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Abstract

In many practical environments we wish to extract several desired speech signals, which are

contaminated by both non-stationary interfering signals (such as a competing talkers), as

well as by stationary noise. Furthermore, the received signals are often subject to distortion

imposed by the RIR of the acoustic environment.

Typical examples for this problem include the conference call scenario with multiple

participants; a hands-free cellular phone conversation in a car environment, when several

speaking passengers interfere with the desired speaker; and the Cocktail Party scenario, in

which desired conversation blend with many simultaneous conversations.

In this thesis multi-microphone measurements are utilized to perform the task of the

desired speakers extraction, by designing the array beam-pattern to satisfy a set of multi-

ple linear constraints. One subset of the constraints is dedicated to maintain the desired

signals and the second subset is chosen to mitigate both the stationary and non-stationary

interference signals. Unlike classical beamformers, in which the RIRs are approximated by a

delay-only filter, we take into account the entire RIR [or its respective ATF].

Firstly, we show that the RTFs, defined as the ratio between ATFs relating the speech

sources and the microphones, suffice for the construction of the beamformer. Secondly, the

null subspace, comprised of all interfering signals, is estimated by using the union of all

estimated eigenvectors, relaxing the commonly used demand that the interference signals’

activity periods do not overlap. Finally, the Generalized Eigenvalue Decomposition (GEVD)

procedure is applied to the received signals’ Power Spectrum Density (PSD) matrix and the

interference-only PSD matrix (obtained by the second stage) for estimating the RTF of the

desired signals.

It is shown that an application of the adaptive RNC to the output of the beamformer

enables further reduction of the residual interference signals, caused by inaccuracies in the

subspace estimation, and hence increases the robustness of the proposed method.

A comprehensive experimental study, consisting of both simulated and real environments,

1
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proves the applicability of the proposed algorithm to the multiple source extraction task.

Furthermore, it is shown that the proposed algorithm outperforms the TF-GSC algorithm, in

the task of enhancing one desired speech signal contaminated by several interference signals.



Notation

x scalar
x column vector
xi the ith element of the vector x
A matrix
Aij the (i, j) element of the matrix A
A−1 matrix inverse

(·)T transpose operation
(·)∗ conjugate operation

(·)† transpose-conjugate operation
diag{x} diagonal matrix with the vector x on its diagonal

(·) 1
2 for diagonal matrices, a diagonal matrix with the square root of the diagonal

‖ · ‖ Euclidian norm operation
I identity matrix
E (·) expectation operation
x(`, k) time-frequency coefficient
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Abbreviations

BSS Blind Source Separation

LTI Linear Time Invariant

PSD Power Spectrum Density

MV Minimum Variance

DS Delay and Sum

LCMV Linearly Constrained Minimum Variance

MVDR Minimum Variance Distortionless Response

GSC Generalized Sidelobe Canceler

ATF Acoustic Transfer Function

RTF Relative Transfer Function

EVD Eigenvalue Decomposition

GEVD Generalized Eigenvalue Decomposition

ICA Independent Component Analysis

NR Noise Reduction

MMSE Minimum Mean Squared Error

MSNR Maximum Signal to Noise Ratio

GSVD Generalized Singular Value Decomposition

ANC Adaptive Noise Canceler
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FBF Fixed Beamformer
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DTF-GSC Dual Transfer Function Generalized Sidelobe Canceler

RIR Room Impulse Response

RNC Residual Noise Canceler

MTF Multiplicative Transfer Function

FIR Finite Impulse Response

STFT Short Time Fourier Transform

BM Blocking Matrix

OMLSA Optimally Modified Log Spectral Amplitude

SIR Signal to Interference Ratio

EDC Energy Decay Curve

QR Orthogonal Triangular Decomposition

DFT Discrete Fourier Transform

BF Beamformer

VAD Voice Activity Detector

MWF Multichannel Wiener Filter

SDW-MWF Speech Distortion Weighted Multichannel Wiener Filter

MIMO Multiple Input Multiple Output
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Chapter 1

Introduction

Speech enhancement techniques, utilizing microphone arrays, have attracted the attention

of many researchers for the last twenty years, especially in hands-free communication tasks.

Usually, the received speech signals are contaminated by interfering sources, such as compet-

ing speakers and noise sources, and also distorted by the reverberating environment. Whereas

single microphone algorithms might show satisfactory results in noise reduction, they are ren-

dered useless in competing speaker mitigation task, as they lack the spatial information, or

the statistical diversity used by multi-microphone algorithms.

In this thesis we address the problem of extracting several desired sources in a rever-

berant environment containing both non-stationary (competing speakers) and stationary in-

terferences. Two families of microphone array algorithms can be defined, namely, the BSS

family and the beamforming family. BSS aims at separating all the involved sources, re-

gardless of their attribution to the desired or interfering sources [2]. On the other hand, the

beamforming family of algorithms, concentrate on enhancing the sum of the desired sources

while treating all other signals as interfering sources. Since the BSS family of algorithms is

not focal point of this thesis, it is only shortly introduced in Section 1.1. The beamforming

family of algorithms is surveyed in Section 1.2. In Section 1.3 the structure of the thesis is

presented.

1.1 BSS Algorithms

The BSS family of algorithms exploit the independence of the involved sources. Independent

Component Analysis (ICA) algorithms [3, 4] are commonly applied for solving the BSS prob-

lem. The ICA algorithms are distinguished by the way the source independence is imposed.

Commonly used techniques include second-order statistics [5], high-order statistics [6], and

9



10 CHAPTER 1. INTRODUCTION

Information theoretic based measures [7]. BSS methods can also be used in reverberant en-

vironments, but they tend to get very complex (for time domain approaches [8]) or have an

inherent problem of permutation and gain ambiguity [9] (for frequency domain algorithms [4]).

1.2 Beamforming Algorithms

The term beamforming refers to the design of a spatio-temporal filter. Broadband arrays

comprise a set of filters, applied to each received microphone signal, followed by a summation

operation. The main objective of the beamformer is to extract a desired signal, impinging on

the array from a specific position, out of noisy measurements thereof. The simplest structure

is the delay-and-sum beamformer, which first compensates for the relative delay between

distinct microphone signals and then sums the steered signal to form a single output. This

beamformer, which is still widely used, can be very effective in mitigating noncoherent, i.e.,

spatially white, noise sources, provided that the number of microphones is relatively high.

However, if the noise source is coherent, the Noise Reduction (NR) is strongly dependent on

the direction of arrival of the noise signal. Consequently, the performance of the delay-and-

sum beamformer in reverberant environments is often insufficient. Jan and Flanagan [10]

extended the delay and sum concept by introducing the filter-and-sum beamformer. This

structure, designed for multipath environments, namely reverberant enclosures, replaces the

simpler delay compensator with a matched filter. The array beam-pattern can generally be

designed to have a specified response. This can be done by properly setting the values of

the multichannel filters weights. Statistically optimal beamformers are designed based on

the statistical properties of the desired and interference signals. In general, they aim at

enhancing the desired signals, while rejecting the interfering signals. Several criteria can

be applied in the design of the beamformer, e.g., Maximum Signal to Noise Ratio (MSNR),

minimum mean-squared error (MMSE), Minimum Variance Distortionless Response (MVDR)

and LCMV. A summary of several design criteria can be found in [11, 12]. Cox et al. [13]

introduced an improved adaptive beamformer that maintains a set of linear constraints as

well as a quadratic inequality constraint.

In [14] a Multichannel Wiener Filter (MWF) technique has been proposed that produces

a Minimum Mean Squared Error (MMSE) estimate of the desired speech component in one

of the microphone signals, hence simultaneously performing noise reduction and limiting

speech distortion. In addition, the MWF is able to take speech distortion into account in
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its optimization criterion, resulting in the Speech Distortion Weighted Multichannel Wiener

Filter (SDW-MWF) [15].

In a MVDR beamformer [16, 17], the power of the output signal is minimized under

the constraint that signals arriving from the assumed direction of the desired speech source

are processed without distortion. A widely studied adaptive implementation of this beam-

former is the GSC [18]. The standard GSC consists of a spatial pre-processor, i.e. a Fixed

Beamformer (FBF) and a Blocking Matrix (BM), combined with a multichannel Adaptive

Noise Canceler (ANC). The FBF provides a spatial focus on the speech source, creating a

so-called speech reference; the BM steers nulls in the direction of the speech source, creat-

ing so-called noise references; and the multichannel ANC eliminates the noise components

in the speech reference that are correlated with the noise references. Several researchers

(e.g. Er and Cantoni [19]) have proposed modifications to the MVDR for dealing with mul-

tiple linear constraints, denoted LCMV. Their work was motivated by the desire to apply

further control to the array/beamformer beam-pattern, beyond that of steer-direction gain

constraints. Hence, the LCMV can be applied for constructing a beam-pattern satisfying

certain constraints for a set of directions, while minimizing the array response in all other

directions. Breed and Strauss [20] proved that the LCMV extension has also an equiva-

lent GSC [18] structure, which decouples the constraining and the minimization operations.

The GSC structure was rederived in the frequency domain, and extended to deal with the

more complicated general ATFs case by Affes and Grenier [21] and later by Gannot et al. [22].

The latter frequency-domain version, which takes into account the reverberant nature of the

enclosure, was nicknamed the TF-GSC. Though related, these contributions differ in their

channel identification. Affes and Grenier require an a-priori calibration of the propagated

energy at each frequency in order to obtain the ATF by exploring the eigen-space of the cor-

relation matrix. Gannot et al. deals with arbitrary sources and microphones location, and

takes advantage of the non-stationarity of the speech signals opposed to the slowly varying

ATF to estimate the RTF.

Several beamforming algorithms based on subspace methods were developed. Ephraim

and Van Trees [23] considered the single microphone scenario. The Eigenvalue Decomposition

(EVD) of the noisy speech correlation matrix is used to determine the signal and noise sub-

spaces. Each of the eigenvalues of the signal subspaces is then processed to obtain the

minimum distorted speech signal under a permissible level of residual noise at the output.

Hu and Loizou [24] extended this method to deal with the colored noise case by using the
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GEVD rather than the EVD as in the white noise case. Gazor et al. [25] propose to use a

beamformer based on the MVDR criterion and implemented as a GSC to enhance a nar-

rowband signal contaminated by additive noise and received by multiple sensors. Under the

assumption that the Direction of Arrival (DOA) entirely determines the transfer function

relating the source and the microphones, it is shown that determining the signal subspace

suffices for the construction of the algorithm. An efficient DOA tracking system, based on the

Projection Approximation Subspace Tracking (deflation) (PASTd) algorithm [26] is derived.

An extension to the wide-band case is presented by the same authors [27]. However the

demand for a delay-only impulse response is still not relaxed. Affes and Grenier [21] apply

the PASTd algorithm to enhance speech signal contaminated by spatially white noise, where

arbitrary ATFs relate the speaker and the microphone array. The algorithm proves to be

efficient in a simplified trading-room scenario, where the Direct to Reverberant Ratio (DRR)

is relatively high and the reverberation time relatively low. Doclo and Moonen [28] extend

the structure to deal with the more complicated colored noise case by using the Generalized

Singular Value Decomposition (GSVD) of the received data matrix. Warsitz et al. [29] pro-

pose to replace the BM in [22]. They use a new BM based on the GEVD of the received

microphone data, providing an indirect estimation of the ATFs relating the desired speaker

to the microphones.

Affes et al. [30] extend the structure presented in [25] to deal with the multi-source

case. The constructed multi-source GSC, which enables multiple target tracking, is based

on the PASTd algorithm and on constraining the estimated steering vector to the array

manifold. Asano et al. [1] address the problem of enhancing multiple speech sources in a

non-reverberant environment. The Multiple Signal Classification (MUSIC) method, proposed

by Schmidt [31], is utilized to estimate the number of sources and their respective steering

vectors. The noise components are reduced by manipulating the generalized eigenvalues of

the data matrix. Based on the subspace estimator, a LCMV beamformer is constructed. The

LCMV constraints set consists of two subsets: one for maintaining the desired sources and the

second for mitigating the interference sources. Benesty et al. [32] also address beamforming

structures for multiple input signals. In their contribution, derived in the time-domain, the

microphone array is treated as a Multiple Input Multiple Output (MIMO) system. In their

experimental study, it is assumed that the filters relating the sources and the microphones

are a priori known, or alternatively, that the sources are not active simultaneously. Reuven

et al. [33] deal with the scenario in which one desired source and one competing speech source
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coexist in noisy and reverberant environment. The resulting algorithm, denoted Dual-Source-

TF-GSC is tailored to the specific problem of two sources and cannot be easily generalized

to the multiple desired and interference sources.

In the next chapter we formulate the problem and elaborate on two of the algorithms

coping the speech extraction. The first is the TF-GSC algorithm, and the second is the

algorithm presented by Asano et al. [1].

In this contribution we propose a novel beamforming technique, aiming at the extrac-

tion of multiple desired speech sources, while attenuating several interfering sources (both

stationary and non-stationary) in a reverberant environment. We derive a practical method

for estimating all components of the eigenspace-based beamformer. We first show that the

RTFs, defined as the ratio between ATFs relating the speech sources and the microphones,

is a sufficient quantity for the construction of the beamformer. We relax the commonly used

demand that the interference signals’ activity periods do not overlap and estimate the null

subspace, comprised of all interfering signals. For the final estimation of the RTFs of the

desired signals, the GEVD procedure is applied to the estimated PSD matrix of the noisy

microphone signals and the PSD matrix of the interference-only components (obtained by

the second stage).

1.3 Thesis Structure

The structure of the thesis is as follows. In Chapter 2 the problem of extracting multiple de-

sired sources contaminated by multiple interference in reverberant environment is introduced.

Two recent algorithms that deal with a subset of the general problem are then explored. The

drawbacks of these algorithms are discussed, motivating the new research. In Chapter 3 we

present a novel method for source extraction based on the LCMV beamformer. The various

components of the beamformer are estimated using eigenspace analysis. In Chapter 4 the

proposed algorithm is evaluated in different scenarios. For the single desired source scenario

the proposed method is further compared with the TF-GSC algorithm . In Chapter 5 the

thesis is concluded and future research topics are proposed.
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Chapter 2

Background

In this chapter the problem of multiple sources extraction is mathematically stated. Two

earlier attempts providing partial solution of the general problem are explored. The problem

is formulated in Section 2.1. The TF-GSC [22], aiming at the enhancement of one desired

source in noisy and reverberant environment is explored in Section 2.2. A subspace method,

proposed by Asano et al. [1], for extracting multiple sources in mildly reverberant environ-

ment is presented in Section 2.3. We conclude this chapter in Section 2.4 by discussing the

limitations of these methods, motivating the derivation of the novel algorithm, presented in

Chapter 3.

2.1 Problem Formulation

Consider the general problem of extracting K desired sources, contaminated by Ns stationary

interfering sources and Nns non-stationary sources. The signals are received by M sensors

arranged in an arbitrary array. Each of the involved signals undergo filtering by the RIR

before being picked up by the microphones. The reverberation effect can be modeled by a

Finite Impulse Response (FIR) filter operating on the sources. The signal received by the

mth sensor is given by:

zm(n) =
K∑

i=1

sdi (n) ∗ hdim(n) +
Ns∑

i=1

ssi (n) ∗ hsim(n) +
Nns∑

i=1

snsi (n) ∗ hnsim(n) + vm(n) (2.1)

where sd1(n), . . . , sdK(n), ss1(n), . . . , ssNs(n) and sns1 (n), . . . , snsNns(n) are the desired sources, the

stationary and non-stationary interfering sources in the room, respectively. We define hdim(n),

hsim(n) and hnsim(n) to be the Linear Time Invariant (LTI) RIRs relating the desired sources,

the interfering sources, and each sensor m, respectively. vm(n) is a spatially white noise with

15
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zero mean and variance σ2
v . zm(n) is transformed into the Short Time Fourier Transform

(STFT) domain with a rectangular window of length NDFT, yielding:

zm(`, k) =
K∑

i=1

sdi (`, k)hdim(`, k) +
Ns∑

i=1

ssi (`, k)hsim(`, k) +
Nns∑

i=1

snsi (`, k)hnsim(`, k) + vm(`, k) (2.2)

where ` is the frame number and k is the frequency index. The assumption that the window

length is much larger then the RIR length ensures the Multiplicative Transfer Function

(MTF) approximation [34] validness.

The received signals in (2.2) can be formulated in vector notation:

z(`, k) = Hd(`, k)sd(`, k) + Hs(`, k)ss(`, k) + Hns(`, k)sns(`, k) + v(`, k)

= H(`, k)s(`, k) + v(`, k) (2.3)

where

z(`, k) ,
[
z1(`, k) . . . zM(`, k)

]T

v(`, k) ,
[
v1(`, k) . . . vM(`, k)

]T

hd
i (`, k) ,

[
hdi1(`, k) . . . hdiM(`, k)

]T
i = 1, . . . , K

hs
i (`, k) ,

[
hsi1(`, k) . . . hsiM(`, k)

]T
i = 1, . . . , Ns

hns
i (`, k) ,

[
hnsi1 (`, k) . . . hnsiM(`, k)

]T
i = 1, . . . , Nns

Hd(`, k) ,
[

hd
1(`, k) . . . hd

K(`, k)
]

Hs(`, k) ,
[

hs
1(`, k) . . . hs

Ns(`, k)
]

Hns(`, k) ,
[

hns
1 (`, k) . . . hns

Nns(`, k)
]

H i(`, k) ,
[

Hs(`, k) Hns(`, k)
]

H(`, k) ,
[

Hd(`, k) Hs(`, k) Hns(`, k)
]

sd(`, k) ,
[
sd1(`, k) . . . sdK(`, k)

]T

ss(`, k) ,
[
ss1(`, k) . . . ssNs(`, k)

]T

sns(`, k) ,
[
sns1 (`, k) . . . snsNns(`, k)

]T

s(`, k) ,
[

(sd(`, k))T (ss(`, k))T (sns(`, k))T
]T
.

Assuming the desired speech signals, the interference and the noise signals to be uncorrelated,
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we have from 2.3:

Φzz(`, k) = Hd(`, k)Λd(`, k)
(
Hd(`, k)

)†
+ (2.4)

Hns(`, k)Λns(`, k)
(
Hns(`, k)

)†
+ Hs(`, k)Λs(`, k)

(
Hs(`, k)

)†
+ Φvv(`, k)

,H(`, k)Λ(`, k)H†(`, k) + Φvv(`, k)

where

Λd(`, k) , diag
([

(σd1(`, k))2 . . . (σdK(`, k))2
])

Λs(`, k) , diag
([

(σs1(`, k))2 . . . (σsNs(`, k))2
])

Λns(`, k) , diag
([

(σns1 (`, k))2 . . . (σnsNns(`, k))2
])

Λ(`, k) , blkdiag
(

Λd(`, k) Λs(`, k) Λns(`, k)
)
.

(•)† is the conjugate-transpose operation, diag (•) is a square matrix with the vector in

brackets on its main diagonal, and blkdiag (•) is a block diagonal matrix with the matrices

in brackets on its main diagonal. Further define the PSD of the stationary component of the

output signal as:

Φs
zz(`, k) ,Hs(`, k)Λs(`, k)

(
Hs(`, k)

)†
+ Φvv(`, k). (2.5)

It is usually assumed that Φvv(`, k) = σ2
vIM×M where IM×M is the identity matrix, i.e. the

noise field is assumed to be non-coherent, spatially-white.

A beamformer is constructed by applying a set of filters w∗(`, k) to each microphone

signal and summing up all the signals:

y(`, k) = w†(`, k)z(`, k) (2.6)

where y(`, k) is the beamformer output at the STFT representation, and w(`, k) is the

beamformer’s weights at time frame ` and frequency bin k.

2.2 TF-GSC

An approach for signal enhancement based on the desired signal non-stationarity was pro-

posed by Gannot et al. [22]. This approach, aiming at enhancing a single desired source,

can be exploited for extracting several desired sources by activating K beamformers in par-

allel, one for each desired source. Without loss of generality we discuss the enhancement of
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the first desired speaker. The beamformer, w(`, k), is determined by solving the following

minimization problem:

argmin
w

{
w†(`, k)Φzz(`, k)w†(`, k)

}
subject to w†(`, k)hd

1(`, k) = 1 . (2.7)

Under this criterion the signal component at the output is equal to the desired signal sd1(`, k).

It is shown, that if the constraint is relaxed, such that the desired signal component at the

output is given by sd1(`, k)hdi1(`, k), i.e. the desired signal as received by the first microphone,

the RTF

h̃
d

1(`, k) ,
hd
i (`, k)

hd11(`, k)
(2.8)

suffices for implementing the MVDR beamformer.

This minimization can be efficiently implemented by constructing a GSC structure as de-

picted in Fig. 2.1. The GSC solution is comprised of three components: A FBF responsible

uM (�, k)

u2(�), k

y(�, k)

yFBF(�, k)

u3(�, k)

yANC(�, k)

BF ∑

z1(�, k)

z2(�, k)

−

+

zM (�), k

BM

q(�, k)

ANC

Figure 2.1: GSC solution for the general ATFs case (TF-GSC)

of aligning the desired signal component, a BM which blocks the desired signal and con-

structs noise reference signals (comprised of all stationary and transient noise components as
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well as all competing speakers), and a multichannel ANC which cancels out all interference

components from the FBF output by using the reference signals.

It is shown in [22] that the FBF can be implemented by:

w0(`, k) =
h̃
d

1(`, k)

‖h̃d

1(`, k)‖2
(2.9)

and that

B(`, k) =




−(hd12(`, k))∗ −(hd13(`, k))∗ . . . −(hd1M(`, k))∗

1 0 . . . 0
0 1 . . . 0

. . .
. . .

0 0 . . . 1



. (2.10)

is a proper BM. The ANC filters q(`, k) are adjusted to minimize the power at the output,

y(`, k), exactly as in the classical Widrow problem. The filters are usually constrained to an

FIR structure for stabilizing the update algorithm.

In practice, h̃
d
(`, k) is unknown and should be estimated. The estimation method pre-

sented in [22] is based on the nonstationarity of the desired speech signal. The analysis

interval is split into frames, such that the desired signal may be considered stationary dur-

ing each frame (quasistationarity assumption for speech signals), while h̃
d

1(`, k) ≈ h̃
d

1(k)

is still considered time-invariant. Define φzizj(`, k) as the cross PSD between zi and zj

(ith and jth noisy signal observations, respectively) during the `th frame (` = 1, . . . , L).

Further define φumz1(`, k) the cross PSD between um(n) and z1(n). Let φ̂zizj(`, k) and

Φ̂umz1(`, k) represent the corresponding estimates. Further define The error term εm(`, k) =

φumz1(k) − φ̂umz1(k); ` = 1, . . . , L. An unbiased estimate for h̃dm(k) is obtained by applying

the least squares criterion to the following set of over-determined equations



φ̂zmz1(1, k)

φ̂zmz1(2, k)
...

φ̂zmz1(L, k)


 = (2.11)




φ̂z1z1(1, k) 1

φ̂z1z1(2, k) 1
...

φ̂z1z1(L, k) 1


×

[
h̃d1m(k)
φumz1(k)

]
+




εm(1, k)
εm(2, k)

...
εm(L, k)




where a separate set of equations is used for each microphone signal (m = 2, . . . ,M) and

frequency index k.

A summery of the entire algorithm is given in Alg. 1.
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Algorithm 1 Summary of the TF-GSC algorithm.

1) RTFs: h̃
d

1(k) = hd

1(k)
h11(k)

2) Construct a blocking matrix, B†(k)hd
1(k) = 0.

3) FBF w0(k) =
˜h
d

1(k)

‖ ˜h
d

1(k)‖2
.

FBF output: yFBF(`, k) = w†0(k)z(`, k).
4) Noise reference signals:

u(`, k) = B†(k)z(`, k)
5) Output signal: y(`, k) = yFBF(`, k)− q†(`, k)u(`, k).
6) Filters update. For m = 1, . . . ,M − 1:

q̃m(`+ 1, k) = qm(`, k) + µum(`,k)y∗(`,k)
pest(`,k)

qm(`+ 1, k)
FIR←− q̃m(`+ 1, k)

where, pest(`, k) = ρpest(`− 1, k) + (1− ρ)‖z(`, k)‖2.
7) Keep only non-aliased samples, according to the

overlap & save method.

2.3 Speech Enhancement Based on the Subspace Method

(Asano et al. [1])

Asano et al. propose in [1] an algorithm for speech recognition that treats separately the

directional and the non-coherent interference signals. This method can be adopted to the

speech enhancement problem at hand. In this section the adopted algorithm is presented.

The algorithm derivation is based on two restrictive assumptions. First, the RIRs of

directional signals are approximated by the first arrival. Second, it is assumed that the

direct arrival of each of the sources is uncorrelated with its late arrivals. Hence, the latter

can be attributed to a non-coherent noise component. Under the first assumption we have:

hdim(`, k) ≈ e
−j 2π

NDFT
τim (2.12)

where τim is the relative delay between source i = 1, 2, . . . , N (desired, stationary and non-

stationary interference signals) and microphone m = 1, 2, . . . ,M . Due to the second as-

sumption the non-coherent noise source cannot be regarded as white noise anymore, i.e.

Φvv(`, k) 6= σ2
vIM×M .

The entire structure of the algorithm is depicted in Fig. 2.2 . At the first stage the received

signal and the non-coherent signal PSD matrices, Φzz(`, k) and Φvv(`, k) are estimated.

In this stage, denoted Coherent Subspaces (CSS), the PSD estimates are smoothed in the

frequency domain to reduce the estimation variance.
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CSSz(�, k)

N, H(�, k)

Φ̂zz(�, k)

Φ̂vv(�, k)
MV / DSNSRGEVD

MUSIC

Eigen-
vectors/values

Φ̂
+
zz(�, k)

“Major”
Eigenvectors

yi(�, k)

i = 1, . . . , K

Figure 2.2: The structure of the speech enhancement based on subspace decomposition
(Asano et al. [1])

Then, at the second stage, the GEVD of the PSD matrices is calculated, yielding a set

of eigenvectors. The corresponding eigenvalues are inspected in the third step, where the

MUSIC algorithm is used for determining the number and values of the eigenvectors corre-

sponding to the largest eigenvalues. These eigenvectors can be attributed to the coherent

sources, hd
i (`, k),hs

i (`, k),hns
i (`, k). The MUSIC algorithm can be applied due to the simpli-

fied model of the ATFs. When the reverberant energy becomes significant, further processing

is required for determining the dominant eigenvectors. All weak eigenvalues and their corre-

sponding eigenvectors are discarded in the fourth stage, denoted Noise-dominant Subspace

Reduction (NSR), yielding the following PSD matrix:

Φ+
zz(`, k) ≈H(`, k)Λ(`, k)H†(`, k)

which is only comprised of coherent components.

Finally, K beamformers are constructed for extracting all the desired sources separately.

the MVDR beamformer can be designed using:

wMVDR
i (`, k) =

(Φ+
zz(`, k))−1hd

i (`, k)

(hd
i (`, k))†(Φ+

zz(`, k))−1hd
i (`, k)

for i = 1, 2, . . . , K. Alternatively a simple delay and sum beamformer can be used.

Several drawbacks can be encountered in the application of the method to the problem at

hand. First, approximating the RIRs of the desired sources by their direct-path component

becomes very inaccurate when the DRR reduces. Second, estimating Φvv(`, k) might be a

cumbersome task, due to the strong correlation between the direct-path and the late arrivals.

Moreover, free decay periods of the reverberant tail, which are necessary for estimating

Φvv(`, k) cannot be easily identified.

These problems limit the applicability of the method in [1] to the multi-interference

mitigation task in reverberant environments.
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2.4 Discussion

We will briefly discuss now the drawbacks of the two presented algorithms [22, 1], limiting

their ability to deal with the general source extraction problem.

A major drawback of the TF-GSC lies in the adaptation mechanism of its ANC. The

input signal of the ANC is comprised of both nonstationary competing speech signals and

stationary noise signals. The need of the ANC to adapt during both the stationary and

nonstationary signals impose contradicting requirements on the adaptation rate. On the

one hand, the adaptation factor µ should be high enough to allow for tracking of a fast

varying signal, and on the other-hand it should be low enough to enable sufficient reduction

of the stationary noise level. Such a requirement on the TF-GSC necessitates the use of

an algorithm for distinguishing between the two types of nonstationary signals, namely,

the desired and interference signals. Since the null towards the competing speech signals is

adaptively established, insufficient amount of interference signal cancellation can be expected.

As will be shown in the experimental study in Sec. 4.4 the residual noise level of the

TF-GSC structure is fluctuating over time (in accordance with the activity periods of the

interference signal). As beamformer algorithms are very often followed by a postfilter [35, 36],

and since postfilters are sensitive to nonstationary noise signals, it is crucial to maintain the

residual noise level as stable as possible. The application of a postfilter is beyond the scope

of this thesis.

Another drawback of the TF-GSC is its dependence on the FBF beampattern. If the

interference signal level at the FBF output is significantly reduced while maintaining high

level at the BM output, the ANC might increase the amount of interference leakage to the

total output.

Several of the assumptions leading to the algorithm presented by Asano [1] cannot be

met in highly reverberant environments. While it is reasonable to assume that the early

arrivals of the signals are uncorrelated with the late arrivals, it is very difficult to obtain a

clean estimate of the late arrivals PSD. In severe cases it is not guaranteed that the noise

PSD matrix Φnn(k) contains any reverberant component. Hence, the presented algorithm

can only be applied when the DRR is sufficiently high. These conditions can be met only

either if the desired sources and the microphone are closely spaced or if the reverberation

time is low.

To conclude: for the TF-GSC only limited amount of cancellation of nonstationary inter-
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ference signals (such as competing speakers) is expected, and for the algorithm in [1] high

performance in highly reverberant environment cannot be guaranteed. It is therefore the aim

of this thesis to suggest a novel algorithms that might circumvent these limitations. Our

proposed method is presented in Chapter .
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Chapter 3

The Proposed method

In this chapter a novel method for multiple speakers extraction is presented. In Section 3.1

we introduce the proposed LCMV beamformer. In Section 3.1.1 a straightforward linear

constraints set is introduced. This set necessitates the availably of the ATFs relating the

sources and the microphones. Later, in Section 3.1.2 an equivalent constraints set, which

replaces the actual ATFs of the interfering sources with any arbitrary basis spanning the

same subspace, is derived. The demand for the exact knowledge of the desired sources ATFs

is relaxed, in Section 3.1.3. It is shown that when the RTFs, relating the sources and the

microphones, are used rather than the corresponding ATFs, a beamformer that extracts the

desired sources, can still be designed. However, the new beamformer design is now aiming at

extracting the signals as captured by the first microphone rather than the original signals.

Since the interferences subspace and the desired RTFs are usually not available and only

approximate estimates are available, we implement in Section 3.2 a RNC branch in parallel to

the proposed beamformer, which accounts for estimation errors in the interferences subspace.

An estimation scheme based on the slow time-variation of the sources’ ATFs is introduced

in Section 3.3. The interferences subspace is estimated using a novel union operator in

Section 3.3.1, and the desired sources RTFs are estimated in Section 3.3.2 using the GEVD of

the received signals and stationary noise signal PSD matrices. The algorithm is summarized

in Section 3.4.

25
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3.1 The Beamformer

A beamformer is a system realized by processing each of the sensor signals zm(k, `) by the

filters w∗m(`, k) and summing the outputs. The beamformer output yBF(`, k) is given by

yBF(`, k) = w†(`, k)z(`, k) (3.1)

where

w(`, k) =
[
w1(`, k), . . . , wM(`, k)

]T
. (3.2)

The filters are set to satisfy the following set of linear constraints:

C†(`, k)w(`, k) = g(`, k). (3.3)

The well-known solution to the under-determined equation set is:

w(`, k) , C(`, k)
(
C†(`, k)C(`, k)

)−1
g(`, k) (3.4)

In the following subsections we first define a set of constraints used for extracting the desired

sources and mitigating the interference sources, then we replace the set by an equivalent set

which is more easily implemented. Finally, we relax our constraint for extracting the exact

input signals as transmitted by the sources and replace it by a demand for extracting the

desired speech components at an arbitrarily chosen microphone. The outcome of the latter,

a modified constraints set, will be a feasible system.

3.1.1 The Constraints Set

We start with the straightforward approach, in which the beam-pattern is constrained to

cancel out all interfering sources while maintaining all desired sources (for each frequency

bin). Note, that opposed to the Dual-Source-TF-GSC approach [33], the stationary noise

sources are treated similarly to the interference (non-stationary) sources. We therefore define

the following constraints. For each desired source {sdi }Ki=1 we apply the constraint:

(
hd
i (`, k)

)†
w(`, k) = 1, i = 1, . . . , K. (3.5)

For each interfering source, both stationary and non-stationary, {ssi}Nsi=1 and {snsj }Nnsj=1 , we

apply:
(
hs
i (`, k)

)†
w(`, k) = 0, (3.6)
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and
(
hns
j (`, k)

)†
w(`, k) = 0. (3.7)

Define N , K + Ns + Nns the total number of signals in the environment (including the

desired sources, stationary interference signals, and the non-stationary interference signals).

Assuming the column-space of H(`, k) is linearly independent, it is obvious that for the

solution in (3.4) to exist we require that the number of microphones will be greater or

equal the number of constraints, namely M ≥ N . It is also understood that whenever the

constraints contradict each other, the desired signal constraints will be preferred.

Summarizing, we have a constraint matrix:

C(`, k) ,H(`, k) (3.8)

and a desired response vector:

g ,

[
1 . . . 1︸ ︷︷ ︸

K

0 . . . 0︸ ︷︷ ︸
N−K

]T
. (3.9)

Under these definitions, and using (3.4), (2.3) and (3.1), the beamformer output is given by:

yBF(`, k) = w†(`, k)z(`, k) =

g†
(
C†(`, k)C(`, k)

)−1
C†(`, k) (H(`, k)s(`, k) + v(`, k)) =

g†s(`, k) + g†
(
H†(`, k)H(`, k)

)−1
H†(`, k)v(`, k) =

K∑

i=1

sdi (`, k) + g†
(
H†(`, k)H(`, k)

)−1
H†(`, k)v(`, k). (3.10)

The beamformer output is therefore comprised of a sum two terms. One term is the sum of

all desired sources and the second term is the response of the array to the sensor noise.

3.1.2 An Equivalent Constraints Set

The matrix C(`, k) in (3.8) is comprised of the ATFs relating the sources and the microphones

hd
i (`, k), hs

i (`, k) and hns
i (`, k). Hence, the solution given in (3.4) requires an estimate of the

various filters. Obtaining such estimates might be a cumbersome task in practical scenarios,

where it is usually required that the sources are not active simultaneously (see e.g. [32]).

We will show now that the actual ATFs of the interfering sources can be replaced by the

basis vectors spanning the same interference subspace, without sacrificing the accuracy of

the solution.
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Let

Ni , Ns +Nns (3.11)

be the number of interferences, both stationary and non-stationary, in the environment. For

conciseness we assume that the ATFs of the interfering sources are linearly independent at

each frequency bin, and define E , [e1 . . . eNi ] to be any basis1 that spans the column space

of the interfering sources H i(`, k) = [Hs(`, k) Hns(`, k)]. Hence, the following identity holds:

H i(`, k) = E(`, k)Θ(`, k) (3.12)

where ΘNi×Ni(`, k) is comprised of the projection coefficients of the original ATFs on the

basis vectors. ΘNi×Ni(`, k) is usually an invertible matrix.

Define

Θ̃(`, k) ,

[
IK×K OK×Ni
ONi×K Θ(`, k)

]

N×N
. (3.13)

Multiplication by (Θ̃
†
(`, k))−1 of both sides of the original constraints set in (3.3), with the

definitions (3.8)-(3.9), yields:

(Θ̃
†
(`, k))−1C†(`, k)w(`, k) = (Θ̃

†
(`, k))−1g. (3.14)

Starting with the left-hand-side of (3.14) we have:

(Θ̃
†
(`, k))−1C†(`, k)w(`, k)

=

[
IK×K OK×Ni
ONi×K (Θ†(`, k))−1

] [
(Hd(`, k))†

(H i(`, k))†

]
w(`, k)

=

[
(Hd(`, k))†

(Θ−1(`, k))†(H i(`, k))†

]
w(`, k)

=

[
(Hd(`, k))†

(H i(`, k)Θ−1(`, k))†

]
w(`, k)

=

[
(Hd(`, k))†

E†(`, k)

]
w(`, k)

4
= Ċ

†
(`, k)w(`, k)

where the equivalent constraint matrix is defined as

Ċ(`, k)
4
=
[

Hd(`, k) E(`, k)
]
. (3.15)

1If this linear independency assumption does not hold, the rank of the basis can be smaller than Ni in
several frequency bins. In this contribution we assume the interference subspace to be full rank.
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For the right-hand-side of (3.14)we have:

(Θ̃
†
(`, k))−1g =[

IK×K OK×Ni
ONi×K (Θ†(`, k))−1

]
g =

=

[
(1 . . . 1︸ ︷︷ ︸

K

)IK×K (0 . . . 0︸ ︷︷ ︸
N−K

)(Θ†(`, k))−1

]†
= g.

Hence, it is shown that w(`, k) that satisfy the original constraints set C†(`, k)w(`, k) = g

also satisfy the equivalent constraints set

Ċ
†
(`, k)w(`, k) = g. (3.16)

3.1.3 A Modified Constraints Set

Both the original and equivalent constraints sets in (3.3) and (3.16) respectively, require esti-

mates of the desired sources ATFs Hd(`, k). Estimating these ATFs might be a cumbersome

task, due to the large order of the respective RIRs. In the current section we relax our de-

mand for a distortionless beamformer [as depicted in the definition of g in (3.9)] and replace

it by constraining the output signal to be comprised of the desired speech components at an

arbitrarily chosen microphone.

Define a modified vector of desired responses:

g̃(`, k) =

[
(hd11(`, k))∗ . . . (hdK1(`, k))∗︸ ︷︷ ︸

K

0 . . . 0︸ ︷︷ ︸
N−K

]T
.

where microphone #1 was arbitrarily chosen as the reference microphone. The modified

beamformer satisfying the modified response Ċ
†
(`, k)w̃(`, k) = g̃ is then given by

w̃(`, k) , Ċ(`, k)
(
Ċ
†
(`, k)Ċ(`, k)

)−1
g̃(`, k). (3.17)

Indeed, the beamformer output is now given by:

yBF(`, k) = w̃†(`, k)z(`, k) =

g̃†(`, k)
(
Ċ
†
(`, k)Ċ(`, k)

)−1
Ċ
†
(`, k) (H(`, k)s(`, k) + v(`, k)) =

g̃†(`, k)s(`, k) + g̃†(`, k)
(
Ċ
†
(`, k)Ċ(`, k)

)−1
Ċ
†
(`, k)v(`, k) =

K∑

i=1

hdi1(`, k)sdi (`, k) + g̃†(`, k)
(
Ċ
†
(`, k)Ċ(`, k)

)−1
Ċ
†
(`, k)v(`, k) (3.18)
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as expected from the modified constraint response.

It is easily verified that the modified desired response is related to the original desired

response (3.9) by:

g̃(`, k) = Ψ̃†(`, k)g

where:

Ψ(`, k) = diag
([

hd11(`, k) . . . hdK1(`, k)
])

and

Ψ̃(`, k) =

[
Ψ(`, k) OK×Ni
ONi×K INi×Ni

]
.

Now, a beamformer having the modified beam-pattern should satisfy the modified constraints

set:

Ċ
†
(`, k)w̃(`, k) = g̃(`, k) = Ψ̃†(`, k)g

Hence,

(Ψ̃−1(`, k))†Ċ
†
(`, k)w̃ = g.

Define

C̃(`, k) , Ċ(`, k)Ψ̃−1(`, k) =
[

H̃
d
(`, k) E(`, k)

]
(3.19)

where

H̃
d
(`, k) ,

[
h̃
d

1(`, k) . . . h̃
d

K(`, k)
]

(3.20)

with

h̃
d

i (`, k) ,
hd
i (`, k)

hdi1(`, k)
(3.21)

defined as the RTF with respect to microphone #1.

Finally, the modified beamformer is given by:

w̃(`, k) , C̃(`, k)
(
C̃(`, k)†C̃(`, k)

)−1
g (3.22)

and its corresponding output is therefore given by:

yBF(`, k) = w̃†(`, k)z(`, k) =
K∑

i=1

sdi (`, k)hdi1(`, k) + g†
(
C̃
†
(`, k)C̃(`, k)

)−1
C̃
†
(`, k)v(`, k). (3.23)

The modified beamformer output is therefore comprised of the sum of the desired sources as

measured at the reference microphone (arbitrarily chosen as microphone #1) and the sensor

noise contribution.
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3.2 A Residual Noise Cancellation Postfilter

The proposed method requires an estimate of the RTFs relating each of the desired sources

and the microphones, and a basis that spans the ATFs relating each of the interfering source

and the microphones. As these quantities are not known, we use estimates thereof instead.

The estimation procedure will be discussed in Sec. 3.3. Due to inevitable estimation errors,

the constraints set is not exactly satisfied, resulting in leakage of residual interference signals

to the beamformer output, as well as desired signal distortion. In this section we propose to

use a linear postfilter to mitigate the residual interference signals.

Define the BM as a projection matrix to the null subspace of the column-space of C̃:

B(`, k) = IM×M − C̃(`, k)
(
C̃
†
(`, k)C̃(`, k)

)−1
C̃
†
(`, k). (3.24)

Denote the noise reference signals:

u(`, k) =
[
u1(`, k) . . . uM(`, k)

]T
, B(`, k)z(`, k). (3.25)

We propose to use the signals u(`, k) to predict the residual noise component at the beam-

former output yBF(`, k) by using a set of linear filters, updated according to the following

Normalized Least Mean Squares (NLMS) equations [37]:

y(`, k) = yBF(`, k)− q†(`, k)u(`, k) (3.26)

q̃(`+ 1, k) = q(`, k) + µq
u(`, k)y∗(`, k)

pest(`, k)
(3.27)

q(`+ 1, k)
FIR←− q̃(`+ 1, k) (3.28)

pest(`, k) = αppest(`− 1, k) + (1− αp)‖u(`, k)‖2 (3.29)

The operator
FIR←− consists of the following three stages, which are detailed in [38]. First,

q̃m(` + 1, k) is transformed to the time domain. Second, the resulting impulse response is

truncated, namely an FIR structure constraint is imposed. Third, the result is transformed

back to the frequency domain. Applying the
FIR←− operator avoids cyclic convolution. When

no estimation errors exist, u(`, k) are solely determined by the spatially white noise v(`, k).

Reuven et al. [39] showed that spatially white noise cannot be canceled out by a linear

enhancer, and that the resulting filters converge to q(`, k) = 0. We note, however, that

applying nonlinear postfilters such as spectral subtraction [40] or Optimally Modified Log

Spectral Amplitude (OMLSA) [41] might be capable of further reducing the residual noise
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level. The application of nonlinear noise reduction algorithms is beyond the scope of this

paper. The proposed system comprising the LCMV beamformer and the RNC is depicted in

Fig. 3.1. When the desired and interference signals leak through the BM, the filters q(`, k) go

uM (�, k)

u1(�), k

y(�, k)

yBF(�, k)

u2(�, k)

yRNC(�, k)

BF ∑

z1(�, k)

z2(�, k)

−

+

zM (�), k

BM

q(�, k)

RNC

Figure 3.1: The proposed method comprising a LCMV beamformer and a RNC.

into action. Since the Signal to Noise Ratio (SNR) at the beamformer output is much higher

than at the BM output, the RNC will tend to further increase the SNR without imposing

severe distortion on the desired signals.

Note that although the proposed structure has tight resemblances to the well-known

GSC structure, it exhibits a profound difference. While the purpose of the ANC in the GSC

structure [22] is to eliminate the stationary noise passing through the BM, in the proposed

structure the RNC is only responsible for the residual noise reduction as all signals, including

the stationary directional noise signal, are treated by the LCMV beamformer.

Another role of the RNC block is to enhance the robustness of the algorithm to small

changes of the ATFs relating the various sources and the microphones. We emphasize,

however, that the structure is not capable of tracking major changes in the source position

manifested as significant change in the ATFs.

We conclude this section by several remarks regarding the convergence of the NLMS

algorithm in the proposed structure. Firstly, as both the desired sources and the interference

sources are expected to leak through the BM, in order to avoid mis-convergence of the filters

it is necessary to adapt q(`, k) only when the desired sources are inactive. Secondly, we argue

that the residual signals leaking through the BM are more stationary than the interference

signals themselves. This phenomenon can be verified experimentally. Since the convergence
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ability of the NLMS algorithm is known to be affected by the stationarity level of its input

signals (u(`, k) in our case), it is expected that the noise reduction of the postfilter will

exhibit a more stable behavior.

3.3 Estimation of the Constraints Matrix

In the previous sections we have shown that knowledge of the RTFs related to the desired

sources and a basis that spans the subspace of the interfering sources suffice for implementing

the beamforming algorithm. This section is dedicated to the estimation procedure necessary

to acquire this knowledge. We start by making some restrictive assumptions regarding the

activity of the sources. First, we assume that there are time segments for which none of the

non-stationary sources is active. These segments are used for the estimating the stationary

noise PSD. Second, we assume that there are time segments in which all the desired sources

are inactive. These segments are used for estimating the interfering sources subspace. Third,

we assume that for every desired source, there is at least one time segment when it is the

only non-stationary source active. These segments are used for estimating the RTFs of the

desired sources. These assumption, although restrictive, can be met in realistic scenarios,

for which double talk only rarely occurs. A possible way to extract the activity information

can be a video signal acquired in parallel to the sound acquisition. In this contribution we

assume that the information is available.

In the rest of this section we discuss the subspace estimation procedure. This procedure

can be regarded in this aspect as a multi-source extension of the single source subspace

estimation method proposed by Affes and Grenier [21].

We further assume that the various filters are slowly time-varying filters, i.e H(`, k) ≈
H(k).

3.3.1 Interferences Subspace Estimation

Let ` = `1, . . . , `Nseg , be a set of Nseg frames for which all desired sources are inactive. For

every segment we estimate the subspace spanned by the active interferences (both stationary

and non-stationary).

Let Φ̂zz(`i, k) be a PSD estimate at the noise-only frame `i. Using the EVD we have

Φ̂zz(`i, k) = EiΛiE
†
i . Noise-only segments consist of both directional noise components and

spatially-white sensor noise. Hence, the larger eigenvalues can be attributed to the coherent
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signals while the lower eigenvalues to the spatially-white signals.

Define two thresholds EVTH and MEVTH. All eigenvectors corresponding to eigenvalues

that are more than EVTH below the largest eigenvalue or not higher than MEVTH above the

lowest eigenvalue, are regarded as sensor noise eigenvectors and are therefore discarded from

the interference signal subspace. Assuming that the number of sensors is larger than the

number of directional sources, the lowest eigenvalue level will correspond to the sensor noise

variance σ2
v . We denote the remaining eigenvectors as Êi, and their corresponding eigen-

values Λ̂i. This procedure is repeated for each segment `i; i = 1, 2, . . . , Nseg. The resulting

eigenvectors are collected using the union operator, i.e. eigenvectors that are common to

more than one segment are not counted more than once:

Ê(k) ,
Nseg⋃

i=1

Êi(k). (3.30)

Unfortunately, due to arbitrary activity of sources and estimation errors, eigenvectors

that correspond to the same source can be manifested as a different eigenvector in each

segment. These differences can unnecessarily inflate the number of estimated interference

sources. This erroneous rank estimation will result in the well-known desired signal cance-

lation phenomenon in beamformer structures. The union operator can be implemented in

many ways. Here we chose to use the Orthogonal Triangular Decomposition (QR).

Consider the following QR:
[

Ê1(k)Λ̂
1
2

1 (k) . . . ÊNseg(k)Λ̂
1
2

Nseg(k)

]
P (k) = Q(k)R(k) (3.31)

where Q(k) is a unitary matrix, R(k) is an upper triangular matrix with decreasing diagonal

absolute values and P (k) is a permutation matrix.

All vectors in Q(k) that corresponds to values on the diagonal of R(k) that are lower than

UTH below their largest value, or less then MUTH above their lowest value are not counted as

a basis vector of the directional interference subspace. The collection of all vectors passing

the designated thresholds, denoted Ê(k), are used as an estimate of the interference subspace

necessary for the implementation of the algorithm.

The novel procedure is advantageous over the more commonly used procedures, since the

equivalent interference sources subspace is estimated directly, relaxing the requirement for

non-overlapping activity periods of the distinct sources. Moreover, since several segments are

collected, the procedure tends to be more robust than methods that rely on PSD estimates

obtained by only one segment.
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Finally, we draw again the reader’s attention to a major difference between the proposed

method and the GSC structure, i.e. that while the stationary sources are passing through the

BM in the GSC structure, in the proposed method they are treated by the LCMV beamformer

as any other directional source. One of the reasons for equally treating the stationary and

the non-stationary sources is the ability to circumvent the need for the application of the less

robust GEVD procedure while estimating interferences subspace E(k) .

3.3.2 Desired Sources RTF Estimation

Consider time frames for which only the stationary sources are active and estimate the

corresponding PSD matrix, Φ̂
s

zz(`, k). Assume that there exist a segment `i during which the

only active non-stationary signal is the ith desired source i = 1, 2, . . . , K. The corresponding

PSD matrix will then satisfy:

Φ̂
d,i

zz (`i, k) ≈ (σdi (`i, k))2hd
i (`i, k)

(
hd
i (`i, k)

)†
+ Φ̂

s

zz(`, k). (3.32)

Now, applying the GEVD to Φ̂
d,i

zz (`i, k) and the stationary-noise PSD matrix Φ̂
s

zz(`, k) we

have:

Φ̂
d,i

zz (`i, k)f i(k) = λi(k)Φ̂
s

zz(`, k)f i(k) (3.33)

The desired source subspace is spanned by the generalized eigenvectors, corresponding to

the generalized eigenvalues with values other than 1, after a rotation by Φ̂
s

zz(`, k). Since

we assumed that only source i is active in segment `i, this eigenvector corresponds to a

scaled version of the source ATF. To prove this relation for the single eigenvector case,

let f i(k), λi(k) be the largest eigenvalue and the corresponding eigenvector at segment `i.

Substituting in (3.33) Φ̂
d,i

zz (`i, k) with (3.32) yields:

(σdi (`i, k))2hd
i (`i, k)

(
hd
i (`i, k)

)†
f i(k) + Φ̂

s

zz(`, k)f i(k) = λi(k)Φ̂
s

zz(`, k)f i(k).

Hence we have

(σdi (`i, k))2hd
i (`i, k)

(
hd
i (`i, k)

)†
f i(k) =

(
λi(k)− 1

)
Φ̂
s

zz(`, k)f i(k).

Now, since by assumption λi(k) 6= 1 we finally have

(σdi (`i, k))2
(
hd
i (`i, k)

)†
f i(k)

λi(k)− 1︸ ︷︷ ︸
scalar

hd
i (`i, k) = Φ̂

s

zz(`, k)f i(k) �
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As we are interested in the RTFs in respect to the first microphone rather than the entire

ATFs, the scaling ambiguity can be resolved by the normalization:

ˆ̃h
d

i (`, k) ,
Φs
zz(`, k)f i(k)(

Φs
zz(`, k)f i(k)

)
1

(3.34)

where (·)1 is the first component of the vector.

3.4 Algorithm Summary

The entire algorithm is summarized in Alg. 2.
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Algorithm 2 Summary of the multiple constraint beamforming algorithm.

1) Output signal:

y(`, k) , yBF(`, k)− q†(`, k)u(`, k)
2) Beamformer with modified constraints set :

yBF(`, k) , w̃†(`, k)z(`, k)
where

w̃(`, k) , C̃(`, k)
(
C̃(`, k)†C̃(`, k)

)−1
g

C̃(`, k) ,
[

H̃
d
(`, k) E(`, k)

]

g ,

[
1 . . . 1︸ ︷︷ ︸

K

0 . . . 0︸ ︷︷ ︸
N−K

]T
.

H̃
d
(`, k) are the RTFs in respect to microphone #1.

3) Reference signals:

u(`, k) , B(`, k)z(`, k)
where

B(`, k) , IM×M − C̃(`, k)
(
C̃
†
(`, k)C̃(`, k)

)−1
C̃
†
(`, k).

4) Update filters:

q̃(`+ 1, k) = q(`, k) + µq
u(`,k)y∗(`,k)
pest(`,k)

q(`+ 1, k)
FIR←− q̃(`+ 1, k)

pest(`, k) = αppest(`− 1, k) + (1− αp)‖u(`, k)‖2
5) Estimation:

a) Estimate the stationary noise PSD using Welch method: Φs
zz(`, k)

b) Estimate time-invariant desired sources RTFs H̃
d
(k) ,

[
h̃
d

1(k) . . . h̃
d

K(k)
]

Using GEVD and normalization:
i) Φd,i

zz (`i, k)f i(k) = λiΦ
s
zz(`, k)f i(k)

ii) h̃
d

i (k) = 1
fi,1(k)

f i(k).

c) Interferences subspace:

QR factorization of eigen-spaces
[

E1(k)Λ
1
2
1 (k) . . . ENseg(k)Λ

1
2
Nseg

(k)
]

Where Φ̂zz(`i, k) = Ei(k)Λi(k)E†i (k) for time segment i
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Chapter 4

Experimental Study

In this chapter the performance of the proposed algorithm is evaluated in different scenarios.

In Section 4.1 the test environment and performance criteria are described. In Section 4.2

some implementation considerations are discussed. Two scenarios are then evaluated: the

two desired speakers scenario, in both simulated and real rooms is presented in Section 4.3.

The performance of the proposed algorithm in the single desired speaker scenario is presented

in Section 4.4 and compared with the performance of the TF-GSC algorithm.

4.1 The Test Scenario

The proposed algorithm was tested both in simulated and real room environments. Four

sources, two males and two females were drawn from the TIMIT [42] database. A fifth

directional signal was the stationary speech-like noise drawn from NOISEX-92 [43] database.

In the simulated room scenario the image method [44] was used to generate the RIR

using the simulator in [45]. All the signals were then convolved with the corresponding

time-invariant RIRs him(k) relating each source i = 1, 2, . . . , N with each microphone m =

1, 2, . . . ,M . The microphone signals zm(`, k); m = 1, 2, . . . ,M were finally obtained by

summing up the contribution of all directional sources with an additional uncorrelated sensor

noise. The reverberation time was set to T60 = 300mSec. The simulated environment was

a 4m × 3m × 2.7m room. A linear array consisting of 11 microphones was used to perform

the beamforming task. The microphone and the various sources positions are depicted in

Fig. 4.1(a). A typical RIR relating a source and one of the microphones is depicted in 4.1(c).

The algorithm’s performance was also verified using real medium-size conference room

equipped with furniture, book shelves, a large meeting table, chairs and other standard items.

39
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Figure 4.1: Room configuration and the corresponding typical RIR for simulated and real
scenarios.
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The room dimensions are 6.6m × 4m × 2.7m. A linear array consists of 8 omni-directional

microphones (AKG CK32) was used to pick up the sound signals. The various sources

were played separately from point loudspeakers (FOSTEX 6301BX). The signals z(`, k) were

finally constructed by summing up all recorded microphone signals with a gain related to the

desired input SIR. The source-microphone constellation is depicted in Fig. 4.1(b). The RIR

and the respective reverberation time were estimated using the WinMLS2004 software (a

product of Morset Sound Development). A typical RIR, having T60 = 250mSec, is depicted

in Fig. 4.1(d).

For evaluating the performance of the proposed algorithm, we applied the algorithms in

two phases. In the first phase, the algorithm (consists of the LCMV beamformer and the

RNC) was applied to an input signal, comprised of the sum of the desired speakers, the

competing speakers, and the stationary noise (with gains in accordance with the respective

SIR). In this phase, the algorithm was allowed to adapt yielding y(`, k), the actual algorithm

output.

In the second phase, the beamformer and the RNC were not updated. Instead, a copy

of the coefficients, obtained in the first phase, was used as the weights. As the coefficients

are time varying (due to the application of the RNC), we used in each time instant the

corresponding copy of the coefficients. The spatial filter was then applied to each of the

unmixed sources.

Denote ydBF,i(`, k), ydi (`, k); i = 1, . . . , K, the desired signals components at the beam-

former output and the total output (including the RNC), respectively, ynsBF,i(`, k), ynsi (`, k); i =

1, . . . , Nns the corresponding non-stationary interference components, ysBF,i(`, k), ysi (`, k); i =

1, . . . , Ns the stationary interference components, and yvBF(`, k), yv(`, k) the sensor noise com-

ponent at the beamformer and total output respectively. The entire test procedure is depicted

in Fig. 4.2.

The quality measure used for evaluating the performance of the proposed algorithm is the

improvement in the SIR. Since, generally, there are several desired sources and interference

sources we will use the worst-case SIR for quantifying the performance. The worst-case input

SIR relative to the non-stationary signals as measured on microphone m0 is defined as follows:

SIRns
in [dB] = min

1≤i≤K,1≤j≤Nns
10 log10

var
(
sdi (`, k)hdim0

(`, k)
)

var
(
snsj (`, k)hnsjm0

(`, k)
) .
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Figure 4.2: Test procedure for evaluating the performance of the algorithm.
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Similarly, The worst-case input SIR relative to the stationary signals is:

SIRs
in[dB] = min

1≤i≤K,1≤j≤Ns
10 log10

var
(
sdi (`, k)hdim0

(`, k)
)

var
(
ssj(`, k)hsjm0

(`, k)
) .

These quantities are compared with the corresponding beamformer and total outputs (in-

cluding the RNC) SIR:

SIRns
BF[dB] = min

1≤i≤K,1≤j≤Nns
10 log10

var
(
ydBF,i(`, k)

)

var
(
ynsBF,j(`, k)

)

SIRs
BF[dB] = min

1≤i≤K,1≤j≤Ns
10 log10

var
(
ydBF,i(`, k)

)

var
(
ysBF,j(`, k)

)

SIRns
out[dB] = min

1≤i≤K,1≤j≤Nns
10 log10

var
(
ydi (`, k)

)

var
(
ynsj (`, k)

)

SIRs
out[dB] = min

1≤i≤K,1≤j≤Ns
10 log10

var
(
ydi (`, k)

)

var
(
ysj (`, k)

) .

4.2 Implementation Considerations

The algorithm is implemented almost entirely in the STFT domain, using a rectangular

analysis window of length NDFT, and a shorter rectangular synthesis window, resulting in

the overlap & save procedure [38]. The PSD of the stationary interferences and the desired

sources is estimated using the Welch method, with an Hamming window of length D×NDFT

applied to each segment, and (D−1)×NDFT overlap between segments. However, since only

lower frequency resolution is required, we wrapped each segment to length NDFT before the

application of the Discrete Fourier Transform (DFT) operation. The interference subspace

is estimated from a Lseg ×NDFT length segment. The overlap between segments is denoted

OVRLP. The resulting beamformer estimate is tapered by an Hamming window resulting in

a smooth filter in the coefficient range [−FLl, FLr]. The parameters used for the simulation

are given in Table 4.1.

4.3 Two Desired Sources Scenario

This scenario included 5 sources: two desired speakers (a male and a female), two competing

speakers (a male and a female) and a stationary directional noise. The performance of the

proposed algorithm was evaluated in a simulated and in a real room with different SIR values.
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Table 4.1: The parameters used by the subspace beamformer algorithm.

Parameter Description Value

General Parameters
fs Sampling frequency 8KHz
σ2
v Sensor noise variance 1

PSD Estimation using Welch Method
NDFT DFT length 2048
D Frequency decimation factor 6
JF Time offset between segments 2048

Interferences’ Subspace Estimation
Lseg Number of DFT segments used for estimating a single

interference subspace 24
OVRLP The overlap between time segments that are used for

interferences subspace estimation 50%
EVTH Eigenvectors corresponding to eigenvalues that are more than EVTH

lower below the largest eigenvalue are discarded from the signal subspace 40dB
MEVTH Eigenvectors corresponding to eigenvalues not higher than

MEVTH above the sensor noise are discarded from the signal subspace 5dB
UTH Vectors of Q(k) corresponding to values of R(k) that are more than

UTH below the largest value on the diagonal of R(k) 40dB
MUTH Vectors of Q(k) corresponding to values of R(k) not higher than 5dB

MUTH above the lowest value on the diagonal of R(k)
Filters Lengths

FLr Causal part of the Beamformer (BF) filters 1000 taps
FLl Noncausal part of the BF filters 1000 taps
BLr Causal part of the BM filters 250 taps
BLl Noncausal part of the BM filters 250 taps
RLr Causal part of the RNC filters 500 taps
RLl Noncausal part of the RNC filters 500 taps

RNC Parameters
µ0 NLMS adaptation factor 0.18
ρ Forgetting factor for the estimation of the normalization power pest(`, k) 0.9
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4.3.1 Simulated Environment

The SIR improvement obtained by the beamformer and by the additional RNC in the two

desired sources simulated scenario is depicted in Table 4.2. The results in the table were

obtained using the second phase of the test procedure described in Sec. 4.1. It is shown that

the beamformer can gain approximately 18dB SIR improvement relative to the stationary

interference signal and approximately 14dB relative to the non-stationary signals. The RNC

further improves the SIR performance by more than 4dB for the stationary sources and only

around 2dB for the non-stationary signals. Across all input SIRs the total SIR improvement

is impressively high. Assessment of the sonograms in Fig. 4.3 visually verifies the objective

Table 4.2: SIR improvement in dB for the beamformer and the RNC outputs for various
input SIR levels in the simulated room two desired sources scenario.

Input RNC Beamformer
SIRns

in = SIRs
in SIRs

out − SIRs
BF SIRns

out − SIRns
BF SIRs

BF − SIRs
in SIRns

BF − SIRns
in

−10 3.69 2.24 17.68 12.85
−8 4.73 2.00 17.83 13.70
−6 5.5 2.06 18.18 14.14
−4 5.24 1.89 18.56 14.05
−2 6.02 2.08 18.03 14.05
0 4.49 1.77 18.31 14.49
2 4.61 2.03 18.52 14.64
4 5.06 1.74 18.61 14.54
6 4.31 1.73 18.42 14.27
8 4.67 1.66 17.92 13.68
10 4.39 1.73 18.31 14.29

results presented in Table 4.2 for SIRns
in = 6dB. It can be shown that the interference signals

are significantly attenuated while the desired sources remain almost undistorted. Finally, we

show some of the waveforms comparing the various components at microphone #1 and at

the algorithm’s output. The results are shown in Fig. 4.4.

4.3.2 Real Environment

In Fig. 4.5 sonograms of the input signal and the algorithm’s output are depicted. The input

SIR was 6dB. A total SIR improvement of 15.28dB was obtained for the interfering speakers

and 16.23dB for the stationary noise. The RNC’s contribution was 1.32dB for the competing

speakers, and 3.15dB for the stationary noise.
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(a) Microphone #1 signal
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(b) Algorithm’s output

Figure 4.3: Sonograms and waveforms for the simulated room environment for two desired
sources and two interfering sources scenario depicting the algorithm’s SIR improvement

4.4 One Desired Source Scenario

In this section we test the performance of the proposed algorithm in the single desired source

scenario.

Two paradigms can be adopted for designing a beamformer for enhancing a desired signal

contaminated by both noise and interferences. These paradigms differ in their treatment of

the interferences (competing speech signals and/or directional noise). The straight-forward

alternative is to apply the single constraint beamformer (The GSC [18], or in reverberant

environment the TF-GSC [22]), in which a beam is steered towards the desired signal, while

all other interference signals are treated by the ANC. Another alternative suggests steering

nulls towards the interference signals. Our contribution adopts the latter approach, in which

the FBF steers a beam towards the desired signal while simultaneously directs nulls towards

all interferers. The BM blocks both the desired and all interfering sources. Hence, the ANC

is only responsible for the residual noise signal mitigation.

A major difference between the TF-GSC structure and the proposed structure lies in the

adaptation mechanism of the ANC. While for the TF-GSC the signals fed to the ANC consist

of both non-stationary competing speech signals and stationary noise signal, the input to the

corresponding block in the proposed structure is comprised of residual noise, leaking through

the BM. The need of the ANC in the TF-GSC to adapt during both types of signals impose

contradicting requirements on the adaptation rate. On one hand, the rate should be high

enough to allow for tracking of a fast varying signal, and on the other-hand it should be low
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(b) Directional stationary noise at the output
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(c) Desired speaker #1 at microphone #1
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(d) Desired speaker #1 at the output
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(e) Interfering speaker #2 at microphone #1
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Figure 4.4: Algorithm performance per component in the two desired sources simulated
scenario
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(a) Microphone #1 signal
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(b) Algorithm’s output

Figure 4.5: Sonograms and waveforms for the real room two desired sources scenario depicting
the algorithm’s SIR improvement.

enough to enable sufficient reduction of the stationary noise level.

We compared the performance of the two paradigms by using simulated room recordings.

We used an array of 11 microphones and a female speaker as the single desired source while

various number of competing speakers were used as the interference sources. In all cases single

stationary directional noise was used. The performance of the proposed algorithm, in terms

of worst case SIR, is presented for the simulated room environment with various SIR values

and compared with the performance of the TF-GSC algorithm. The results are depicted

in Table 4.3. Examination of the results reveals that the proposed algorithm achieves an

excessive 10dB for the stationary noise suppression, and 7dB for the competing speakers

suppression with respect to the TF-GSC figures. The SIR improvement was consistent with

the number of competing speakers.

It is clear that in static scenarios, well-designed nulls towards all interfering signals yields

much better undesired signal reduction than adaptive cancelers.

In Fig. 4.7 the stationary noise component at the beamformer output, ys1(n), is com-

pared. It is evident that the noise level at the proposed algorithm is much lower than the

corresponding noise level at the TF-GSC output. Moreover, the noise signal at the TF-GSC

output exhibits severe level fluctuations, while the noise level at the proposed method out-

put is much more stable. This phenomenon can be attributed to contradicting adaptation

demands during competing speakers activity.
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On the other hand, the proposed algorithm, which directs a constant null towards all

interference sources, does not have to adapt, and hence can maintain a stationary noise

component at the output. This property ensures proper use of any further post-filter.

The TF-GSC output is depicted in Fig. 4.6(b) while the output of the proposed algorithm

is shown in Fig. 4.6(c). It is evident that the latter outperforms the TF-GSC especially in

terms of the competing speaker cancellation, and that it is closer to the microphone signal

as shown in Fig. 4.6(a).
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(b) TF-GSC output
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(c) The proposed algorithm output

Figure 4.6: TF-GSC and proposed algorithm comparison - Sonograms and waveforms
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Table 4.3: Single desired source SIR improvement (in dB) for the TF-GSC and the proposed
algorithm for various numbers of competing speakers in the simulated room scenario.

TF-GSC Proposed algorithm
Competing speakers SIRs

out − SIRs
BF SIRns

out − SIRns
BF SIRs

BF − SIRs
in SIRns

BF − SIRns
in

2 10.88dB − 19.39dB −
3 8.79dB 6.61dB 20.46dB 16.47dB
4 9.96dB 7.69dB 20.29dB 16.32dB
5 9.54dB 7.83dB 14.25dB 13.01dB
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Stationary noise at proposed algorithm output
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Figure 4.7: Noise signals compared at the output of the algorithms
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4.5 Conclusion

In this chapter we presented an experimental study of the proposed algorithm. It was shown

that the proposed algorithm obtained satisfying results in both simulated and real room envi-

ronments. Comparison of the SIR improvement of the TF-GSC and the proposed algorithm,

emphasize the advantages of the proposed when the acoustical environment is assumed to be

time-invariant.
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Chapter 5

Summary and Future Directions

In this chapter we summarize our work and propose some future research directions.

5.1 Research Summary

In this thesis we addressed the problem of extracting several desired sources in a reverber-

ant environment contaminated by both nonstationary (competing speakers) and stationary

interferences utilizing a microphone array.

A literature survey depict the limitations of exiting methods in solving the general prob-

lem of extracting multiple desired sources contaminated by several competing speakers and

directional noise sources. These limitations are emphasized in highly reverberant environ-

ment.

We propose a novel method for array beam-pattern design based on the LCMV criterion.

The array is designed to satisfy a set of linear constraints, that maintain multiple desired

sources while cancelling out the interference sources. A practical procedure for estimating

the constraints set is then derived.

Due to erroneous estimate of the constraint matrix residual interference signal leaks to

the beamformer’s output. We propose to construct a BM which outputs refer to the residual

interference signal, enabling further enhancement of the desired sources by using an adaptive

signal canceler, denoted RNC.

Unlike common GSC structures, we chose to block all directional signals, including the

stationary noise signals, in the beamformer. By treating the stationary source as a directional

signal we obtain more stable nulls, which do not suffer from fluctuations caused by the

adaptive process. However, in time-varying environment different, more adaptive forms,

might be adopted.

53
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Experimental results for both simulated and real environments demonstrate that the

proposed method can be applied to extract several desired sources from a combination of

multiple sources in a complicated acoustic environment, and outperform existing algorithms.

5.2 Future Directions

The estimation method in the proposed algorithm is not applicable in case of time-varying

acoustic environment. In the future we propose to add tracking ability to the RTF and the

interferences subspace estimation procedures.

Another limitation of the proposed algorithm is the requirement for a single talk segment

for each of the desired sources. In the future it is important to add a method that can also be

applied in double-talk scenarios. It is also interesting to investigate the ability of updating

the interferences subspace while the desired sources are active. Relaxing these limitations

will make the algorithm more robust, easier to manage and applicable to more situations.
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