower computational burden. It

is interesting to note that the number of computations of the CUI-GSC and the SUD-GSC

is not monotonically increasing with P . This is attributed to the fact that the dimensions of

the BM are reversely proportional to the number of constraints. In many applications, the

number of constraints can be increased with the number of available sensors. In Figs. 5.11

and 5.12 the computational complexity is depicted versus the number of sensors, while the

number of constraints is set to P = b1
2
Mc. The complexity reduction is evident from these

figures as well.

The overall computational saving is proportional to the BF update rate, whereas the

memory complexity is fixed and considerably low. In a dynamically changing network a

substantial computational saving is expected. Please notice that even in the case of a sin-

gle update of the BF, less computations are required when using the proposed updating

procedures than in the straightforward recalculation.

5.2.5 Algorithms Summary

In Sec. 5.2.2 we derived the SUI-LCMV, SUI-GSC, CUI-GSC and SUD-GSC algorithms. The

derivation was based on matrix algebra, the Woodbury identity, the block matrix inversion

formula and the Householder transformation. We use similar methods to derive the rest of the

algorithms, namely the incremental or decremental updates of either the number of sensors

or the number of constraints for the GSC or the closed-form implementations. We therefore

omit the derivation of the rest of the algorithms for brevity. Instead, in the following, we sum-

marize all the proposed low-complexity beamformer updating methods. The sensor updating

algorithms SUI-LCMV, SUD-LCMV, SUI-GSC, SUD-GSC and the constraint updating al-

gorithms CUI-LCMV, CUD-LCMV, CUI-GSC, CUD-GSC are summarized in Algs. 2, 3, 6,

7 and Algs. 4, 5, 8, 9, respectively.
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Algorithm 2 Summary of the SUI-LCMV procedure

input: C, g, w, Φ−1, σ̇2, Q−1, φ̇, ċ

output: Ċ, ẇ, Φ̇
−1

, Q̇
−1

begin

Ċ =
[
CH ċ

]H

ε̇ =
(
σ̇2 − φ̇HΦ−1φ̇

)−1

q̇ = CHΦ−1φ̇− ċ

Φ̇
−1

=

[
Φ−1 + ε̇Φ−1φ̇φ̇

H
Φ−1 −ε̇Φ−1φ̇

−ε̇φ̇HΦ−1 ε̇

]

Q̇
−1

= Q−1 − Q
−1q̇q̇HQ−1

ε̇−1+q̇HQ−1q̇

ẇM = −ε̇
(
φ̇
H

Φ−1CQ−1 − ċHQ−1
)

(
IP×P − q̇q̇HQ−1

ε̇−1+q̇HQ−1q̇

)
g

∆̇w = − q̇HQ−1g
ε̇−1+q̇HQ−1q̇

Φ−1CQ−1q̇ − ẇMΦ−1φ̇

ẇ =

[
w + ∆̇w

ẇM

]

end

Algorithm 3 Summary of the SUD-LCMV procedure

input: Ċ, g, ẇ, Φ̇
−1

, Q̇
−1

, σ̇2, φ̇

output: C, w, Φ, Q−1

begin

C = Ī
H
MĊ

Φ−1 = Ī
H
MΦ̇

−1
ĪM −

¯I
H

M
˙Φ
−1

iMi
H

M
˙Φ
−1 ¯IM

iHM
˙Φ
−1

iM

ε̇ =
(
σ̇2 − φ̇HΦ−1φ̇

)−1

q̇ = CHΦ−1φ̇− ċ
Q−1 = Q̇

−1
+

˙Q
−1

q̇q̇H ˙Q
−1

ε̇−1−q̇H ˙Q
−1

q̇

ẇM = −ε̇
(
φ̇
H

Φ−1CQ−1 − ċHQ−1
)(
IP×P − q̇q̇HQ−1

ε̇−1+q̇HQ−1q̇

)
g

∆̇w = − q̇HQ−1g
ε̇−1+q̇HQ−1q̇

Φ−1CQ−1q̇ − ẇMΦ−1φ̇

w = Ī
H
Mẇ − ∆̇w

end
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Algorithm 4 Summary of the CUI-LCMV procedure

input: C, g, w, Φ−1, Q−1, c̈, g̈

output: C̈, g̈, ẅ, Q̈
−1

begin

C̈ =
[
C c̈

]

g̈ =
[
gH g̈∗

]H

q̈ = CHΦ−1c̈

η̈ =
(
c̈HΦ−1c̈− q̈HQ−1q̈

)−1

Q̈
−1

=

[
Q−1 + η̈Q−1q̈q̈HQ−1 −η̈Q−1q̈

−η̈q̈HQ−1 η̈

]

∆̈w = η̈
(
g̈ − c̈Hw

)
Φ−1

(
I −CQ−1CHΦ−1

)
c̈

ẅ = w + ∆̈w
end

Algorithm 5 Summary of the CUD-LCMV procedure

input: C̈, g̈, ẅ, Φ−1, Q̈
−1

output: C, g, w, Q−1

begin

C = C̈ĪP

g = Ī
H
P g̈

Q−1 = Ī
H
P Q̈

−1
ĪP −

¯I
H

P
¨Q
−1

iP i
H

P
¨Q
−1 ¯IP

iHP
¨Q
−1

iP
q̈ = CHΦ−1c̈

η̈ =
(
c̈HΦ−1c̈− q̈HQ−1q̈

)−1

∆̈w = η̈
(
g̈ − c̈Hw

)
Φ−1

(
I −CQ−1CHΦ−1

)
c̈

w = ẅ − ∆̈w
end
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Algorithm 6 Summary of the SUI-GSC procedure

input: C, g, w‖, R
−1, B, ċ

output: Ċ, ẇ‖, Ṙ
−1

, Ḃ

begin

Ċ =
[
CH ċ

]H

Ṙ
−1

= R−1 − R
−1ċċH ˙R

−1

1+ċHR−1ċ

ẇ‖M =
ċHR−1g

1+ċHR−1ċ
∆̇w‖ = −ẇ‖MCR−1ċ

ẇ‖ =
[ (
w‖ + ∆̇w‖

)T
ẇ‖M

]T

∆̇b =
[
ċHR−1CH −1

]H
/‖
[
ċHR−1CH −1

]
‖

Ḃ =

[
B

01×M−1−P
∆̇b

]

end

Algorithm 7 Summary of the SUD-GSC procedure

input: Ċ, g, ẇ‖, Ṙ
−1

, Ḃ

output: C, w‖, R
−1, B

begin

C = Ī
H
MĊ

R−1 = Ṙ
−1

+
˙R
−1

ċċH ˙R
−1

1−ċH ˙R
−1

ċ
ẇ‖M = iHMẇ‖

∆̇w‖ = −ẇ‖MCR−1ċ

w‖ = Ī
H
Mẇ‖ − ∆̇w‖

χ̇ = Ḃ
H
iM + ‖ḂH

iM‖ exp
(
−j∠ḂM,M−P

)
iM−P

B = Ī
H
MḂ

(
I − 2χ̇χ̇H

‖χ̇‖2

)
ĪM−P

end
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Algorithm 8 Summary of the CUI-GSC procedure

input: C, g, w‖, R
−1, B, c̈, g̈

output: C̈, g̈, ẅ‖, R̈
−1

, B̈

begin

C̈ =
[
C c̈

]

g̈ =
[
gH g̈∗

]H

r̈ = CH c̈

ρ̈ =
(
‖c̈‖2 − r̈HR−1r̈

)−1

R̈
−1

=

[
R−1 + ρ̈R−1r̈r̈HR−1 −ρ̈R−1r̈

−ρ̈r̈HR−1 ρ̈

]

∆̈w‖ = ρ̈
(
g̈ − c̈Hw‖

) (
I −CR−1CH

)
c̈

ẅ‖ = w‖ + ∆̈w‖

b̈ = BH c̈

χ̈ =
¨b
‖¨b‖

+ exp
(
j∠b̈M−P+1

)
iM−P+1

B̈ = B
(
I(M−P+1)×(M−P+1) − 2χ̈χ̈H

‖χ̈‖2

)
ĪM−P+1

end

Algorithm 9 Summary of the CUD-GSC procedure

input: C̈, g̈, ẅ‖, R̈
−1

, B̈

output: C, g, w‖, R
−1, B

begin

C = C̈ĪP

g = Ī
H
P g̈

R−1 = Ī
H
P R̈

−1
ĪP −

¯I
H

P
¨R
−1

iP i
H

P
¨R
−1 ¯IP

iHP
¨R
−1

iP

∆̈w‖ = ‖C̈R̈−1
iP‖−2C̈R̈

−1
iP

(
C̈R̈

−1
iP

)H
ẅ‖

w‖ = ẅ‖ − ∆̈w‖

B =

[
B̈

¨C ¨R
−1

iP
‖ ¨C ¨R

−1

iP ‖

]

end
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Figure 5.7: Number of computations vs. M for LCMV-BFs with P = 10.
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Figure 5.8: Number of computations vs. M for GSC-BFs with P = 10.
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Figure 5.9: Number of computations vs. P for LCMV-BFs with M = 20.
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Figure 5.10: Number of computations vs. P for GSC-BFs with M = 20.
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Figure 5.11: Number of computations vs. M for LCMV-BFs with P = b1
2
Mc.
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5.2.6 Conclusions

Procedures for adding/removing active sensors or constraints to/from an existing LCMV-

BF have been derived. Different procedures were derived for both closed-form and GSC-

form implementations. These procedures use the information of the former BF and save

calculations, at the expense of some memory requirements. The computational burden of

the proposed procedures was analyzed and compared with the computational burden of their

corresponding straightforward BFs recalculation. It is evident from the comparison that the

number of computations in the proposed procedures is much lower than in straightforward

calculation, while the increase in the memory complexity is considerably low. The proposed

procedures are beneficial in sensor network applications, where the dynamics of the network

and of the environment require frequent updates of the BF, whereas the computational

capability is often limited.



Chapter 6

Summary and future research

directions

6.1 Summary

Technology advances in hardware and communication have made the vision of WASN feasible

and within grasp. Sensor networks spread over vast environments hold potential for superior

performance to classical condensed microphone arrays. WASNs raise several new challenges.

This dissertation addressed some of the challenges and propose possible solutions. The

contributions of this dissertation are listed below:

1. Distributed versions of classical beamforming algorithms were developed. We consider

the general scenario of P desired and interfering speakers received by M microphones,

clustered in an N nodes. All sources propagate in a noisy and reverberant environ-

ment. A distributed GSC algorithm was developed for this challenging scenario. The

proposed BF is time-recursive and its convergence to the optimal centralized LCMV-BF

is guaranteed. It requires only N+P communication channels. Considering the special

case of a single speaker, we derived a distributed BF which further reduces the required

communication-bandwidth to N communication-channels. For a binaural hearing aid

system we derived an iterative MVDR-BF for enhancing a single desired speaker while

maintaining the spatial cues. We also addressed the problem of sampling rate offsets

between nodes. An algorithm for estimating the offsets and compensating for them was

derived based on the noise stationarity.

2. A novel framework for evaluating beamformers in WASN is derived. In classical array

193
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processing the layout of the array is usually pre-determined to fit the problem at hand,

contrary to WASN where the layout can be random and dynamic. The performance of

the SDW-MWF BF with randomly located microphones in a reverberant environment,

contaminated by either coherent or diffuse noise fields, was analyzed. The analysis may

serve as a design guideline for determining the number of nodes/microphones required

in order to meet a desired performance level.

3. WASNs comprise multiple nodes and microphones. Price and battery-life constraints

limit the allowed computational complexity of each node. Frequent updates of the BF

are required due to the dynamics of the scenario. Therefore, efficient implementation

of the local BFs becomes necessary. Hence, we addressed the problem of reducing the

complexity of applying an LCMV-BF, without sacrificing performance. The BM filters,

by far, dominate the computation burden in applying the GSC-BF. We propose a sparse

BM structure which reduces computational complexity significantly from M× (M−P )

to P × (M − P ). Considering environment dynamics, efficient methods for modifying

the BF were developed, including addition/removal of sensors and/or constraints.

4. Additionaly, we developed a novel criterion for speakers extraction in a noisy rever-

berant environment. The proposed method is a generalization of the SDW-MWF to

multiple sources. We proved that two special cases of the new method are the MWF

and the LCMV BFs. Furthermore, considering a dynamic scenario in which the speak-

ers move around the room, we derived an extension to the eigen-spaces LCMV-BF with

source tracking capability, which is based on the PASTd algorithm.

6.2 Future resarch directions

The following topics and directions are left to future research:

Oracle: The derived algorithms assume the existence of an “oracle”, able to mark the activ-

ity patterns of the various sources. We will examine various approaches for estimating

the sources activity, and hopefully find a suitable and robust method for obtaining such

an oracle.

Robustness and dynamics: Based on the centralized subspace tracking BF mentioned

above, we will introduce tracking capabilities to the DGSC.
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Sub-optimal, short latency solutions: The derived distributed BF, which converges to

the optimal solution, involves applying long filters in correspondence to the length of

the RIR. We will explore sub-optimal solutions which require a shorter latency (a

combination of linear filtering and non-linear post-filtering), and therefore are more

adequate for real-time applications.

Combined noise reduction-echo cancelation: Thus far we focused on the noise reduc-

tion problem. However, other issues should be addressed as well. Ad hoc teleconferenc-

ing systems require cancelling of the far-end side emitted by speakers in the conference

room. Distributed algorithms which combine noise reduction and echo cancellation

could be developed.

Dereverberation: Poor acoustic design of the conference rooms, could result in deteriorated

intelligibility. This problem can be alleviated by introducing dereveberation techniques

to the proposed distributed algorithm. The spatial distribution of the microphones

might be beneficial in estimating the required room acoustic parameters.

MSDW-MWF: The proposed beamforming criterion introduces more degrees of freedom

in designing a desired response. We intend to examine their ability for controlling the

BF sensitivity and derive a robust distributed BF for WASN.
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 קצירת

טכניקות שיפור דיבור, העושות שימוש במערכי מיקרופונים, לכדו את תשומת לבם של חוקרים רבים במשך 

אופיינות בתחום זה הן:  . בעיותhands-free סוגמהאחרונות, במיוחד עבור תרחישי תקשורת שלושים השנים 

מרחיבים  )Beamforming( הפחתת רעש, ביטול הד, מיצוי דובר וביטול הדהוד. אלגוריתמים מעצבי אלומה

תדר קלאסי. לרב, אותות הדיבור הנקלטים -את מימד הפתרונות ומציעים סינון מרחבי בנוסף לסינון זמן

מזוהמים ע"י מקורות מפריעים, כגון דוברים מתחרים ומקורות רעש, ובנוסף מעוותים ע"י הסביבה 

ציגים ביצועים מספקים בהפחתת ש במיקרופון בודד משאלגוריתמים העושים שימו אף על פיהמהדהדת. 

, כיוון שהם חסרים את המידע המרחבי, או הגיוון מתאימים דיים לביטול דוברים מפריעיםאינם , הם רעש

-ים על פני מערכות מיקרופוןהיתרונות הברור למרותקרופונים. יהסטטיסטי המשמשים אלגוריתמים מרובי מ

 .עדיין סובלים ממגבלות ביצועים הנהוגים כיוםבודד, מערכי מיקרופונים 

אלגוריתמי עיבוד מרחבי,  האפרטורה הקטנה יחסית של מערכים קונבנציונליים מהווה גורם מגביל בביצועי

העניין.  מקור/ותמ דולק יחסית גגמים את שדה האקוסטי רק באופן מקומי, ולרב במרחשהם דו כיוון

הגורמים  ,נמוכים )DRRישירה להדהוד (ויחס ההגעה  )SNR(לרעש  תיחס אוצפויים בתרחישים הללו, 

אפרטורה קטנה. כתוצאה מכך, מערכי  בעלי ,רגילים 'מקובצים'מיקרופונים  לפגיעה בביצועים של מערכי

חווית מערכות ) 1ון שלם בתרחישים הבאים לדוגמא: רופונים מקובצים, קלאסיים, אינם מספקים פתרמיק

, אלא גם לאפשר באמינות תוכן השיחה: מערכות ועידה מודרניות מנסות לא רק להעביר את קרובה תקשורת

באותו חדר. שיחות וקים פיזית, כאילו הם נמצאים רחהת ואינטראקציה בין אנשים בנוסף חווית שיחה טבעי

 בתים חכמים) 2, מופרעות ע"י רעש רקע, דוברים מפריעים והדהוד. hands-freeטלפון רבות, במיוחד במצב 

כגון טלוויזיה,  מכשירים אלקטרונייםו בכל מערכות הבית (תאורה, מיזוג הם שם למערכת אחודה לשליטה

בהקשר זה, רשתות מיקרופונים חכמות הן מרכיב הכרחי לשליטה ובקרה במערכות אלו, מערכת קול וכדומה). 

, כגון משטרה וביטחון פנים, עושות שימוש במערכות רשויות אכיפת חוק )3וכן עבור תקשורת במקרי חירום. 

בסביבות ציתות ומעקב אקוסטיים במקומות ציבוריים כחלק משגרת פעילותן. לרב הפעילויות הנ"ל מתבצעות 

 עוינות. על המיקרופונים להיות פזורים בשטח נרחב בכדי להבטיח כיסוי מתאים של הדוברים הרצויים.

מרכז היתוך היא למקם חיישנים בסביבה רחבה ולהעביר את המידע הנקלט בהם ל ישירהה ריכוזיתהגישה ה

שידור של כמויות גדולות של  אשר בו מתבצע העיבוד. על אף האופטימליות, גישה פשוטה זו דורשת מידע

רגישה לתקלה במרכז ההיתוך, אשר תשבית את המערכת כולה.  הנ"להפשוטה מידע. נוסף על כך, הגישה 

, הינו מסלולי התקשורת הארוכים בין חיישנים לבין מרכז נובע מהמבנה של הפתרון הריכוזיה ,חסרון נוסף

, כאשר מרכז ההיתוך והחיישנים לא מסוגלים לתקשר ישירות)ההיתוך, אשר עלולים לכלול מספר דילוגים (

 המתבטאים בקצב הסתגלות מואט לשינויים ברשת או בסביבה.

מכניות ממוזערות, בשילוב עם שיפור -טכנולוגיה, מערכות אלקטרו-ם הננוטכנולוגיים בתחוגילויים לאחרונה, 

רשת חיישנים אלחוטית מכילה  השגה.-ברלחזון רשתות החיישנים המבוזרות  יכולות התקשורת, הפכו את

מספר צמתי (יח' רשת) המתקשרות ביניהן באופן אלחוטי. כל צומת מורכב מחיישן אחד או יותר, יחידת עיבוד 
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ת הינה לקלוט תופעה פיזיקלית כויחידת תקשורת אלחוטית המאפשרת להם לשתף מידע. מטרת המער

, החישה והעיבוד יםבמערכות מבוססות מערכים קלאסיד אותה, ולהפיק תוצאה רצויה נדרשת. מסויימת, לעב

תופעה פיזיקלית בסביבה, יוצרת גל המתפשט  .מרכז ההיתוך של המידע הנרכש מרוכזים באתר בודד הקרוי 

לשגיאות  במרחב. ככל שהחיישנים קרובים למקור התופעה, כן גדל יחס האות לרעש של האות הנקלט, המביא

 שערוך נמוכות ולאיכות גבוהה יותר במוצא תהליך עיבוד האות.

הרעיון של רשתות חיישנים אלחוטיות הוא לחלק את משאבי המערכת (חיישנים, יכולות עיבוד ומחוללי 

אותות) בין הצמתים ולאפשר מבנה סקאלבילי, עם כיסוי מלא של הסביבה, קל לפריסה, וחסין. הממשק 

מרכזי היתוך  קוויים. התפוצה של רחבה של טווחי החישה מעבר לגבולות מערכות י מאפשר הטהאלחו

 כיסוי טוב יותר עם יחס אות לרעש, ויחס אות להדהוד גבוהים יותר יםהחיישנים בשטחים נרחבים מקנ

 והפחתת הרגישות למיקום האותות. 

: טופולוגיות רשת דינמיות בשילוב עם מגבלות תקשורת) 1ם: הפיתוחים הטכנולוגיים מציגים אתגרים חדשי

ופרוטוקולים קישוריות מוגבלת וסוללה קצרת חיים דורשים מחקר נוסף בפיתוח שיטות תקשורת אלחוטית 

: אלגוריתמי עיבוד אותות קלאסיים אלגוריתם) 2(לא יידון בעבודה זו).  יםלאביליקוס יםחסינ ים,יעיל

נחוצים כן,  אםכ עבור תרחישים ריכוזיים, בהם המידע מהחיישנים זמין לצורך עיבוד במרכז. מתוכננים בדר"

 .חדשים, המתחשבים באילוצי הבעיה קריטריוני אופטימיזציה משלביםאלגוריתמים מבוזרים חדשים, ה

האלגוריתמים על  מבוזרים. ותתרכזת באתגר השני, בפרט, מטרתה לפתח אלגוריתמי עיבוד אותעבודה זו מ

נושא הביצועים , בלא פשרה בכל זאתלהיות בעלי סיבוכיות נמוכה ולצרוך רוחב פס תקשורת נמוך.  המפותחים

הנובעת מאופייה של הבעיה, היא הצורך דרישה נוספת  .אופטימליים)-(למרות שניתן להפעיל אלגוריתמים תת

ם, אשר אינם רגישים לתקלות בצמתים בודדים, ואשר מסוגלים להתמודד עם שינויים באלגוריתמים חסיני

סתגלים לשינויי הסביבה, או בקישוריות הרשת. באופן טבעי, מרבית האפליקציות דורשות אלגוריתמים המ

 המקורות הנצפים.

ורשת את מירב האנרגיה בצומת. גישת עיבוד אותות תקשורת (במיוחד ברשתות אלחוטיות) היא הפעולה הד

אשר בו כל צומת משתמש רק במדידות שלו, ללא קשר לצמתים  מקומי  לעיבוד הריכוזי הינה עיבודחלופית 

תקשורת היא מינימלית, היא כמובן אחרים, ובכך מייתר את הצורך בתקשורת. למרות שבגישה זו כמות ה

. מערכות רבות משתמשות רק חלק קטן מהמידע המצוי ברשתהיא מנצלת אלצת מגבלות ביצועים, כיוון שמ

למרות פשטותן,  למרכז ההיתוך. ובשיטות לדחיסת המידע בכדי להקטין את רוחב הפס הנדרש להעברת

דחיסה עלולה להרוס בנוסף, לא מתחשבות באלגוריתמי עיבוד האות המתבצעים במרכז ההיתוך.  שיטות אלו

את הקוהרנטיות בין אותות החיישנים, ולמנוע הפעלתם של אלגוריתמי מעצבי אלומה. אלגוריתמים מבוזרים 

ת. מנסים להשיג את הביצועים של שיטת מרכז ההיתוך, ולהקטין באופן ניכר את רוחב הפס הדרוש לתקשור

החישוב המקומי עם המידע של  איטרטיבי ע"י שילובכל צומת מבצע עיבוד מקומי ומפיץ את התוצאות ברשת. 

המופץ ברשת, אלגוריתמים מבוזרים מתכנסים למקביליהם הריכוזיים. שימו לב שהאיטרציות יכולות 

 בי בזמן.להתבצע על קובץ דגימות מוקלטות או באופן רקורסי
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מראש כדי להתאים לבעיה הנתונה.  תאלומה קלאסיים הגאומטריה של מערך המיקרופונים לרב נקבע במעצבי

עם זאת, במספר תרחישי רשתות חיישנים מבוזרות לא ניתן לשלוט על תצורת המערך. כיוון שביצועי מעצב 

 ועים סטנדרטי אינו מתאים לרשתות חיישנים אלחוטיות.האלומה תלויים בגאומטריה של המערך, ניתוח ביצ

טיסטיים במיקומי החיישנים. בהמשך, הוא פיתח מודל סטטיסטי לשלב מודלים סט )Loהציע לו ( 1964-ב

המערך (כגון כיווניות, רוחב אלומה, וגובה אונות  טובה יותר של תכונותלביצועי מעצב האלומה והגיע להבנה 

. אולם, הניתוח היה מוגבל למקורות צרי סרט בסביבות לא Delay and Sumצד) עבור מעצב אלומה מסוג 

 מהדהדות, ועבור מעצבי אלומה פשוטים שאינם תלויים במידע.

שבות בהיבטים נוספים. יכולת תכנון אלגוריתמים מבוזרים עבור רשתות חיישנים אלחוטיות מצריך התח

והפעלתו העיבוד המצויה בצמתים היא מוגבלת. בעקבות זאת, כמות החישובים לצורך בניית מעצב האלומה 

סטיות תדר דגימה בין צמתים הן  ,קיים מקור שעון דוגם נפרדכל צומת בבנוסף, כיוון ש בצמתים היא מוגבלת.

 ביצועי מעצבי האלומה.הסטיות הנ"ל גורמות פוגעות ב נמנעות.-בלתי

ת מבוזרות של מעצבי אלומה קלאסיים מפותחות. גרסאוראשית,  .התרומה של הדיסרטציה הזו היא משולשת

המבוססים על קריטריון בסביבה עם מספר דוברים מבוזרים  אנו מציעים אלגוריתמי עיבוד דיבורבפרט, 

מסגרת חדשה להערכת מפותחת . שנית, )LCMVמזעור רמת הרעש במוצא תחת מערכת אילוצים לינאריים (

בעיבוד מרחבי קלאסי התצורה של המערך היא לרב  ת.וביצועי מעצבי אלומה ברשתות מיקרופונים אלחוטי

לחוטיות, אשר בהן יכולה התצורה להיות אקראית מתוכננת לבעיה הנתונה, בניגוד לרשתות מיקרופונים א

מידע עם מיקרופונים הממוקמים באקראי מנותחים. הניתוח -ודינאמית. הביצועים של מעצבי אלומה תלויי

הנדרשים על מנת לעמוד בביצועים הנדרשים.  יכול לשמש כהנחיות תכנון לקביעת מספר הצמתים/מיקרופונים

פחתת הסיבוכיות בהפעלת מעצבי אלומה מבוזרים, ללא הקרבת הביצועים. שלישית, אנו מתייחסים לבעיית ה

כופים למעצב האלומה המופעל. האופי הדינאמי של המקורות, הסביבה וקישוריות הרשת, דורשים שינויים ת

 שיטות יעילות לעדכון מעצב האלומה בהתאם לדינמיקה הנ"ל מפותחות.
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